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Abstract: Thymosin β4 (Tβ4) was extracted forty years agofrom calf thymus. Since then, it has
been identified as a G-actin binding protein involved in blood clotting, tissue regeneration, angio-
genesis, and anti-inflammatory processes. Tβ4 has also been implicated in tumor metastasis and
neurodegeneration. However, the precise roles and mechanism(s) of action of Tβ4 in these processes
remain largely unknown, with the binding of the G-actin protein being insufficient to explain these
multi-actions. Here we identify for the first time the important role of Tβ4 mechanism in ferroptosis,
an iron-dependent form of cell death, which leads to neurodegeneration and somehow protects
cancer cells against cell death. Specifically, we demonstrate four iron2+ and iron3+ binding regions
along the peptide and show that the presence of Tβ4 in cell growing medium inhibits erastin and
glutamate-induced ferroptosis in the macrophage cell line. Moreover, Tβ4 increases the expression of
oxidative stress-related genes, namely BAX, hem oxygenase-1, heat shock protein 70 and thioredoxin
reductase 1, which are downregulated during ferroptosis. We state the hypothesis that Tβ4 is an
endogenous iron chelator and take part in iron homeostasis in the ferroptosis process. We discuss the
literature data of parallel involvement of Tβ4 and ferroptosis in different human pathologies, mainly
cancer and neurodegeneration. Our findings confronted with literature data show that controlled
Tβ4 release could command on/off switching of ferroptosis and may provide novel therapeutic
opportunities in cancer and tissue degeneration pathologies.
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1. Introduction

Ferroptosis is an iron-dependent oxidative form of cell death that is morphologically,
biochemically, and genetically distinct from other non-apoptotic cell death processes [1].
The latest definition of ferroptosis was presented in 2018 by the Nomenclature Committee
on Cell Death (NCCD) [2] as “a form of regulated cell death (RCD) initiated by oxidative
perturbations of the intracellular microenvironment that is under constitutive control by
GPX4 and can be inhibited by iron chelators and lipophilic antioxidants. Ferroptosis initi-
ates with lipid peroxidation due to ROS generation and iron availability”. Ferroptosis leads
to morphological changes with a necrotic morphotype (e.g., predominant mitochondrial
shrinking, an electron-dense ultrastructure, reduced/disappeared cristae, and ruptured
outer mitochondrial membrane) [2]. Ferroptotic cell death is thought to require mutation of
the oncogenes HRAS, KRAS, or BRAF, and is caused by lethal iron-dependent lipid peroxi-
dation [3,4]. To provoke cell death, ferroptosis likely requires continuous iron-dependent
ROS production over a prolonged period, which can be observed in neuronal, cardiac, and
hepatic cells when exposed to high iron concentrations in neurodegeneration pathology [5],
ischemic conditions [6], and hepatic chromatosis [7], respectively.

Iron, a highly redox-reactive element, is required in a variety of biological processes.
Cancer cells develop different mechanisms both to uptake high quantities of iron and to
protect themselves against iron toxicity [8]. Activation of the ferroptosis suppresses tumor
cell growth and successively leads to cell death. The controlled on/off switching of fer-
roptosis may provide novel therapeutic opportunities in pathologies of cancer and tissue
degeneration, respectively.

Thymosin β4 (Tβ4; Scheme 1) is a G-actin binding protein with different functions in
the human body, including blood clotting [9], tissue regeneration [10], angiogenesis [11],
prenatal and early childhood development [12], and tumor metastasis [13]. Tβ4 is also
involved in anti-inflammatory and neurodegenerative processes [14]. At the subcellular
level, Tβ4 is localized in the cytoplasm [15] and/or nucleus [16] and can be translocated
between compartments after induction [16,17]. Thymosin β4-overexpression is correlated
with different human cancer types, e.g., pancreatic [18] and colorectal cancer [19], and Tβ4
is considered a potential molecular target for anticancer therapy. Indeed, Tβ4 gene silencing
decreases stemness and invasiveness in glioblastoma [20] and suppresses proliferation and
invasion of non-small cell lung cancer cells [21].

Scheme 1. Primary sequence and 3D structure of Tβ4 (PDB: 4PL7). Amino acids in parentheses
were not defined by the X-ray structure and were added using Modeller v. 10.0 following the proper
secondary structure elements (alpha helix). The metal-binding sites (I–IV) are signed in red. The
scheme was created by Joanna Izabela Lachowicz, University of Cagliari. This image is original and
designed specifically for the targeted publication. It should not be cropped, distorted, or in any way
edited without the expressed consent of Research Publication Services.



Int. J. Mol. Sci. 2022, 23, 551 3 of 22

The exact mechanisms of Tβ4 action are still unknown. Recently, we hypothesized
that the regulatory function of Tβ4 in numerous physiological processes is correlated with
its potential essential metal-binding ability [22]. Here, we discuss for the first time the
formation of a metal complex with Tβ4 and its biological importance in ferroptosis. We
observed that an increased concentration of Tβ4 can effectively inhibit the ferroptosis
process, a mechanism that is used by cancer cells with enhanced Tβ4 expression. The
inhibition of ferroptosis by augmenting extracellular concentrations of Tβ4 can stop cell
degeneration, and such a strategy could be used in therapy.

2. Results
2.1. Thymosin β4 Metal Coordination

Thymosin β4 is a 43 amino acid peptide with an acetylated N-terminus (Scheme 1). It is
an acidic peptide (pI 5.1) due to the presence of 11 amino acids with carboxylic groups in the
side chain, which are the potential metal binding sites [23]. Moreover, nine lysine residues
in the primary sequence have a high affinity to transition metal ions [23]. Thymosin β4 has
no secondary structure in pure water, while in aqueous solution with the addition of TFE
(or HFP), two alpha-helixes are formed in the 5–17 and 30–39 regions [24].

To our knowledge, no experimental or molecular dynamics study of the formation of
essential metal complexes has been performed with Tβ4, despite there being numerous
potential metal-binding sites. In order to investigate the metal-binding sites in the Tβ4
peptide, we chose nuclear magnetic resonance (NMR) techniques, which deliver valuable
structural data of metal complexes [25].

The interaction of iron ions with Tβ4 in water was investigated in a residue-specific
manner by monitoring of 2D 13C-1H HSQC (heteronuclear single quantum coherence)
NMR (Figures S1–S3, S5 and S6), focused on the aliphatic region. The overlay of the HSQC
data (Figures S2, S3, S5 and S6) showed that metal/peptide interactions are specific while
formed in specific regions of the peptide, but there is no structural change upon interaction
with iron2+ nor iron3+ ions.

The presence of metal ions in the peptide solution leads to the lowering of the peptide
signals. The comparative analysis of the peptide signal pattern with and without metal
ions permits the isolation of amino acids affected by the interactions with the metal ions
(Figures S4 and S7). In the thymosin solution containing iron2+ and iron3+ ions, eighteen
and fifteen residues, respectively, showed a major drop in intensity (Table 1). Since iron3+

is paramagnetic, we observed greater overall signal broadening of the residues, with the
aforementioned residues showing major drops in intensity.

Table 1. Amino acid residues affected by metal/peptide interactions. Metal-binding regions are also
signed in Scheme 1.

Binding
Region I II III IV

Fe (II) S1 K3 P4 - M6 - - K11 F12 D13 S15 L17 T22 P27 L28 P29 S30 T33 I34 - - A40 S43

Fe (III) S1 K3 P4 - M6 I9 - - F12 D13 S15 - T22 - L28 - - T33 I34 Q35 E36 A40 -

Al (III) - - P4 D5 M6 I9 E10 - F12 D13 - - - - L28 - - - I34 Q35 E36 - -

Circular dichroism (CD) structural analysis of free Tβ4 in water showed that the
secondary structure is mainly unorganized, and only 20% could be associated with the
helical form. The addition of iron ions to the peptide solution did not significantly change
the secondary structure (Figure S9).

In general, NMR data precision is limited by the presence of paramagnetic species and
does not permit detailed coordination analysis with iron ions. For this purpose, Al3+ ions,
which form similar stoichiometry and geometry complexes as Fe3+, were used to model
Fe3+/Tβ4 complexes.
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The analysis of the overlay HSQC data (Figure 1) showed that metal/peptide inter-
actions are specific while formed in specific regions of the peptide, but there were no
significant changes in the secondary structure of thymosin upon interaction with Al3+ ions.

Figure 1. (a) The overlay of the two-dimensional 13C-1H HSQC spectra in free form (red) and with
thymosin: Al3+ ratio 1:5 (green). The alpha and beta proton regions are highlighted in the red and
blue dotted rectangles in (a) and are presented in (b,c), respectively. Noticeable chemical shift changes
were observed for F12, I9 as indicated by red circles in (b). Otherwise, the chemical shifts remain the
same, with only some decrease in the intensities, as highlighted by the red circles in (c).

The chemical shift perturbation (CSP) was calculated considering the free peptide
form and 1:5 (peptide:metal) as the maximum stoichiometry leading to the reduction of the
peptide’s peak intensities and no further chemical shift changes. Only 48 isolated peaks
were considered for calculating the CSP and intensity analysis. Analysis of the CSP plot
(Figure 2) showed that Al3+ ions interact with N-terminal residues of Tβ4. The residues
that most likely interact with the metal ion are listed in Table 1.
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Figure 2. The chemical shift perturbation (CSP) plot for the 48 distinct peaks from the overlay of the
two-dimensional 13C-1H HSQC spectra in free form and with thymosin:Al3+ ratio 1:5.The formula
used for CSP is Sqrt [1/2(δH

2 + α ∗ δ13C
2)] as suggested by Willamson [26]. The α was kept 0.3.

Figure 2 shows that residues Ile9 and Gln35 presented noticeable changes upon interac-
tion with Al3+, however, the CSP value is too small to define the metal/peptide interaction
as strong and with high affinity. Moreover, the changes in Ile9 and Gln35 signals could
be associated with peptide bending upon metal coordination by adjacent residues (with
carboxylic groups in amino acids side chains), rather than participation in the metal coor-
dination core. The plot of signal intensities as a function of the Tβ4:metal ratio showed
a consistent decrease for most of the residues in 1D (Figure S12) and in 2D (Figure S13).
However, it is important to note that the intensity of 1D spectra is directly proportional only
to the population, while the 2D spectra intensity is modulated by many different factors.

The diffusion NMR data at the different metallopeptide ratios showed the presence
of only one species with a diffusion constant 1.25 × 1010 m2/s, thus, the formation of the
peptide aggregates upon metal binding can be excluded.

The NMR data analysis showed that metal ions interact with numerous amino acid
residues, and four metal-binding sites could be distinguished within the Tβ4 structure
(namely I–IV, Scheme 1, Table 1). The binding modes within four metal binding sites were
modeled with the density functional theory (DFT) calculation.

Tβ4 contains 11 acidic residues: eight glutamate and three aspartate residues [27].
According to Pearson’s hard and soft acids and bases (HSAB) principle, hard metal ions
(Fe3+ and Al3+) show a preference for binding hard bases, such as the negatively charged
carboxylate side chains of glutamate and aspartate amino acids. Although there can be
other donors to hard metal ions, such as backbone carbonyl and amide groups of proteins,
by virtue of the partial covalent nature of the coordination bond, these donors are less
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competitive. Indeed, we recently demonstrated, from a thermodynamic perspective, that
the preferred binding sites of Al3+ in proteins are the negatively charged side chains of
amino acids rather than the backbone carbonyl and amide groups [28].

The chemical shift perturbation of the NMR data showed that the main changes in
chemical shifts upon Al3+ addition arise in two different areas of the protein: within the
N-terminal segment (metal-binding sites I and II) and the C-terminal segment (metal-
binding sites III and IV).

The conformational analyses were prepared in order to build 3D models of the
Al3+-Tβ4 complex and obtain some reliable initial configurations of this hard metal ion
bound to Tβ4. According to the literature, Tβ4 in water solution exists mainly in a disor-
dered state and it is unclear whether secondary structure elements such as extended helices
in the N- and C-terminus of the protein arise upon interaction with other partners such as
actin [22]. Thus, in the starting structure, the Tβ4 sequence was considered “unfolded”,
without main secondary structure elements (helices and sheets).

Three major binding modes for the Al3+-Tβ4 system were obtained (Table 2): first, the
metal interacting with both the N- and C-terminus of the protein (Tβ4N-C); second with
the metal-bound to the N-terminal and in the middle of the protein (Tβ4N-mid); third with
the metal-bound only in the N-terminus of the protein (whereas the rest of the sequence
remains highly disordered; Tβ4N-N). Interestingly, all the three binding modes featured
four negatively charged residues (side chains of either ASP or GLU) with a net charge
of −4 surrounding the metal center, a situation that is coherent with the one proposed by
Dudev and Lim [29], who stated that the optimal number of acetate-type donors in a metal-
binding site is equal to q + 1, where q is the charge of the metal when first coordination
shell residues are taken into account.

Table 2. Percentage of hydrogen bond and salt bridge occupancies during the simulations. bb: back-
bone, sc: side chain.

TB4N-C TB4N-mid TB4N-N

Donor Acceptor Occ. (%) Donor Acceptor Occ. (%) Donor Acceptor Occ. (%)

GLU35-Nbb THR33-Osc 27.6 LYS38-Nbb GLU35-Obb 26.0 THR22-Nbb LYS19-Obb 23.8

LEU17-Nbb LYS14-Obb 25.8 LEU28-Nbb ASN26-Osc 28.2 GLN23-Nbb LYS18-Obb 22.2

LEU28-Nbb ASN26-Osc 36.6 ILE34-Nbb LYS31-Obb 26.7 GLU21-Nbb LEU17-Obb 23.4

THR33-Nbb GLN36-Obb 32.0 LYS31-Nbb LEU28-Obb 21.1 ILE9-Nbb MET6-Obb 53.0

LYS31-Nbb LEU28-Obb 22.5 - - - GLU8-Nbb ASP5-Obb 51.5

- - - - - - LYS38-Nbb GLU35-Obb 20.0

In Tβ4N-C binding mode, the metal is bound to GLU8 and GLU21 in a bidentate fashion,
and to ASP5 and GLU35 by a single oxygen donor (Figure 3A). The six oxygen donors
coordinate Al3+ through an octahedral geometry, with O-Al-O angles≥150 degrees. During
the simulation, after 3 µs, the carboxylate side chain of GLU35 coordinates the metal with
both oxygen donors, whereas the side chain of GLU21 switches to a monodentate binding
mode. The original state is then restored after 4 µs up to the end of the simulation. Overall,
the TB4N-N protein-metal complex remains stable for the entire course of the simulation,
and no other residues nor water molecules enter the first coordination shell of the metal.

The Tβ4N-mid binding mode is characterized by Al3+ ions coordinated to the side
chains of ASP2 and ASP5 in a monodentate fashion and to the side chains of GLU10 and
GLU24 in a bidentate fashion (Figure 3B). Moreover, in this case, there is no change in the
coordination pattern of Tβ4N-mid during the entire simulation time of 5 µs.

Finally, the Tβ4N-N binding mode displayed an octahedral geometry, in which the first
coordination shell of the metal is filled by one oxygen donor from the side chains of ASP5

and GLU8 and two oxygen donors from the side chains of ASP2 and GLU10 (Figure 3C).
The metal center maintains this binding mode for the whole simulation.
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Figure 3. Representative structures of (A) Tβ4N-C; (B) Tβ4N-mid and (C) Tβ4N-N. Figure was created
by Gabriele dalla Torre, Euskal Herriko Unibertsitatea UPV/EHU. This image is original and designed
specifically for the targeted publication. It should not be cropped, distorted, or in any way edited
without the expressed consent of Research Publication Services.

Structural characterization revealed that Tβ4N-N displays the highest degree of disor-
der less compaction rate with the average root mean square deviation (RMSD) and radius
of gyration (Rg) of 1.07 and 1.29, respectively, compared to Tβ4N-mid (0.89 and 1.11, respec-
tively) and Tβ4N-C (0.92 and 1.15, respectively) as reported in Table S1. This is coherent
with the fact that in the case of Tβ4N-mid and Tβ4N-C, the N- and C- termini are closer due
to their respective metal binding modes that involve residues either in the medial or distal
region of the protein, as also highlighted by their shorter end to end distance compared to
TB4N-C (Table S1). The average amount of intramolecular hydrogen bonds are similar for
Tβ4N-C and Tβ4N-N and slightly higher for Tβ4N-mid (Table S1); most populated H-bonds
and salt bridges for each binding mode are reported in Table 2.

As can be deduced from Table S2, all three metal-Tβ4 complexes exist mainly as
random coil structures; the prevalent structural motifs are bends and turns, consistent
with the disordered nature of Tβ4. Interestingly, Tβ4N-C and Tβ4N-mid display a similar β-
sheet content (16.8 and 17.6%, respectively), whereas Tβ4N-N shows a much lower content
of this structural motif (2.5%). On the other hand, the latter binding mode displays a
higher helicity propensity compared with the other two, in particular, it features 94.1%
of the 310-helix motif. Such a situation could be due to the fact that the metal-binding
activity of Tβ4N-N is confined to the N-terminal segment of the protein, while the remaining
sequence is highly disordered and may increase the propensity to form helical patterns in
its C-terminal regions.

All three binding modes are quite stable across the 5 µs time scale. We also observed
that Tβ4 binding to aluminum could affect the overall secondary structure pattern of the
thymosin. Since both glutamate and aspartate residues are the preferred acidic groups
of hard metals, the three binding modes characterized herein could fit either Al3+ or Fe3+

metal ions.

2.2. Thymosin β4 and Ferroptosis

Macrophages, together with hepatocytes, play key roles in iron metabolism by mediat-
ing iron storage and recycling [30]. In hereditary hemochromatosis (HH), a representative
disease that causes iron overload, hepatocytes are the first site of iron accumulation [31,32].
Recent studies [33,34] have shown that pathological iron overload in mouse macrophage
cell line J774 induces ferroptosis and subsequent cell destruction. Therefore, we used J774
cells as a model to study the importance of macrophages in iron metabolism [35] and their
consequent susceptibility to ferroptosis.
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Ferroptosis was primarily characterized by condensed mitochondrial membrane den-
sities and smaller mitochondria, as well as diminished or absent mitochondria crista and
ruptured outer membrane [36]. Recent studies divided mitochondrial morphological al-
terations into three categories according to whether the mitochondria were fragmented or
not, and whether they accumulated around the nucleus. Cells with a network of elongated
mitochondria were assigned to category I, uniform-distributed fragmented mitochondria
in cells were classified as category II, and cells with fragmented mitochondria mainly
accumulating around the nucleus were classified as category III [36–39]. Mitochondrial
morphological changes and metabolic regulation, especially the energetic, iron and aliphatic
acid metabolism involved in ferroptosis, were extensively described in a recent review [40].

For a more detailed characterization of glutamate- and erastin-induced ferroptosis
in J774 cells, including Tβ4 inhibition, we evaluated the morphological changes by TEM
microscopy. The results obtained from this ultrastructural analysis are summarized in
Figures 4 and S19, showing cells from different experimental groups. In the control group
(Figure 4A,B), the J774 cells appeared normal at the ultrastructural level. They were mainly
characterized by a well-developed Golgi apparatus, rough endoplasmic reticulum, and the
presence of numerous mitochondria. The nuclear compartment was separated from the
cytoplasm by the double membrane of the nuclear envelope, and the cells appeared to be
in interphase due to the presence of both heterochromatin and euchromatin. The presence
of densely packed chromatin and the absence of the nuclear envelope represented the main
features of mitotic cells, which were often observed in control samples (Figure S19).

Administration of Tβ4 (Figure 4C,D) did not appear to alter cell morphology: samples
displayed structural integrity of all their cellular compartments and organelles, includ-
ing mitochondria.

Following glutamate (Figure 4E,F) and erastin (Figure 4I,J) treatments, the cellular mor-
phology of the J774 cells was dramatically altered. Specific ultrastructural alterations were
mainly observed in the cytoplasmic compartment, where numerous mitochondria were
found accumulating around the nucleus. These cellular organelles appeared drastically
altered, showing mitochondrial membrane rupture and evident cristae disorganization.
Moreover, the presence of lysosomal activity and disruption of the Golgi apparatus and
rough endoplasmic reticulum indicated a poor cellular condition. However, none of these
morphological alterations were related to an apoptotic form of cell death. Indeed, during
our TEM investigation, no nuclear alterations were detected, and the nucleus appeared
surrounded by a continuous nuclear envelope, displayed an evident nucleolus and well-
organized chromatin, and no chromatin condensation or margination was detected in the
J774 cells after either glutamate or erastin treatments. Moreover, both erastin and gluta-
mate treatment seemed to induce cell detaching and a rounded cellular shape (Figure 4E).
Their cell surface appeared continuous without any signs of plasma membrane rupture
or disorganization, although we did observe thin protrusions. Most of these appeared
to be continuous tunneling nanotubes connecting neighboring cells (Figure 4E, asterisk)
previously described as structures involved in intercellular communication [41,42].

Administration of Tβ4 in glutamate (Figure 4G,H) and erastin (Figure 4K,L) treated
samples seemed to gradually reverse the alterations described above. The cytoplasmic
compartment showed reorganization of its cellular structures associated with an evident
diminishing of lysosomal activity. Mitochondria showed partially reconstituted cristae and
a continuous mitochondrial membrane. The rounded cell shape transitioned to a more
flattened type.
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Figure 4. Electron micrographs of J774cells. (A,B) The Control group displays a well-preserved
ultrastructure. (C,D) Administration of Tβ4 (10 µM, 24 h) does not appear to alter cell morphology.
Note in both control and Tβ4 treated samples the presence of several mitochondria showing a
continuous mitochondria membrane and well-organized cristae. M = mitochondria, N = nucleus.
(E,F) Glutamate treatment (5.5 mM, 24 h) induces numerous cellular alterations that affect especially the
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mitochondria (arrows). Initially, it appears that the membranes of the mitochondria open up, letting
the contents pour out (arrowhead). Note the presence of tunneling nanotubes connecting adjacent
cells (asterisk). (G,H) After Tβ4 administration (10 µM, 20 h), the cytoplasmic compartment displays
more preserved cell structures. Mitochondria show a continuous mitochondrial membrane and
partially reorganized cristae. N = nucleus. (I,J) Erastin treatment (0.5 µM; 24 h) induces numerous
cellular alterations that affect especially the mitochondria (arrows). Mitochondria are frequently
observed with ruptured mitochondrial membrane and altered cristae (arrowheads). (K,L) After Tβ4
administration (10 µM, 20 h), the cytoplasmic compartment displays more preserved cell structures
associated with an evident decrease in lysosomal activity. N = nucleus.

Interestingly, in the glutamate and erastin-treated cells, we frequently detected the
presence of tunneling nanotubes (TNT) connecting neighboring cells (Figure 4E, asterisk).
TNT are considered dynamic structures whose formation and organization can be affected
by different pathological conditions. It has been reported that oxidative stress may induce
TNT formation in astrocytes and hippocampal neurons [43]. Inflammation and even viral
infections have been observed to spread via tunneling nanotubes. They may also be
involved in the cell-to-cell transfer of signal transduction molecules. Fas ligand (FasL)
involved in programmed cell death has been demonstrated to stimulate TNT formation,
promoting the propagation of cell death signals to neighboring cells [44]. Our results
suggest a possible involvement of the ferroptotic process in the cell surface reorganization
and TNT formation, which may facilitate diffusion of the ferroptosis process between
connected cells. Considering that tunneling nanotubes are F-actin-containing protrusions
of the cell surface, Tβ4 could modulate ferroptosis not only by its metal binding sites,
as described above, but also through its G-actin binding properties. Tβ4, as a major G-
actin sequestering protein, could prevent tunnelling nanotube formation in erastin and
glutamate treated J774 cells inhibiting propagation of ferroptotic cell death signals to the
connected cells.

These morphological results clearly show that glutamate and erastin induce ferroptosis
in J774 cells, while Tβ4 administration after 4 h can inhibit the process and reverse the
critical cellular condition.

In the next experiment, we examined the inhibitory activity of Tβ4 and compared it
with the activity of Ferrostatin-1 (Fer-1), a known ferroptosis (erastin-induced) inhibitor
previously described by Dixon et al. [3]. The activity of both inhibitors was measured by
the cell viability assay (Figure 5) in the cell cultures incubated with erastin and increasing
concentration of inhibitors. The dose-response effect of Tβ4 (Figure 5A) can be compared
with the effect of Fer-1 in the same experimental conditions.

Fer-1 is a synthetic compound isolated by high-throughput screening of small molecule
libraries as a potent inhibitor of ferroptosis [3]. Fer-1 prevents erastin-induced accumulation
of cytosolic and lipid ROS [3]. Recent electrochemical studies showed that Fer-1 forms
a complex with iron ions, supporting the theory that the anti-ferroptotic activity of Fer-1
is actually due to the scavenging of initiating alkoxyl radicals produced by ferrous iron
from lipid hydroperoxides [45]. Indeed, Fer-1 derivatives substituting both amine nitrogen
atoms, thus iron-binding sites, lack inhibitory activity [3]. The same inhibitory results
(Figure 5), obtained for Fer-1 and Tβ4, suggest the same inhibitory mechanism through
complex formation with iron ions. In addition, numerous studies showed that inhibitory
activity of Fer-1 is correlated with the gene regulation of proteins involved in cellular
stress processes [46]. For this reason, we examined the gene expression of selected proteins
involved in stress-oxidative processes. In the next experiments, we focused on the inhibitory
mechanisms of Tβ4 rather than Fer-1, while the activity of the latter is described elsewhere.

According to Dixon [1], ferroptosis could be defined as a sabotage mechanism where
the cell inhibits its own normal processes. However, ferroptosis is related to oxidative
stress, and consequently, the involvement of oxidative stress proteins is expected. Indeed,
among thirty different genes studied in relation to ferroptosis [47], many are involved
in oxidative stress. In our study, we chose four genes, namely BAX (Bcl-2 associated
X-protein), HSP-70 (heat shock protein 07), which are involved in the oxidation process,
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but are poorly described in connection with ferroptosis; and HO-1 (hem oxygenase) and
TXNRD-1 (Thioredoxin reductase 1) which were recently linked to ferroptosis [46].

Figure 5. Dose-response relationship for inhibition of erastin-induced (10 µM, 24 h) death in J774
cells by Fer-1 (A) and Tβ4 (B). Cell viability quantitative data are shown as mean and standard error.
Statistical comparison of the cell viability quantitative data in different experimental conditions were
performed, with 5.0 GraphPad Prism software, by the unpaired t-test. The data were also analyzed
with one-way ANOVA. p values < 0.05 was considered significant.

Bax is a cytosol protein, which translocates into mitochondria when apoptosis oc-
curs [48] (Scheme 2). Jungas et al. [49] studied glutamate toxicity and regulation in neuronal
development. Their studies showed BAX-activation mechanism dependent on glutathione,
with the downstream effect of glutathione depletion leading to the direct activation of
BAX. Moreover, Bax and its transcript increase significantly in cerebral ischemia-injured
neurons [50,51], suggesting that glutamate could be involved in the mechanism of BAX
expression control. Of note, Tβ4 reduces the intracellular ROS levels induced by H2O2,
decreases Bax/BCl2 ratio, and increases the expression of antiapoptotic proteins in car-
diomyocytes [52] and cardiac fibroblasts [53].

Heat shock protein 70 (Hsp70) is a stress-responsive protein increasing under stress
conditions, namely heat, hypoxia, and glucose deprivation. Increased Hsp70 concentration
leads to higher stress tolerance and cytoprotection [54]. Hsp70–mediated cytoprotective
effects were studied in vitro in numerous cell/tissue types under changing environmental
conditions of stress. Noteworthily, Hsp70 has significant cytoprotective effects under
ischemic conditions. For instance, induction of Hsp70 (e.g., by enforced overexpression
with viral vectors or drugs) protects brain cells against ischemic injuries [55–58]. Oxidative
stress and antioxidants can influence Hsp70 expression [59,60], while the reduction in
Hsp70 expression leads to higher ROS generation and mitochondrial protein oxidation [61].
Guo et al. [54] showed that Hsp70 regulates cellular redox status by changing the activities
of the GSH-related enzymes, glutathione peroxidase, and glutathione reductase, in response
to hypoxic and ischemic stress. The switching of antioxidant enzyme activities could be
a critical mechanism mediating the enhanced cytoprotection afforded by the enhanced
expression of Hsp70. Despite numerous studies and different theories, the exact molecular
mechanisms of Hsp70 action in ischemic conditions remains undefined
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Scheme 2. Tβ4 inhibitory activity of ferroptosis. An excess of L-Glu in the extracellular matrix
leads to the inhibition of GSH synthesis and reduced anti-oxidative activity, which increases the
concentration of free iron ions in the cell and enhances the production of reactive oxygen species
(ROS). High ROS and free iron ion concentrations trigger ferroptosis. Ferroptosis leads to lipid
membrane disruption by ROS, and silences the expression of HO-1, Hsp70, and BAX. Extracellular
treatment with Tβ4 can inhibit ferroptosis by increasing the expression of HO-1, Hsp70, BAX, and
TXNRD-1, and direct chelation of free iron ions. The scheme was created by Heno Hwang, scientific
illustrator at King Abdullah University of Science and Technology (KAUST). This image is original
and designed specifically for the targeted publication. It should not be cropped, distorted, or in any
way edited without the expressed consent of Research Publication Services.

Heme oxygenase (HO)-1 metabolizes heme into biliverdin/bilirubin, carbon monox-
ide, and ferrous iron, and has been suggested to demonstrate cytoprotective effects under
various stress-related conditions. HO-1 is commonly regarded as a survival molecule,
exerting an important role in cancer progression, and its inhibition is considered beneficial
in several cancers [62]. HO-1 is often upregulated in tumor tissues, and its expression is
further increased in response to therapies [63]. The role of HO-1 in ferroptosis is extensively
described in the recent review [62]. Depletion of cellular glutathione has been shown to
increase HO-1 gene transcription in the mouse motor neuron-like hybrid cells, NSC34
cells [64]. The correlation between HO-1 expression and ferroptosis is unclear. In HT-1080
fibrosarcoma cells, Erastin induces a time- and dose-dependent increase of HO-1 expres-
sion [65]. However, HO-1 also functions as a negative regulator in erastin- and sorafenib-
induced hepatocellular carcinoma, since knockdown of HO-1 expression enhanced cell
growth inhibition by erastin and sorafenib [66].

The selenoprotein thioredoxin reductase 1 (TXNRD1 gene) is a cytoplasmic protein
that decreases thioredoxin levels and protects against oxidative stress [67]. Recently, it
was shown that TXNRD1 is a strong negative modulator of ferroptosis susceptibility in
pancreatic cancer cells [68]. Moreover, a high-dose (25 mg/kg) of the anti-rheumatoid
arthritis drug auranofin (AUR) upregulates hepcidin expression and induces ferroptosis,
and causes lipid peroxidation through inhibition of thioredoxin reductase (TXNRD) activity,
in C57BL/6J mice and a mouse model of hemochromatosis (Hfe−/−mice) [69].
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Here, we evaluated the levels of BAX, HO-1, Hsp70, and TRNRD-1 mRNAs (Figure 6)
under normal and ferroptosis conditions, which were induced by the extracellular overload
of glutamate. In addition, we evaluated mRNA expression levels of these proteins in
the presence of high extracellular concentrations of thymosin. Finally, we examined their
mRNA levels in the cells treated with thymosin after 4 h of ferroptosis induction. We
observed that glutamate overload led to the downregulation of all studied genes; conversely,
the presence of Tβ4 upregulated mRNA expression, particularly of HO-1. Notably, the
downregulation of glutamate could be inverted by the successive treatment with Tβ4.

Figure 6. mRNA expression levels (mean and standard error) of (A) BAX, (B) HSP70 (C) HO-1, and
(D) TRNRD-1, which are related to stress conditions, in J774 cells. The amount of mRNA of each gene
for each experiment was normalized with the respective value of the beta-actin housekeeping gene
mRNA (X-fold of beta-actin expression). Statistical comparison of the gene’s expression in different
experimental conditions was performed with 5.0 GraphPad Prism software. The data were also
analyzed with one-way ANOVA. p values < 0.05 was considered significant.

3. Discussion

Thymosin β4 is highly conserved across the animal kingdom, from amphibians to
mammals, and its amino acid sequence is well conserved [15]. Among mammalian species,
the amino acid sequences of human, rat, murine, bovine, porcine, and ovine Tβ4 are
identical [70]. Thymosin β4 is encoded by the TMSB4X gene. Mouse, rat, zebrafish, frog,
and pig display differential mRNA expression of TMSB4X in organs, while in humans, it is
widely distributed in tissues with high concentrations of different essential metal ions [71]
(Scheme S1).

Iron is an essential metal ion with a fundamental role in diverse cellular processes,
such as DNA synthesis, proliferation, cell cycle regulation, and the function of proteins
containing iron–sulfur clusters [72]. Iron–sulfur cluster-containing proteins include en-
zymes that contribute to maintaining genomic stability, as well as respiratory function [72].
Indeed, rapidly reproducing cancer cells re-program iron metabolism in ways that result in
net iron influx [8,72]. Iron is a highly reactive metal due to its redox potential, and when
present in a free ion form, it contributes to the production of reactive oxygen species (ROS)
in the Fenton reaction (Scheme 2). Oxidative and iron-dependent cell death with neurode-
generative consequences was previously described in epilepsy, stroke, and other trauma
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situations [73–75]. Importantly, increased levels of iron were found in the central nervous
system of patients with neurodegeneration [5]. Surprisingly, elevated iron concentrations in
cancer cells do not lead to cell disruption, but the exact mechanism of cell defense remains
unknown. Cancer cells have developed many different iron-regulating mechanisms, which
permit them to benefit from high iron concentrations without suffering from the harmful
effects of free radicals. Many iron-regulating processes in tumor pathology have already
been discovered [76], while others are unknown. Considering the iron-dependent etiology
of ferroptosis, it is likely that some of the unknown iron-defense processes in tumor cells
can inhibit ferroptosis-induced cell death.

The involvement of Tβ4 in different cancer types has been widely described in recent
years (Table S4). It is noteworthy that among the 13 most common cancer types (https://
www.healthline.com/health/most-common-cancers, accessed date: 1 February 2021), the
nine tissues with the highest cancer incidence also have high thymosin mRNA expression
(Scheme S1, Table S4), which is further enhanced in tumors (Table S4). Recently, it was
shown that ferroptosis is fundamental in anticancer therapy, and efficient anticancer drugs
can induce ferroptosis-cell death (Table S4).

Neurodegeneration is characterized by neuronal cell death. Detailed biochemical and
morphological studies of neuronal tissues have linked neurodegeneration with increased
iron concentrations in the tissue and successive production of free radicals [77,78]. Since
ferroptosis was first described in 2012 [3], numerous research data have correlated neurode-
generative processes with iron-ROS induced cell death (Table S4) and glutamate-induced
cell injury [79]. Up to now, Tβ4 has never been linked to ferroptosis, but different experi-
mental studies have shown the beneficial effects of Tβ4 in neurodegeneration (Table S4).

Ferroptosis can be induced in vivo in rat hippocampal slices and primary oligoden-
drocyte models as well as in ischemia-reperfusion injury models, by high concentrations of
extracellular iron or glutamate, or by depletion of extracellular cysteine. In vitro, ferropto-
sis can be induced by physiological conditions (e.g., high extracellular iron or glutamate)
or small molecules (e.g., erastin), which blocks system Xc

−-mediated Cys2 import [1]
(heterodimer composed of solute carrier family 7, member 11 (SLC7A11) and SLC3A2;
Scheme 2), while glutamate receptors are not involved in ferroptosis [80]. Erastin and
glutamate are termed type I ferroptosis inducers that inhibit cysteine uptake by the cys-
teine/glutamate antiporter (system xc

−), enabling glutathione synthesis (Scheme 2), and
thereby lowering antioxidant defenses [3].

Glutamate-induced oxidative stress leads to lipid peroxidation-mediated ferroptosis
(Scheme 2) and is a major contributor to neurodegenerative pathologies [81]. In recent
studies, L-Glutamate (3 h, 5 mM) mimicked in vitro the consequences of stroke and neu-
rodegenerative pathologies in cell cultures [82,83]. The addition of iron enhances glutamate-
induced cell death [81], while inhibition of ferroptosis prevents glutamate-induced cell
death in organotypic hippocampal slice cultures [3]. Importantly, glutamate activity can be
inhibited by iron chelators (e.g., Desferal) [3].

Ferroptosis, in contrast to other RCDs processes can be inhibited, thus inhibiting
molecules, namely iron chelators and lipophilic antioxidants, that could be used as a
molecular switcher of the entire process. Our metal coordination studies showed that
Tβ4 could bind both Fe2+ and Fe3+ metal ions in vitro in four different metal binging
regions (Figure 3). Iron chelating ability of Tβ4 takes a part of iron cellular homeostasis,
and increased concentration of Tβ4 leads to upregulation of HO-1 protein expression
(Figure 6B), which metabolizes heme into ferrous iron.

Tβ4 as endogenous iron chelator influences anti-oxidative processes related to free
iron ions and ROS production in Fenton reaction. Recently, Zhu et al. [84] showed that
Tβ4 reduces oxidative stress and lipid peroxidation in the injured liver model in mice by
inhibiting ferroptosis via up-regulation of GPX4 expression. In our experimental conditions,
increased concentration of Tβ4 enhances the expression of oxidative stress-related genes:
BAX, HSP70, and TRNRD-1, which are downregulated during ferroptosis. Noteworthily,
the expression of these genes is even higher when Tβ4 concentration increases during

https://www.healthline.com/health/most-common-cancers
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the ferroptosis process (Figure 6A,D). Such observation suggests that Tβ4 expression
and/or supplementation could be used to enhance anti-oxidative processes and further
inhibit ferroptosis.

In our experimental conditions, erastin- and glutamate-induced ferroptosis leads to
different ultrastructural alternations of cell morphology (Figure 4E,F,I,J). Some of them, e.g.,
those involving mitochondria, were previously described in ferroptosis processes, while
the others—disruption of Golgi apparatus and rough endoplasmic reticulum, continuous
tunneling nanotubes connecting neighboring cells—are less investigated in this context
and need further studies. Importantly, Tβ4 administration during ferroptosis can gradually
reverse the morphological alternations (Figure 4G,H,K,L).

4. Conclusions

Thymosin β4 is an iron chelator, which takes part in the iron homeostasis mecha-
nism and iron-related oxidative stress. Administration of Tβ4 enhances the expression
of oxidative stress genes (HO-1, BAX, HSP70, and TRNRD-1), which are suppressed by
glutamate-induced ferroptosis. The characteristic morphological alternations of the ferrop-
tosis process (e.g., predominant mitochondrial shrinking, an electron-dense ultrastructure,
reduced/disappeared cristae, and ruptured outer mitochondrial membrane) can be reversed
by the administration of Tβ4, which restores normal cytoplasmic compartment organization.
In this context, Tβ4 can be considered a ferroptosis switcher. A better understanding of Tβ4
pathological functioning in cancer cells, and its beneficial effects in neurodegeneration, will
enable us to switch different pathological states into physiological processes.

5. Experimental Procedures
5.1. Reagents

Human Thymosin β4 (HPLC > 98%) was purchased from Regene RX, Rockville, MA,
USA. Erastin, L-glutamate, BODIPY-C11, formaldehyde, glutaraldehyde in 0.1 M sodium
cacodylate buffer pH 7.4, osmium tetroxide, uranyl acetate, ethanol, and xylene were
Sigma Aldrich products; purity 99%. All high-purity grade reagents were used without
further purification.

5.2. EPR Experimental Details

All EPR spectra were recorded using a continuous wave Bruker ELEXSYS E500 elec-
tron paramagnetic resonance (EPR) spectrometer operating at the X band equipped with
a superhigh Q (ER 4122 SHQ) resonator. To create comparable data, the spectra were
measured using the same conditions with instrumental parameters as described previ-
ously [85,86]. Bruker Xenon software (Bruker BioSpin, Rheinstetten, Germany) was used
for both data collection and spectral processing.

5.3. NMR

NMR samples were prepared by dissolving 1.0 mg of Tβ4 in 500 µL of D2O. The
pD was adjusted by adding DCl or NaOD and calculated as pD = pH (pH meter read-
ing) + 0.4 [87]. All NMR experiments were performed on 800 MHz spectrometers equipped
with a triple resonance TCI probe and Z gradients coils. The temperature was kept at 25 ◦C
and it was calibrated with an external standard mixture of ethylene glycol and DMSO-D6 by
monitoring the chemical shift difference between the hydroxyl and methylene proton. The
chemical shifts were calibrated with respect to standard DSS for proton, and 13C chemical
shifts were calibrated indirectly. D2O was used for locking.

Apart from the one-dimensional spectrum with water suppression using excitation
sculpting, two-dimensional homonuclear TOCSY, NOESY, hetero-nuclear HSQC and
HSQC-TOCSY (with mixing 16 ms) experiments were recorded. For the heteronuclear
experiments, 2048 and 360 data points were collected in proton and carbon dimensions,
respectively, which corresponds to 125 ms and 17 ms acquisition time in the respective
dimension. The data were apodized with sine function and zero filled with 4096 and
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1024 points in proton and carbon dimensions, respectively. The recycle delay was kept
for 1 and 1.5 s, respectively, for HSQC and TOCSY-HSQC. The total measurement time
was 300 and 240 min for HSQC and TOCSY-HSQC, respectively. The sample was stable
during measurement.

Five different samples were prepared with the addition of individually FeCl2 and
FeCl3 with thymosin: metal ion ratios 1:0.05, 1:0.1, 1:0.2, 1:0.5, and 1:1; and five different
samples were prepared with the addition of AlCl3 with Tβ4: metal ion ratios 1:0, 1:1, 1:2,
1:5 and 1:10. For the sample with some AlCl3, slightly visible precipitation was noticed.

The diffusion was measured using the pulsed field gradient (PFG) NMR on a Bruker
Avance 800 MHz spectrometer equipped with a triple resonance TCI probe and Z gradients
coils. The pulse sequence incorporates longitudinal eddy–current delay (LED) along
with bipolar gradients. All the diffusion measurements were recorded in a pseudo-two-
dimensional manner. In the process, we acquired 24 spectra over the gradient strengths
ranging from 2% to 95% with a linear variation of the gradient strength. The diffusion time
was kept 175 ms along with 32 scans and 1.5 s recycle delay. The decaying signal intensity
was analyzed using the following equation,

I = I0 * exp{−Dγ2g2δ2(∆ − δ/3)}

I is the observed intensity, I0 is the reference intensity, D is the diffusion coefficient, γ
is the gyromagnetic ratio of the observed nucleus, g is the gradient strength, δ is the length
of the gradient, and ∆ is the diffusion time.

All NMR data were processed using Topspin 4.0.7 and analyzed with Sparky software.
Nearly complete assignments of the 1H and 13C resonances for all the residues were
carried out by application of a standard and well-established procedure using HSQC and
TOCSY-HSQC [88]. We also used the PROSECCO (PROtein SEquences and Chemical shift
Correlations) server, which predicts the chemical shift of both folded and unfolded proteins,
which is sequence-based. Since Tβ4 is intrinsically disordered in D2O, we used the server
accordingly. The earlier assignment of the apo form of Tβ4 was transferable.

5.4. DFT
System Setup and Conformational Analysis

Conformational analyses were carried out on the full-length N-acetylated thymosin
β-4. The protein sequence was built with Maestro v. 12.5 as a random coil (no secondary
structure elements) amino acid sequence, as this is the most likely Tβ4 structure in solu-
tion [22]. An acetyl group is added to the N-terminal serine residue, whereas the C-terminal
serine residue is taken in its charged COO− state, in agreement with the physiological form
of Tβ4 [22]. Therefore, the initial system is composed of the random coil protein and one
Fe3+ metal ion placed nearby the protein. The system was modeled with the OPLS-AA
force field [89] as implemented in the MacroModel v12.4 package. Choice of the metal ion
is dictated by the absence of Al3+ parameters in this force field. The MacroModel v12.4 [90]
module was used along with the MonteCarlo Multiple Minimum (MCMM) algorithm [91].
Three different conformational analyses were performed; in the first one, the number of
search iterations was set to 50,000 steps and the Polak–Ribiere conjugate gradient (PRCG)
minimization algorithm was used [92] set to 10,000 minimization steps and the gradient of
first derivatives convergence threshold set to 0.005. The second and third conformational
analyses were run for a total of 10,000 search steps using truncated-Newton conjugate
gradient minimization algorithm (TNCG) [93], with 20,000 minimization steps and the
gradient of second derivatives convergence threshold set to 0.05. All torsional variables
were turned on during the conformational search, with a maximum atom deviation cutoff
of 0.8 Å to discriminate between redundant conformers. The energy window for saving
structures was set to 20.0 kcal/mol.

Through visual inspection of all the conformers produced by the three conformational
runs, we selected 11 structures whose metal-binding mode lies in one of the four metal
anchoring areas predicted by NMR and CSP measurements (Figure 1). Three binding
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modes were identified: Tβ4N-N, in which the metal was bound to the N-terminal of the
protein (ASP2, ASP5, GLU8 and GLU10 residues); Tβ4N-mid in which the metal was bound
to the N-terminal and the middle of the protein (ASP2, ASP5, GLU10 and GLU24 residues);
Tβ4N-C in which the metal was bound to the N-terminal and the C-terminal regions of the
protein (ASP5, GLU8, GLU21 and GLU35 residues).

Five conformers for the Tβ4N-C and Tβ4N-mid binding modes were chosen, and one
for the Tβ4N-N binding mode, for a total of eleven initial structures.

5.5. Molecular Dynamics Simulations

The eleven Fe3+-Tβ4 structures selected from the previous conformational analyses
were immersed in a dodecahedron box with the solute kept to a distance of 20 Å from
the box and solvated with '8000 TIP4P-ew [94] water molecules along with a salt con-
centration of 150 mM NaCl. The protein was modeled with the AMBER99SB*-ILDN-Q
force field [95,96], suitable for intrinsically disordered proteins. Although conformational
analyses have been performed with Fe3+ ion, MD simulations were performed using the
Al3+ metal ion. This choice is due to the fact iron is a paramagnetic element, therefore,
NMR and CSP data for Al(III) (Table 1) are more reliable. Parameters for the Al3+ ion were
taken from Pengfei Li et al. [97] as they have been developed for the AMBER family of
force fields and the TIP4P-ew water model.

Long-range electrostatic interactions were evaluated using a particle-mesh Ewald
(PME) approach [98], and Lennard-Jones interactions were truncated at 12 Å with an
atom-based force switching function which is effective at 10 Å. After 5000 steps of steepest
descent minimization, the system was equilibrated in a multistep manner with decreasing
force constants according to the scheme illustrated in Table S3. The production run was
conducted in the NPT ensemble for 1 µs for each run. All atoms were constrained with
the LINCS algorithm [99]; hydrogen atoms were treated as virtual interaction sites so that
to allow a time step of 4.0 fs while maintaining energy conservation [100]. Simulations
were performed at the temperature of 310 K and 1.0 atm pressure. The V-rescale thermostat
(JCP 126, 014101) with a time constant of 0.1 ps was used to control the temperature. The
isotropic Berendsen barostat was used for the equilibration stage, whereas the Parrinello-
Rahman one [101] was used for production runs; the reference pressure was set to 1.0 atm,
the time constant to 2.0 ps and the isothermal compressibility to 4.5 × 10−5 in order to
maintain the pressure of the system. Dispersion correction was used to correct long range
dispersion of energy and pressure.

5.6. Cell Cultures

Commercial cell line J774 (ICLC ATL98011) was obtained from the Istituto Nazionale
per la Ricerca sul Cancro c/o CBA (ICLC, Genova). The culture medium used for this pur-
pose was a mixture of MEM (EBSS), 10% fetal bovine serum (FBS), 100 units/mL penicillin,
100 mg/mL streptomycin, 2 mM L-Glutamine, 1% non-essential amino acids. To perform
different experimental conditions, confluent cells were isolated using trypsin/EDTA and,
for the experimental procedure, samples of 2–3 × 104 cells/cm2 J774 cells were plated on
different glass coverslips at 37 ◦C, 5% CO2. The daily prepared water solution of Tβ4 was
added to the cell growing medium to the final 10 µM concentration.

5.7. Cell Viability Measurements

The cell viability was evaluated using the LunaFL Cell Counter (www.logosbio.com,
accessed date: 2 March 2021) as indicated in the manufacturer’s user manual. Cell viability
under test conditions is reported as a percentage relative to the negative control treatment.

For each of three analyses (repeated experiments), three distinct biological replicas
were made, and quantitative data were expressed as a mean. Cell viability quantitative
data were expressed as mean + standard error. Statistical comparison of the cell viability
quantitative data in different experimental conditions were performed, with 5.0 GraphPad

www.logosbio.com
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Prism software, by the unpaired t-test. The data were also analysed with one-way ANOVA.
p values < 0.05 was considered significant.

5.8. Gene Expression

The expression of the following genes at the mRNA level was evaluated by real-time
PCR: BAX; HSP70; HO-1 and TXNRD-1. The cells were immediately frozen after treatment
and stored at−80 ◦C until RNA extraction. The RNA was extracted with NorDiag ARROW
RNA kit using the automated tool of the same company. Actin was used as a reference
gene [102]. The Real-time reverse-transcriptase PCR was performed using the Roche
Light Cycler system and SYBR Green I kit amplification kit (Roche Diagnostics). The
following primers (b-actF 1⁄4 50-GCATGGGTCAGAAGG-30, b-actR 1⁄4 50-AGGCGTA-
CAGGGATAG-30) were designed using the sequences of the human beta-actin mRNA
(Gen-Bank accession no. NM_001101).

Real time was performed in 20 µL of final volume containing: 3 mM MgCl2, 0.25 mM
of each primer, and 2 µL of RNA extract. Cycling was performed using the following
amplification conditions: an initial reverse transcription at 55 ◦C for 10 min, denaturation
at 95 ◦C for 30 s followed by 35 cycles at 95 ◦C for 10 s, 53 ◦C for 10 s and 72 ◦C for 8 s
with subsequent melting analysis: heating to 95 ◦C for 20 s, cooling to 5 ◦C for 10 s and
re-heating to 95 ◦C per second.

Fluorescence was detected at the end of the 81 ◦C segment in the PCR step (single
mode) and at 45 ◦C segments in the melting step (continuous mode) in the F1 channel. The
relative gene expression was analyzed by using the 2-DDCT method [103]. For each of
three analyses (repeated experiments), three distinct biological replicas were made, and
quantitative data were expressed as a mean. Folding change values in genes expression
relative to the beta-actin have been represented as mean + standard error. Statistical
comparison of the gene’s expression in different experimental conditions was performed
with 5.0 GraphPad Prism software. The data were also analyzed with one-way ANOVA.
p values < 0.05 was considered significant.

5.9. TEM Microscopy

Samples of J774 cells used in this study were fixed for 2 h in a solution of 1%
(para)formaldehyde and 1.25% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.4.
They were post-fixed in 1% osmium tetroxide for 1 h and stained in aqueous uranyl acetate
0.25% overnight at 4 ◦C. Cell cultures underwent a dehydration process in an ascending
graded series of ethanol and xylene, followed by infiltration and embedding in Embed
812 resin. The specimens were transferred to flat embedding molds and polymerized in
the oven at 60 ◦C for 24 h. 60–90 nm thin sections were cut with an LKB ultratome 8800
ultramicrotome, post-stained with uranyl acetate and bismuth subnitrate, observed and
photographed using a transmission electron microscope (JEOL 1400 plus model, Tokyo,
Japan) operating at 80 kV.
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