
axioms

Article

Accelerated Modified Tseng’s Extragradient Method for Solving
Variational Inequality Problems in Hilbert Spaces

Godwin Amechi Okeke 1,* , Mujahid Abbas 2,3 , Manuel De la Sen 4 and Hira Iqbal 5

����������
�������

Citation: Okeke, G.A.; Abbas, M.;

De la Sen, M.; Iqbal, H. Accelerated

Modified Tseng’s Extragradient

Method for Solving Variational

Inequality Problems in Hilbert Spaces.

Axioms 2021, 10, 248. https://

doi.org/10.3390/axioms10040248

Academic Editors: Yeong-Cheng Liou

and Palle E. T. Jorgensen

Received: 5 August 2021

Accepted: 26 September 2021

Published: 1 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Functional Analysis and Optimization Research Group Laboratory (FANORG), Department of Mathematics,
School of Physical Sciences, Federal University of Technology Owerri, Owerri P.M.B. 1526, Nigeria

2 Department of Mathematics, Government College University Katchery Road, Lahore 54000, Pakistan;
abbas.mujahid@gmail.com or abbas.mujahid@gcu.edu.pk

3 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

4 Institute of Research and Development of Processes, Campus of Leioa (Bizkaia), University of the Basque
Country, P.O. Box 644, Barrio Sarriena, 48940 Leioa, Spain; manuel.delasen@ehu.eus

5 Department of Sciences and Humanities, Lahore Campus, National University of Computer and Emerging
Sciences, Lahore 54000, Pakistan; hira.iqbal@nu.edu.pk

* Correspondence: godwin.okeke@futo.edu.ng or gaokeke1@yahoo.co.uk

Abstract: The aim of this paper is to propose a new iterative algorithm to approximate the solution
for a variational inequality problem in real Hilbert spaces. A strong convergence result for the
above problem is established under certain mild conditions. Our proposed method requires the
computation of only one projection onto the feasible set in each iteration. Some numerical examples
are presented to support that our proposed method performs better than some known comparable
methods for solving variational inequality problems.
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1. Introduction

Suppose C is a nonempty closed convex subset of a real Hilbert space H with the inner
product 〈., .〉 which induces the norm ‖.‖, and A is a self mapping on H. The variational
inequality problem (VIP) for an operator A on C ⊂ H is to find a point x∗ ∈ C such that
the following is the case.

〈Ax∗, x− x∗〉 ≥ 0 for each x ∈ C. (1)

In this paper, we denote the solution set of (VIP) (1) by Γ.
The theory of variational inequalities problems (VIP) was introduced by Stampac-

chia [1]. It has been proved that the (VIP) problem arise from various mathematical models
connected with real life problems. Over the years, VIP has attracted the attention of well-
known mathematicians due to its applications in several fields of interest such as sciences
and engineering. Interest in (VIP) stems from the fact that it is applicable in solving several
real life problems that are of physical interest, such as the problem of the steady filtration
of a liquid through a porous membrane in several dimensions, the problem of lubrication,
the motion of a fluid past a certain profile and the small deflections of an elastic beam (See,
e.g., [2]).
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The optimization problem comprises maximizing or minimizing some function f
relative to some set S. The function f provides room for the comparison of different options
relative to determining which is the best. We write the optimization problem as follows:

optimizex∈S f (x)

where optimize stands for min or max, and f : Rn → R denotes the objective function. We
note that the optimal solution of a maximization problem of the following:

max
x∈S

f (x)

coincide with the optimal solutions of the minimization problem:

min
x∈S
− f (x)

and we have maxx∈S f (x) = −minx∈S(− f (x)).
The two popular methods of solving (VIP) (1) are the projection method and the

regularized method. Several authors have developed efficient iterative algorithms for
solving the (VIP) (1). The projection-type methods are well developed in the literature (see,
for example, [3–7]). The well-known projected gradient algorithm method, which is useful
in solving the minimization problem f (x) subject to x ∈ C is given as follows:

xn+1 = PC(xn − αn5 f (xn)), n ≥ 0, (2)

where the real sequence {αn} of parameters satisfies some conditions, PC is the well-known
metric projection of vectors in H onto C and 5 f denotes the gradient of f . Interested
readers may refer to [8] for convergence analysis of the above method for the case when
f : H → R is convex and differentiable. The method (2) was extended to the (VIP) (1)
problem by replacing the gradient of f with the operator A and by generating a sequence
{xn} as follows.

xn+1 = PC(xn − αn Axn), n ≥ 0. (3)

Note that the major disadvantage of this method is the restriction that the operator
A is strongly monotone or inverse strongly monotone ([9]) for the convergence of this
method. In 1976, Korpelevich [10] removed this strong condition by introducing the
extragradient method for solving saddle point problems. This well-known method was
extended to solving variational inequality problems (VIP) in both Hilbert and Euclidean
spaces (see [10,11]). For the onvergence of this method, the only restriction on the operator
A is monotonocity and L-Lipschitz continuity. The extragradient method is given as
follows: {

yn = PC(xn − λAxn)
xn+1 = PC(xn − λAyn),

(4)

where λ ∈ (0, 1
L ). If the solution set Γ of the (VIP) is nonempty, then the sequence {xn}

generated by the iterative method (4) converges weakly to an element in Γ.
Clearly, by using the above method, one needs to compute two projections onto the

set C in every iteration. It is well known that the projection onto a closed convex set
C ⊂ H has a close relationship with the minimum distance problem, which may require a
restrictive amount of computation time. To solve this problem, Censor et al. [4] introduced
the subgradient extragradient method by modifying iterative algorithm (4). They replaced
the two projections in the extragradient method (4) onto the set C with one projection onto
the set C ⊂ H and one projection onto a half-space, which is easier to calculate.
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The Censor et al. [4] subgradient extragradient method is given as follows:
yn = PC(xn − λAxn)
Tn = {x ∈ H : 〈xn − λAxn − yn, x− yn〉 ≤ 0}
xn+1 = PTn(xn − λAyn),

(5)

where λ ∈ (0, 1
L ). Several authors have studied the subgradient extragradient method

and proved some useful and applicable results (see, for example, [7,12] and the references
therein).

In 2000, Tseng [13] developed a method involving only one projection for solving the
variational inequality problem (VIP) (1). The Tseng’s extragradient method is as follows:{

yn = PC(xn − λAxn)
xn+1 = yn − λ(Ayn − Axn),

(6)

where λ ∈ (0, 1
L ). Recently, many well-known mathematicians developed some modified

Tseng’s extragradient methods for solving variational inequality problems (VIP) (see,
e.g., [14–16] and the references therein).

The inertial-type iterative methods are based on a discrete version of a second order
dissipative dynamical system (see [7,17,18]). These methods can be seen as a process meant
to accelerate the rate of convergence of a given method (see, e.g., [19–21]). In 2001, Alvarez
and Attouch [19] applied the inertial method to derive a proximal algorithm for solving
the problem of finding zero of a maximal monotone operator. Their method is given as
follows.

Given xn−1, xn ∈ H and two parameters θn ∈ [0, 1), λn > 0, xn+1 ∈ H is obtained
such that the following is the case:

0 ∈ λn A(xn+1) + xn+1 − xn − θn(xn − xn−1). (7)

The above method can be written equivalently as follows:

xn+1 = JA
λn
(xn + θn(xn − xn−1), (8)

where JA
λn

is the resolvent of the operator A with the given parameter λn, and the inertial is
induced by the term θn(xn − xn−1).

Several algorithms with faster convergence rate via the use of inertial methods have
appeared in literature recently (see, e.g., [22,23]). These algorithms include inertial forward-
backward splitting methods ([24]), the inertial Douglas–Rachford splitting method ([25]),
inertial ADMM ([26]), inertial proximal-extragradient method ([27]), inertial contraction
method ([28]) and inertial forward-backward-forward method ([29]), among others.

Motivated by the results above, we propose a new algorithm for solving variational
inequality problems in real Hilbert spaces. Our proposed method combines the modi-
fied Tseng’s extragradient method [13], the viscosity method [30] and the Picard–Mann
method [31]. Our method requires the computation of only one projection onto the feasi-
ble set (solution set) in each iteration. We establish a strong convergence theorem of the
proposed algorithm under certain mild conditions. Furthermore, with the help of several
numerical illustrations, we show that the proposed method performs better than some
known methods for solving variational inequality problems.

This paper is organized as follows: In Section 2, some preliminary definitions and
known results that are needed in this study are given. In Section 3, a modified Tseng’s
extragradient algorithm is proposed, and a strong convergence theorem for the method
is presented. In Section 4, some numerical illustrations are given to show that method
presented herein performs better than some existing methods. Section 5 contains the
concluding remarks of this paper.
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2. Preliminaries

Let H be a real Hilbert space, we recall the following definitions.

Definition 1. A mapping A : H → H is said to be:
(i) L-Lipschitz continuous with L > 0 if the following is the case.

‖Ax− Ay‖ ≤ L‖x− y‖ for all x, y ∈ H. (9)

If L ∈ [0, 1) then A is called a contraction mapping. If L = 1, then A is called nonexpansive
mapping.

(ii) It is monotone if the following is the case.

〈Ax− Ay, x− y〉 ≥ 0, for all x, y ∈ H. (10)

(iii) A is called strictly monotone if for any x 6= y, the following is the case:

〈x− y, A(x)− A(y)〉 > 0

and the equality is possible only if x = y.

(iv) A is called strongly monotone if for any x, y ∈ H, the following is the case:

〈x− y, A(x)− A(y)〉 ≥ α(‖x− y‖)‖x− y‖

where the nonnegative function α(t) defined at t ≥ 0 satisfies the condition α(0) = 0 and α(t)→ ∞
when t→ ∞.

(v) A is called pseudomonotone if the following is the case.

〈A(y), x− y〉 ≥ 0 =⇒ 〈A(x), x− y〉 ≥ 0, ∀x, y ∈ H.

For every x ∈ H, there exists a unique point PCx in C ⊂ H such that the following is the case:

‖x− PCx‖ ≤ ‖x− y‖ (11)

for each y ∈ C (see, e.g., [32]). A mapping PC is known as the metric projection of H onto C ⊂ H.
It is known that the mapping PC is nonexpansive.

Next, we recall the following lemmas which will be useful in this paper.

Lemma 1 ([32]). Given that C is a closed convex subset of a real Hilbert space H and x ∈ H, we
have the following:
(i) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 for all y ∈ H;
(ii) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2 for all y ∈ H;
(iii)

z = PCx if and only if 〈x− z, z− y〉 ≥ 0

for all y ∈ C.

For more properties of the metric projection PC, the interested reader may refer to
Section 3 of [32].

Let A : H → H. The fixed point problem (FP) is formulated as follows.

find x ∈ H such that x = A(x). (12)
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The set of fixed point of the operator A is denoted by F(A), and we assume that
F(A) 6= ∅. Our interest in this paper is to find a point x ∈ H such that the following is the
case.

x ∈ Γ ∩ F(A). (13)

The weak convergence of the sequence{xn} to x is denoted by xn ⇀ x as n→ ∞, and
we denote the strong convergence of {xn} to x by xn → x as n→ ∞.

For each x, y ∈ H and α ∈ R, we recall the following inequalities in Hilbert spaces.

‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2. (14)

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (15)

‖x + y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2. (16)

The following lemmas will be needed in this paper.

Lemma 2 ([33,34]). Let {an} be a sequence of nonnegative real numbers, {αn} denotes a sequence
of real numbers in (0, 1) with ∑∞

n=1 αn = ∞ and {bn} denotes a sequence of real numbers. We will
assume that the following is the case.

an+1 ≤ (1− αn)an + αnbn, ∀n ≥ 1.

If lim supk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying lim infk→∞(ank+1 −
ank ) ≥ 0, then limn→∞ an = 0.

3. Main Results

We assume that the following condition is satisfied.

Condition 1. The feasible set C is a non-empty, closed and convex subset of the real Hilbert space
H. The mapping A : H → H is monotone and L-Lipschitz continuous on H, with the solution
set of (VIP) (1); Γ 6= ∅ and f : H → H is a contraction mapping with the contraction parameter
k ∈ [0, 1).

We now propose the following algorithm.

Step 0: Given {αn} ⊂ [0, α) for some α > 0, λ ∈ (0, 1
L ), {θn} ⊂ (a, b) ⊂ (0, 1 − βn)

and {βn} ⊂ (0, 1) satisfying the following conditions:

lim
n→∞

βn = 0,
∞

∑
n=1

βn = ∞. (17)

choose the initial x0, x1 ∈ C and set n := 1.
Step 1: Set the following:

wn = xn + αn(xn − xn−1), (18)

and compute the following.
yn = PC(wn − λAwn). (19)

If yn = wn, then stop the computation. yn is a solution to the problem (VIP). Other-
wise, proceed to Step 2.

Step 2: Set the following:

hn = (1− θn − βn) f (xn) + θnzn (20)

and compute the following:
xn+1 = f (hn), (21)
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where
zn = yn − λ(Ayn − Awn). (22)

Set n := n + 1 and proceed to Step 1.
Next, we prove the following results.

Theorem 1. Suppose Condition 1 holds and the following is the case.

lim
n→∞

αn

βn
‖xn − xn−1‖ = 0. (23)

The sequence {xn} generated by the algorithm converges strongly to an element p ∈ Γ, such
that p = PΓ ◦ f (p).

Proof. Claim I: We claim that the sequence {xn} is bounded for each p = PVI(C,A)◦ f (p). We
begin by proving the following.

‖zn − p‖2 ≤ ‖wn − p‖2 − (1− λ2L2)‖yn − wn‖2. (24)

Using (22) together with (10), (11), (19) and Lemma 1 (ii), we have the following.

‖zn − p‖2 = ‖yn − λ(Ayn − Awn)− p‖2

= ‖yn − p‖2 + λ2‖Ayn − Awn‖2 − 2λ〈yn − p, Ayn − Awn〉
= ‖PC(wn − λAwn)− p‖2 + λ2‖Ayn − Awn‖2 − 2λ〈yn − p, Ayn − Awn〉
≤ ‖wn − λAwn − p‖2 − ‖wn − λAwn − PC(wn − λAwn)‖2 + λ2‖Ayn − Awn‖2−

2λ〈yn − p, Ayn − Awn〉
= ‖wn − λAwn − p‖2 − ‖wn − λAwn − yn‖2 + λ2‖Ayn − Awn‖2−

2λ〈yn − p, Ayn − Awn〉
≤ ‖wn − p‖2 − 2λ〈Awn, wn − p− λAwn〉 − ‖wn − yn‖2 + 2λ〈Awn, wn − yn − λAwn〉

+λ2‖Ayn − Awn‖2 − 2λ〈yn − p, Ayn − Awn〉
= ‖wn − p‖2 − 2λ〈Ayn, yn − p〉 − ‖wn − yn‖2 + λ2‖Ayn − Awn‖2

= ‖wn − p‖2 − 2λ〈Ayn − Ap, yn − p〉 − 2λ〈Ap, yn − p〉 − ‖wn − yn‖2+
λ2‖Ayn − Awn‖2.

(25)

Using the fact that the mapping A is monotone and L-Lipschitz continuous, we have
the following from inequality (25).

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − yn‖2 + λ2‖Ayn − Awn‖2

≤ ‖wn − p‖2 − ‖wn − yn‖2 + λ2L2‖yn − wn‖2

= ‖wn − p‖2 − (1− λ2L2)‖yn − wn‖2.
(26)

This implies the following.

‖zn − p‖ ≤ ‖wn − p‖. (27)

By (18), we have the following estimate.

‖wn − p‖ = ‖xn + αn(xn − xn−1)− p‖
≤ ‖xn − p‖+ αn‖xn − xn−1‖
= ‖xn − p‖+ βn. αn

βn
‖xn − xn−1‖.

(28)

Using the condition that αn
βn
‖xn − xn−1‖ → 0 in (23), it follows that there exists a

constant `1 > 0 such that the following is the case.

αn

βn
‖xn − xn−1‖ ≤ `1, ∀n ≥ 1. (29)
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Using (28) and (29) in (27), we have the following.

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ βn`1. (30)

Using (21) and the condition that f is a contraction mapping, we have the following.

‖xn+1 − p‖ = ‖ f (hn)− p‖
= ‖ f (hn)− f (p) + f (p)− p‖
≤ ‖ f (hn)− f (p)‖+ ‖ f (p)− p‖
≤ k‖hn − p‖+ ‖ f (p)− p‖.

(31)

Next, by using (20) together with (30), we have the following:

‖hn − p‖ = ‖(1− θn − βn) f (xn) + θnzn − p‖
= ‖(1− θn − βn)( f (xn)− p) + θn(zn − p)− βn p‖
≤ ‖(1− θn − βn)( f (xn)− p) + θn(zn − p)‖+ βn‖p‖
≤ (1− θn − βn)‖ f (xn)− p‖+ θn‖zn − p‖+ βn‖p‖
≤ (1− θn − βn)‖ f (xn)− f (p)‖+ (1− θn − βn)‖ f (p)− p‖+ θn‖zn − p‖+ βn‖p‖
≤ k(1− θn − βn)‖xn − p‖+ (1− θn − βn)‖ f (p)− p‖+ θn‖zn − p‖+ βn‖p‖
≤ (1− θn − βn)‖xn − p‖+ (1− θn − βn)‖ f (p)− p‖+ θn[‖xn − p‖+ βn`1] + βn‖p‖
= (1− βn)‖xn − p‖+ (1− θn − βn)‖ f (p)− p‖+ βn(θn`1 + ‖p‖)
≤ (1− βn)‖xn − p‖+ (1− θn − βn)‖ f (p)− p‖+ βn`2,

(32)

for some `2 > 0.
Using (32) in (31), we have the following:

‖xn+1 − p‖ ≤ k(1− βn)‖xn − p‖+ k(1− θn − βn)‖ f (p)− p‖+ βnk`2 + ‖ f (p)− p‖
≤ (1− βn)‖xn − p‖+ (1− θn − βn)‖ f (p)− p‖+ βnk`2 + ‖ f (p)− p‖
= (1− βn)‖xn − p‖+ (2− θn − βn)‖ f (p)− p‖+ βnk`2

≤ (1− βn)‖xn − p‖+ (1− k) `3+2‖ f (p)−p‖
1−k

≤ max
{
‖xn − p‖, `3+2‖ f (p)−p‖

1−k

}
...
≤ max

{
‖x0 − p‖, `3+2‖ f (p)−p‖

1−k

}
,

(33)

for some `3 > 0. This implies that the sequence {xn} is bounded. Therefore, it follows that
{zn}, {hn}, { f (hn)} and {wn} are bounded.

Claim II: We have the following case:

(1− βn)(1− λ2L2)‖yn − wn‖2 ≤ 3(1− βn)‖xn − p‖2 − ‖xn+1 − p‖2 + βn`10,

for some `10 > 0. By using (21) together with (11), we obtain the following:

‖xn+1 − p‖2 = ‖ f (hn)− p‖2

= ‖ f (hn)− f (p) + f (p)− p‖2

= ‖ f (hn)− f (p)‖2 + ‖ f (p)− p‖2 + 2〈 f (hn)− f (p), f (p)− p〉
≤ k2‖hn − p‖2 + ‖ f (p)− p‖2 + 2‖ f (hn)− f (p)‖‖ f (p)− p‖
≤ k‖hn − p‖2 + ‖ f (p)− p‖2 + 2k‖hn − p‖‖ f (p)− p‖
≤ k‖hn − p‖2 + k`4,

(34)

for some `4 > 0. By using (20) together with (10) and (11), we obtain the following:
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‖hn − p‖2 = ‖(1− θn − βn) f (xn) + θnzn − p‖2

= ‖(1− θn − βn)( f (xn)− p) + θn(zn − p)‖2−
2βn〈(1− θn − βn)( f (xn)− p) + θn(zn − p), p〉+ β2

n‖p‖2

≤ ‖(1− θn − βn)( f (xn)− p) + θn(zn − p)‖2 + βn`5
≤ (1− θn − βn)2‖ f (xn)− p‖2 + 2(1− θn − βn)θn‖ f (xn)− p‖‖zn − p‖+ θ2

n‖zn − p‖2

+βn`5
≤ (1− θn − βn)2‖ f (xn)− p‖2 + (1− θn − βn)θn‖ f (xn)− p‖2+

(1− θn − βn)θn‖zn − p‖2 + θ2
n‖zn − p‖2 + βn`5

≤ (1− θn − βn)(1− βn)‖ f (xn)− p‖2 + (1− βn)θn‖zn − p‖2 + βn`5,

(35)

for some `5 > 0. Next, we have the following estimate:

‖ f (xn)− p‖2 = ‖ f (xn)− f (p) + f (p)− p‖2

= ‖ f (xn)− f (p)‖2 + ‖ f (p)− p‖2 + 2〈 f (xn)− f (p), f (p)− p〉
≤ ‖ f (xn)− f (p)‖2 + ‖ f (p)− p‖2 + 2‖ f (xn)− f (p)‖‖ f (p)− p‖
≤ k2‖xn − p‖2 + ‖ f (p)− p‖2 + ‖ f (xn)− f (p)‖2 + ‖ f (p)− p‖2

≤ k2‖xn − p‖2 + ‖ f (p)− p‖2 + k2‖xn − p‖2 + ‖ f (p)− p‖2

≤ 2k‖xn − p‖2 + 2‖ f (p)− p‖2

≤ 2k‖xn − p‖2 + `6,

(36)

for some `6 > 0. Hence, by combining (36) and (35), we have the following:

‖hn − p‖2 ≤ 2k(1− θn − βn)(1− βn)‖xn − p‖2 + (1− βn)θn‖zn − p‖2 + βn`7, (37)

for some `7 > 0. By using (26) and (37) in (34), we obtain the following:

‖xn+1 − p‖2 ≤ 2k2(1− θn − βn)(1− βn)‖xn − p‖2 + (1− βn)θn‖zn − p‖2 + βn`7 + k`4
≤ 2k(1− θn − βn)(1− βn)‖xn − p‖2 + (1− βn)θn‖zn − p‖2 + βn`8
≤ 2k(1− θn − βn)(1− βn)‖xn − p‖2+

(1− βn)θn[‖wn − p‖2 − (1− λ2L2)‖yn − wn‖2] + βn`8
≤ 2(1− βn)‖xn − p‖2 + (1− βn)‖wn − p‖2 − (1− βn)(1− λ2L2)‖yn − wn‖2

+βn`8,

(38)

for some `8 > 0. From (30), we obtain the following:

‖wn − p‖2 ≤ (‖xn − p‖+ βn`1)
2

= ‖xn − p‖2 + βn(2`1‖xn − p‖+ βn`2
1)

≤ ‖xn − p‖2 + βn`9,
(39)

for some `9 > 0. By using (39) in (38), we obtain the following:

‖xn+1 − p‖2 ≤ 2(1− βn)‖xn − p‖2 + (1− βn)‖xn − p‖2 + (1− βn)βn`9 + βn`8−
(1− βn)(1− λ2L2)‖yn − wn‖2

≤ 3(1− βn)‖xn − p‖2 + βn`10 − (1− βn)(1− λ2L2)‖yn − wn‖2,
(40)

for some `10 > 0. This implies that the following is the case:

(1− βn)(1− λ2L2)‖yn − wn‖2 ≤ 3(1− βn)‖xn − p‖2 − ‖xn+1 − p‖2 + βn`10, (41)

for some `10 > 0.

Claim III: We have the following:

‖xn+1 − p‖2 ≤ k(1− βn)‖xn − p‖2 + (1− k)βn[
3D(1−βn)
(1−k) . αn

βn
‖xn − xn−1‖]+

2(1− k)[ 1
(1−k) 〈 f (p)− p, xn+1 − p〉+ 2(1−θn)

(1−k) (‖xn − p‖2 + ‖ f (p)− p‖2)],

for some D > 0.
From (10), we obtain the following.
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‖xn+1 − p‖2 = ‖ f (hn)− p‖2

= ‖ f (hn)− f (p) + f (p)− p‖2

≤ ‖ f (hn)− f (p)‖2 + 2〈 f (p)− p, xn+1 − p〉
≤ k2‖hn − p‖2 + 2〈 f (p)− p, xn+1 − p〉
≤ k‖hn − p‖2 + 2〈 f (p)− p, xn+1 − p〉.

(42)

Next, we have the following estimate.

‖hn − p‖2 = ‖(1− θn − βn) f (xn) + θnzn − p‖2

= (1− θn)2‖ f (xn)− f (p) + f (p)− p‖2 + ‖θn(zn − p)− βn( f (xn)− p)‖2+
2(1− θn)〈 f (xn)− p, θn(zn − p)− βn( f (xn)− p)〉

≤ (1− θn)‖ f (xn)− f (p)‖2 + (1− θn)‖ f (p)− p‖2+
2(1− θn)〈 f (xn)− f (p), f (p)− p〉+ θ2

n‖zn − p‖2 + β2
n‖ f (xn)− p‖2−

2βnθn〈zn − p, f (xn)− p〉+ 2θn(1− θn)〈 f (xn)− p, zn − p〉−
2βn(1− θn)〈 f (xn)− p, f (xn)− p〉

≤ k2(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + 2(1− θn)‖ f (xn)− f (p)‖‖ f (p)− p‖
+θn‖zn − p‖2 + βn‖ f (xn)− p‖2 − 2βnθn〈zn − p, f (xn)− p〉+
2θn(1− θn)〈zn − p, f (xn)− p〉

≤ k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + (1− θn)‖ f (xn)− f (p)‖2+
(1− θn)‖ f (p)− p‖2 + θn‖zn − p‖2 + βn‖ f (xn)− f (p) + f (p)− p‖2+
2θn(1− θn − βn)〈zn − p, f (xn)− p〉

≤ k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + k2(1− θn)‖xn − p‖2+
(1− θn)‖ f (p)− p‖2 + θn‖zn − p‖2 + βn‖ f (xn)− f (p)‖2 + βn‖ f (p)− p‖2+
2βn〈 f (xn)− f (p), f (p)− p〉+ 2θn(1− θn − βn)〈zn − p, f (xn)− p〉

≤ k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + k(1− θn)‖xn − p‖2+
(1− θn)‖ f (p)− p‖2 + θn‖zn − p‖2 + βnk2‖xn − p‖2 + βn‖ f (p)− p‖2+
2βn‖ f (xn)− f (p)‖‖ f (p)− p‖+ 2θn(1− θn − βn)‖zn − p‖‖ f (xn)− p‖

≤ k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + k(1− θn)‖xn − p‖2+
(1− θn)‖ f (p)− p‖2 + θn‖zn − p‖2 + βnk‖xn − p‖2 + βn‖ f (p)− p‖2+
βn‖ f (xn)− f (p)‖2 + βn‖ f (p)− p‖2 + θn(1− θn − βn)‖zn − p‖2+
θn(1− θn − βn)‖ f (xn)− p‖2

≤ k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + k(1− θn)‖xn − p‖2+
(1− θn)‖ f (p)− p‖2 + θn‖zn − p‖2 + βnk‖xn − p‖2 + βn‖ f (p)− p‖2+
βnk‖xn − p‖2 + βn‖ f (p)− p‖2 + θn(1− θn − βn)‖zn − p‖2+
θn(1− θn − βn)‖ f (xn)− f (p) + f (p)− p‖2
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= k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + k(1− θn)‖xn − p‖2+
(1− θn)‖ f (p)− p‖2 + θn‖zn − p‖2 + βnk‖xn − p‖2 + βn‖ f (p)− p‖2+
βnk‖xn − p‖2 + βn‖ f (p)− p‖2 + θn(1− θn − βn)‖zn − p‖2+
θn(1− θn − βn)‖ f (xn)− f (p)‖2 + θn(1− θn − βn)‖ f (p)− p‖2+
2θn(1− θn − βn)〈 f (xn)− f (p), f (p)− p〉

≤ k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + k(1− θn)‖xn − p‖2+
(1− θn)‖ f (p)− p‖2 + θn‖zn − p‖2 + βnk‖xn − p‖2 + βn‖ f (p)− p‖2+
βnk‖xn − p‖2 + βn‖ f (p)− p‖2 + (1− θn − βn)‖zn − p‖2+
kθn(1− θn − βn)‖xn − p‖2 + θn(1− θn − βn)‖ f (p)− p‖2+
2θn(1− θn − βn)‖ f (xn)− f (p)‖‖ f (p)− p‖

≤ k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + k(1− θn)‖xn − p‖2+
(1− θn)‖ f (p)− p‖2 + (1− βn)‖zn − p‖2 + βnk‖xn − p‖2 + βn‖ f (p)− p‖2+
βnk‖xn − p‖2 + βn‖ f (p)− p‖2+
kθn(1− θn − βn)‖xn − p‖2 + θn(1− θn − βn)‖ f (p)− p‖2+
θn(1− θn − βn)‖ f (xn)− f (p)‖2 + θn(1− θn − βn)‖ f (p)− p‖2

≤ k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + k(1− θn)‖xn − p‖2+
(1− θn)‖ f (p)− p‖2 + (1− βn)‖zn − p‖2 + βnk‖xn − p‖2 + βn‖ f (p)− p‖2+
βnk‖xn − p‖2 + βn‖ f (p)− p‖2+
kθn(1− θn − βn)‖xn − p‖2 + θn(1− θn − βn)‖ f (p)− p‖2+
kθn(1− θn − βn)‖xn − p‖2 + θn(1− θn − βn)‖ f (p)− p‖2

≤ k(1− θn)‖xn − p‖2 + (1− θn)‖ f (p)− p‖2 + k(1− θn)‖xn − p‖2+
(1− θn)‖ f (p)− p‖2 + (1− βn)‖zn − p‖2 + βn‖xn − p‖2 + βn‖ f (p)− p‖2+
βn‖xn − p‖2 + βn‖ f (p)− p‖2+
(1− θn − βn)‖xn − p‖2 + (1− θn − βn)‖ f (p)− p‖2 + (1− θn − βn)‖xn − p‖2 + (1− θn − βn)×
‖ f (p)− p‖2

≤ 4(1− θn)‖xn − p‖2 + 4(1− θn)‖ f (p)− p‖2 + (1− βn)‖zn − p‖2.

(43)

By using (18), we obtain the following.

‖wn − p‖2 = ‖xn + αn(xn − xn−1)− p‖2

= ‖xn − p‖2 + 2αn〈xn − p, xn − xn−1〉+ α2
n‖xn − xn−1‖2

≤ ‖xn − p‖2 + 2αn‖xn − p‖‖xn − xn−1‖+ α2
n‖xn − xn−1‖2.

(44)

Hence, by (27), it follows that the following is the case.

‖zn − p‖2 ≤ ‖wn − p‖2. (45)

By using (44) and (45) in (43), we obtain the following.

‖hn − p‖2 ≤ 4(1− θn)‖xn − p‖2 + 4(1− θn)‖ f (p)− p‖2 + (1− βn)‖xn − p‖2+
2αn(1− βn)‖xn − p‖‖xn − xn−1‖+ α2

n(1− βn)‖xn − xn−1‖2.
(46)

Next, by using (46) in (42), we obtain the following:

‖xn+1 − p‖2 ≤ 4k(1− θn)‖xn − p‖2 + 4k(1− θn)‖ f (p)− p‖2 + k(1− βn)‖xn − p‖2+
2kαn(1− βn)‖xn − p‖‖xn − xn−1‖+ kα2

n(1− βn)‖xn − xn−1‖2+
2〈 f (p)− p, xn+1 − p〉

≤ k(1− βn)‖xn − p‖2 + kαn(1− βn)‖xn − xn−1‖[2‖xn − p‖+ αn‖xn − xn−1‖]
+2〈 f (p)− p, xn+1 − p〉+ 4k(1− θn)[‖xn − p‖2 + ‖ f (p)− p‖2]

≤ k(1− βn)‖xn − p‖2 + 3Dαn(1− βn)‖xn − xn−1‖+ 2〈 f (p)− p, xn+1 − p〉+
4(1− θn)[‖xn − p‖2 + ‖ f (p)− p‖2]

≤ k(1− βn)‖xn − p‖2 + (1− k)βn[
3D(1−βn)
(1−k) . αn

βn
‖xn − xn−1‖]+

2(1− k)[ 1
(1−k) 〈 f (p)− p, xn+1 − p〉+ 2(1−θn)

(1−k) (‖xn − p‖2 + ‖ f (p)− p‖2)],

(47)
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where D := supn∈N{‖xn − p‖, αn‖xn − xn−1‖} > 0.

Claim IV:
The sequence is {‖xn − p‖2} −→ 0 as n → ∞. By Lemma 2, it suffices to prove that

lim supn→∞〈 f (p)− p, xnk+1 − p〉 ≤ 0 for each subsequence {‖xnk − p‖} of {‖xn− p‖} such
that the following is satisfied.

lim inf
k→∞

(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0.

Assume that {‖xnk − p‖} is a subsequence of {‖xn− p‖} such that lim infk→∞(‖xnk+1 −
p‖ − ‖xnk − p‖) ≥ 0. Then, we have the following.

lim inf
k→∞

(‖xnk+1 − p‖2 − ‖xnk − p‖2) = lim inf
k→∞

[‖xnk+1 − p‖ − ‖xnk − p‖)× (‖xnk+1 − p‖+ ‖xnk − p‖)] ≥ 0.

Hence, by Claim II, we obtain the following.

lim supk→∞[(1− βnk )(1− λ2L2)‖ynk − wnk‖2] ≤ lim supk→∞[3(1− βnk )‖xnk − p‖2−
‖xnk+1 − p‖2 + βnk`10]

≤ lim supk→∞[3(1− βnk )‖xnk − p‖2−
‖xnk+1 − p‖2] + lim supk→∞ βnk`10

= − lim infk→∞[‖xnk+1 − p‖2 − ‖xnk − p‖2]
≤ 0.

(48)

This implies the following case.

lim
k→∞
‖ynk − wnk‖ = 0. (49)

Next, we show that the following is the case.

‖xnk+1 − xnk‖ −→ 0 as n→ ∞. (50)

By using (49), we have the following.

‖znk − wnk‖ = ‖ynk − λ(Aynk − Awnk )− wnk‖
≤ ‖ynk − wnk‖+ λ‖Aynk − Awnk‖
≤ (1 + λL)‖ynk − wnk‖ −→ 0 as n→ ∞.

(51)

Next, we have the following.

‖xnk+1 − znk‖ = ‖ f (hnk )− znk‖ −→ 0 as n→ ∞. (52)

Similarly, we have the following.

‖xnk − wnk‖ = αnk‖xnk − xnk−1‖ = βnk .
αnk

βnk

‖xnk − xnk−1‖ −→ 0 as n→ ∞. (53)

By using (51)–(53), we obtain the following.

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − znk‖+ ‖znk − wnk‖+ ‖wnk − xnk‖ −→ 0 as n→ ∞. (54)

Since the sequence {xnk} is bounded, there exists a subsequence {xnkj
} of {xnk} that

converges weakly to a point x∗ ∈ H such that the following is the case.

lim sup
k→∞

〈 f (p)− p, xnk − p〉 = lim
j→∞
〈 f (p)− p, xnkj

− p〉 = 〈 f (p)− p, x∗ − p〉. (55)
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By Lemma 4 and (49), we obtain x∗ ∈ Γ. Using (55) and the fact that p = PΓ ◦ f (p), we
are able to obtain the following.

lim sup
k→∞

〈 f (p)− p, xnk − p〉 = 〈 f (p)− p, x∗ − p〉 ≤ 0. (56)

By using (50) and (56), we have the following case.

lim supk→∞〈 f (p)− p, xnk+1 − p〉 ≤ lim supk→∞〈 f (p)− p, xnk − p〉
= 〈 f (p)− p, x∗ − p〉
≤ 0.

(57)

By using (57), Lemma 2, Claim III and the condition that limn→∞
αn
βn
‖xn − xn−1‖ = 0,

we obtain limn→∞ ‖xn − p‖ = 0. The proof of Theorem 1 is now completed.

Remark 1. Suantai et al. [35] observed that condition (23) can be easily implemented in numerical
results since the value of ‖xn − xn−1‖ is given before choosing αn. We can choose αn as follows:

αn =

{
min

{
α, εn
‖xn−xn−1‖

}
, if xn 6= xn−1,

α otherwise,

where α ≥ 0 and {εn} is a positive sequence such that εn = o(βn).

4. Numerical Illustrations

In this section, we provide some examples to illustrate and analyze the convergence
of our proposed modified Tseng’s extragradient algorithm. In order to determine the
execution time, we terminated the algorithm by using condition ‖xn+1 − x∗‖2 < ε where
x∗ is the solution of the problem and ε = 10−5.

Example 1. Let A : R → R be defined by Ax = 2x. Clearly, A is monotone and Lipschitz
continuous with L = 2. Define f : R → R by f x = x

4 . Choose αn = 0.50, βn = 1
n+2 and

θn = 0.5 ∗ (1− βn) with λ = 0.4. The feasible set is chosen to be C = [−1, 2]. Table 1 below
shows the comparison of elapsed times for the proposed algorithm ViTEM and iTEM [16]. We test
the algorithms for two choices of initial points.

Table 1. Comparison of elapsed CPU times.

x0 = 0.1, x1 = 0.5 x0 = 0.5, x1 = 1.5

ViTEM 0.039508 s (iter = 5) 0.039197 s (iter = 5)
iTEM 0.040179 s (iter = 13) 0.040681 s (iter = 15)

Figure 1 shows the comparison of two algorithms for different choices of parameter βn. For this
purpose, we chose x0 = x1 = 1.

Example 2. Define A : R2 → R2 by A(x, y) = (x + y + sin x,−x + y + sin y). Note that A
is monotone and Lipschitz mapping with L = 3. Let f (x) = x

8 . The feasible set is chosen to be
C = [−1,−1]× [2, 2]. We chose αn = 3, βn = 1

n+2 and θn = 0.5 ∗ (1− βn) with λ = 1
4 . Table 2

below analyzes the elapsed times of ViTEM and iTEM [16] for different choices of x0 and x1.
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Figure 1. Comparison of convergence.

Table 2. Comparison of elapsed CPU times.

x0 = (1, 1)T , x1 = (1.5, 1.5)T x0 = (−0.5, 0.5)T , x1 = (1, 1)T

ViTEM 0.078728 s (iter = 3) 0.073666 s (iter = 3)
iTEM 0.081701 s (iter = 15) 0.076256 s (iter = 15)

Figure 2 shows the comparison of two algorithms for different choices of parameter
βn. For this purpose, we chose x0 = (−0.5, 0.5)T and x1 = (1, 1)T .
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Figure 2. Comparison of convergence.

Example 3. Let H = L2([0, 1]) with the inner product 〈x, y〉 :=
∫ 1

0 x(t)y(t)dt and the induced

norm ‖x‖ =
√∫ 1

0 |x(t)|2dt, for all x, y ∈ H. The operator A : H → H defined by A(x(t)) =
max{0, x(t)} for t ∈ [0, 1] is monotone and Lipschitz continuous on H with L = 1. The feasible
set is chosen to be the unit ball, C := {x ∈ H : ‖x‖ ≤ 1}. We chose αn = 0.5 , βn = 1

n+2
and θn = 0.5 ∗ (1− βn) with λ = 1

2 . Table 3 below examines the elapsed times of ViTEM and
ITEM [16] for different choices of initial points x0 and x1.

Table 3. Comparison of elapsed CPU times.

x0(t) = t
100 , x1(t) = t

10 x0(t) = 0.5(t + 0.5 cos(t)), x1 = t + 0.5 cos(t)

ViTEM 0.022461 s (iter = 4) 0.190571 s (iter = 5)
iTEM 0.032179 s (iter > 100) 0.590528 s (iter > 100)

Figure 3 shows the comparison of two algorithms for different choices of parameter βn. For this
purpose, we chose x0(t) = t

100 and x1(t) = t
10 .
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Figure 3. Comparison of convergence.

5. Conclusions

By combining the modified Tseng’s extragradient method [13], the viscosity method [30]
and the Picard–Mann method [31], a new algorithm is proposed for solving variational
inequality problems in real Hilbert spaces. It is worth mentioning that the proposed method
requires the computation of only one projection onto the feasible set in each iteration. A strong
convergence theorem for the proposed algorithm is obtained under certain mild conditions. It
is shown that the proposed method performs better than some existing methods for solving
variational inequality problems via several numerical examples.
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