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Abstract

In this master’s thesis a dimensionless numerical model of the lock-in infrared thermography ex-
periment for the detection of open-surface cracks is developed. Starting with the constitutive equation
and the boundary conditions associated with the laser and the cracks, their dimensions are removed
by introducing length, time and temperature scales related to the physical problem. As a result, a set
of dimensionless parameters is obtained, that allows to give a broader vision to the problem, while
maintaining the mathematical simplicity of the dimensional model.

Once the dimensionless equations are obtained, they are implemented in a finite element method
multiphysics software called OpenFoam. With this objective, in this work the full numerical calcu-
lation process has been developed: the pre-processing (or meshing), processing and post-processing
stages.

After implementing the equations in the finite element method software a parametric analysis
has been performed by means of different simulations in order to analyze the effect of each of the
dimensionless parameter in the resulting amplitude thermogram.

Key words: Dimensionless equations, lock-in infrared thermography, finite element methods,
OpenFoam, parametric analysis.
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Resumen

En este trabajo fin de máster se desarrolla un modelo numérico adimensional del experimento de
termografı́a infrarroja modulada para la detección de grietas superficiales. Partiendo de la ecuación
constitutiva y de las condiciones de contorno asociadas al láser y a la grieta, se lleva a cabo el proceso
de adimensionalización introduciendo escalas de longitud, tiempo y temperatura, asociadas al prob-
lema fı́sico. Como resultado se obtiene un conjunto de parámetros adimensionales que permite dar
una visión más amplia al problema, manteniendo a su vez la sencillez matemática del planteamiento
dimensional.

Una vez adimensionalizadas, estas ecuaciones se implementan en un software multifı́sico de
métodos de elementos finitos llamado OpenFoam. Para ello en este trabajo se contemplan las tres
etapas de cálculo que se han seguido: el pre-procesado (o mallado), procesado y post-procesado.

Tras implementar las ecuaciones en el software del método de elementos finitos se realiza un
análisis paramétrico mediante diferentes simulaciones con el fin de analizar el efecto de cada uno de
los parámetros adimensionales en el termograma de amplitud resultante.

Palabras clave: Ecuaciones adimensionales, termografı́a infrarroja modulada, métodos de ele-
mentos finitos, OpenFoam, análisis paramétrico.
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Laburpena

Master amaierako lan honetan, gainazalera irekitako pitzadurak detektatzeko termografia infragorri
modulatuko esperimentuaren zenbakizko eredu adimentsional bat garatzen da. Eratze-ekuaziotik
eta laserraren eta pitzadurak sartutako mugalde baldintzetatik abiatuta, adimentsionalizazio proze-
sua gauzatzen da, arazo fisikoari lotutako luzera, denbora eta tenperatura eskalak sartuz. Ondorioz,
parametro adimentsionalen multzo bat lortzen da, arazoari ikuspegi zabalagoa emateko aukera ematen
duena, eta, aldi berean, planeamendu dimentsionalaren sinpletasun matematikoari eusten diona.

Dimentsioak ezabatu ondoren, ekuazio horiek OpenFoam izeneko elementu finituen metodoen
software multifisikoan inplementatzen dira. Horretarako, lan honetan jarraitu diren hiru kalkulu-
etapak jasotzen dira: aurre-prozesatzea (edo saretzea), prozesatzea eta prozesatu ostekoa.

Elementu finituen metodoaren softwarean ekuazioak inplementatu ondoren, analisi parametriko
bat egiten da hainbat simulazioren bidez, parametro adimentsional bakoitzak anplitude-termograman
duen eragina aztertzeko.

Gako hitzak: Ekuazio adimentsionalak, termografia infragorria modulatua, elementu finituen
metodoak, OpenFoam, analisi parametrikoa.
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1 Introduction

1 Introduction

1.1 Context

The detection and characterization of both open-surface and hidden cracks is a challenge and a neces-
sity to prevent failures in mechanical structures [1] since they play an important role in the strength
of the industrial parts [2]. One of the sectors where the detection and characterization of cracks is of
great importance is in the space and aeronautical sector. Since the different parts of the spacecraft are
subjected to large thermal gradients and mechanical stresses, the appearance and growth of cracks is
one of the problems to be taken into account. In fact, as an example, more than half of the material
failures in the aeronautical sector are due to the crack growth [3].

In order to detect and characterize potential cracks, in addition to maintaining the operability of the
material, non-destructive testing (NDT) measurement techniques are needed. Between these analysis
methods, penetrating liquids, eddy currents, magnetic particles, X-ray tomography and infrared ther-
mography can be found. Even though all of these techniques can be applied to crack detection, some
of them may be quite expensive, such as the tomography, or may not be completely non-invasive, like
the penetrating liquids. In contrast, thermographic methods are economically competitive and, above
all, fully respect the integrity of the sample.

In this frame, infrared (IR) thermography has been proposed as a non-intrusive and safe method to
detect quasi-superficial defects thanks to the pioneering work carried out by Kubiak [1]. In particular,
this technique has been identified as a particularly appropriate one in order to detect cracks [4] as it is
very sensitive to small defects in the studied surface.

Infrared thermography can be an active or passive technique. The difference between both ap-
proaches is that in the case of active IR thermography, the external heat source is not natural [5].
There are multiple options to create an external heat source, such as through the Joule effect or
through optical excitation sources. The latter are the most developed and applied in the detection
and characterization of cracks. In this methodology, a light source provides energy to the sample
producing an increase in surface temperature and hence, the diffusion of heat in the material. Conse-
quently, if there is any inner defect, it will be revealed by an abnormal temperature [6] in the images
of the radiation detected by thermographic cameras, called thermograms.

Multiple lighting alternatives can be found. On the one hand, halogen or flash lamps can be
chosen to illuminate the entire surface of the sample. This would produce a heat flux in-depth and
would allow the detection of defects parallel to the surface, such as corrosion [6]. On the other hand,
in-depth propagation and lateral heat flux, which would be disturbed by the presence of cracks, can be
achieved by using a laser beam focused at the sample surface [6]. As a result, the thermogram would
show a discontinuity in the temperature associated to the crack.

In terms of the nature of lighting, when using lasers, there are two main options:

1. Transient thermography: in this technique a sample is heated by a flash lamp and it is recorded
by an infrared camera. If there are any defects, they could cause an abnormal heat flow and be
revealed by the camera [7]. There are three main types of transient thermography:

• Pulsed thermography: this technique consists in using a high power heat pulse in order to
heat the surface of the sample and monitoring the cooling process [8].

1



1 Introduction 1.1 Context

• Continuous thermography: this lighting method uses a continuous heat source in order to
heat the front surface of the solid and a thermal camera for detecting the time dependent
temperature variations at the rear surface [9].

• Step thermography: in this method a long stepped pulse of low intensity is used and the
surface temperature change is recorded during and after the application [10].

2. Lock-in thermography: this technique consists in illuminating the sample with a laser beam
that varies harmonically in time while the surface temperature is recorded with a thermographic
camera.

Among all the lighting techniques, lock-in thermography is the one which presents the lowest
signal to noise ratio. This characteristic means that very small defects (in the order of microns) can
successfully be measured, which has made this technique one of the most used in this field. However,
laboratory measurements may not be enough to fully characterize the geometry of the crack. In
consequence, mathematical modelling is needed in order to obtain all the quantitative information of
the defects.

Taking into account that the geometry of the crack can be completely random, developing a math-
ematical model can be an extremely difficult task. An idealization that can be made in this sense is
to suppose that cracks are straight, which leads to three main types of cracks: infinite, semi-infinite
and finite cracks, introduced later in this work. However, an analytical solution can only be found in
the case of an infinite vertical crack [11], which means that, in order to generalize the problem, finite
element methods are needed.

Finite element methods (FEM) are general numerical techniques, where a continuous domain is
discretized into a set of sub-domains called finite elements, for solving scientific problems described
by partial differential equations [12]. The manner this equations are converted to a discrete problem is
typically using Galerkin methods [12], which can be divided in three main types: continuous, discon-
tinuous or mixed methods. When compared with other solving methods, one of the main advantages
of FEM is that, as the domain is subdivided in multiple finite elements, it is a very flexible method in
the sense that it allows to replicate complex geometries. In addition, they allow to introduce sophis-
ticated physical phenomena such as thermal losses, thermal radiation or multiple cracks. Nowadays
there are several software options in order to solve equations numerically with suitable capabilities
for the physical phenomena addressed in this work, such as, FEniCS, GetFEM++ or OpenFoam.

In physics, in terms of solving the differential equations that govern a problem, there are two main
approaches: dimensional and non-dimensional analysis. Even though both approaches solve exactly
the same problem, there is a big difference between them. While the dimensional equations must
be applied to specific cases, in terms of particular material properties or experimental conditions,
the dimensionless model leads to a more general point of view, giving an insight into fundamental
scales of the problem. Furthermore, the implementation of non-dimensional equations can lead to
computational advantages, as they are arbitrarily scalables. This means that, for example, the spatial
dimensions of the region can arbitrarily be resized in order to provide a better spatial resolution of the
calculation. Considering these characteristics, in this work a dimensionless model will be developed
describing the fundamentals of lock-in IR thermography.

This document is composed by six main sections. In the section 2 an experimental background is
presented with the aim of providing basic concepts and a preliminary idea of the experiment that will
later be numerically simulated.

In section 3 the equations to be implemented in the computational model are identified including

2
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the laser and crack boundary conditions. After this equations have been nondimensionalized, and
from the study of them, a set of dimensionless parameters is obtained that will be used to perform a
parametric analysis.

In section 4 the computational part of this work is discussed, that is: the numerical schemes, the
solution and algorithm control and the three stages that are carried out in the calculation: meshing,
processing and post-processing. Moreover, in the meshing part, different mesh enhancement tech-
niques are discussed in order to optimize the mesh resolution in the regions of interest.

The obtained catalog of curves is shown in section 5. Here, the validation process of the model has
also been carried out. For this purpose, the developed non-dimensional model has been tested against
the analytical solution and a different numerical model. The results obtained from these calculations
are widely discussed in section 6. In this section, in addition to the validation, a complete parametric
analysis of the dimensionless parameters is carried out.

Finally the conclusions and the future lines of this work are presented in the last section of this
document.

1.2 Objectives

The main objectives of this work are the following:

1. Provide a physical-mathematical model to the lock-in IR thermography technique applied to
cracked materials. This modeling consists in solving the heat equation numerically with the
boundary conditions associated with the technique leading to thermal amplitude thermogram
calculations.

2. Develop a numerical model in order to complement the lock-in IR thermography experiments
keeping the mathematics as simple as possible and providing a quantitative description of the
cracks.

3. Search for greater generality in the lock-in problem through a dimensionless model that pro-
vides more general information about the quantities that really affect to the thermal amplitude
thermogram in the lock-in IR thermography experiment.

4. Use the dimensionless parameters resulting from the nondimensionalization process in order to
carry out a detailed non-dimensional parametric analysis of the problem, as well as the identi-
fication of parameters associated to the system degeneracy.

5. Make use of the non-dimensional parameters in order to obtain a catalog of curves, where one
of the parameters is varied while the rest remains fixed, that can be used as a guideline.

3
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2 Experimental background

In recent years, great progress has been made in the detection of open-surface cracks by means of
lock-in thermography. This experiments are carried out exciting the sample with a continuous laser
beam of Gaussian profile whose intensity is modulated by means a mechanical chopper [11]. Once
the intensity is modulated, the laser is focused by an optical lens system and directed perpendicular
to the sample surface using mirrors [11]. In this configuration, the mirror must reflect the visible light
and must also be transparent to the IR radiation in order to be able to record this radiation with the
thermographic camera. A scheme of the experimental setup can be seen in figure 1.

Figure 1: Typical laboratory lock-in IR thermography experimental setup.

In modulated thermography experiments, in order to obtain the thermogram, a set of experimental
points are taken typically along a perpendicular line to the crack. Since in this experimental methodol-
ogy a localized heating is observed, the thermal diffusion length µ [2] is introduced, i.e., the distance
from the heat source where the heat is attenuated by a factor 1/e.

Due to the harmonic nature of the heat source, the sample that is studied in lock-in IR thermogra-
phy experiments,after a transitory stage, reaches a stationary state, as it is illustrated in figure 2. The
temperature of the sample in the transitory stage can be expressed as follows [13]:

T (r⃗, t) = T (r⃗)
(
1 + cos(2πft)

)
= T (r⃗) + ℜ

(
T (r⃗)e−i2πft

)
(1)

where f is the frequency of the modulated laser beam. On the other hand, the temperature in the
stationary state is [13]:

T (r⃗, t) = Troom + Tst(r⃗) + θ(r⃗, t) (2)

being Troom the room temperature, Tst the stationary rise in temperature of the sample from Troom and
θ a temperature in harmonic regime:

θ(r⃗, t) = ℜ
(
Tace

−i2πft
)

(3)

where θ is known as the thermal wave, which is the object of study in this experiment. Thus the result
of the lock-in IR thermography experiment, in the stationary stage, is a set of thermal waves travelling

4
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through the domain, characterized by their amplitudes and phases (see figure 3). In this project, the
parametric analysis is going to be done with the amplitude.

Figure 2: Scheme of the evolution of the surface temperature of the sample with harmonic laser
heating.

Figure 3: Scheme of the thermal waves in different points of the sample.

5
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3 Theoretical model

3.1 Dimensionless equations

In order to develop a dimensionless computational numerical model of the crack detection problem
by means of lock-in thermography, the first aspect that must be taken into account is the manner in
which the dimensions of the set of equations that describe problem are removed. Due to the nature of
the experiment, the constitutive equation is the heat equation:

∇2T =
1

α

∂T

∂t
(4)

where α is the thermal diffusivity. Aiming to remove the dimensions of this equation the following
variables are introduced:

x̄ =
x

Lx

, ȳ =
y

Ly

, z̄ =
z

Lz

, T̄ =
T

T0

, t̄ =
t

tc
(5)

being Lx, Ly y Lz characteristic lengths of the problem in the three spatial directions, T0 an arbitrary
temperature (e.g., room temperature) and tc a characteristic time value of the problem. Explicitly
writing the heat equation and applying the chain rule:

∇2T =
∂2(T̄ T0)

∂x̄2

∂2x̄

∂x2
+

∂2(T̄ T0)

∂ȳ2
∂2ȳ

∂y2
+

∂2(T̄ T0)

∂z̄2
∂2z̄

∂z2
=

1

α

∂(T̄ T0)

∂t̄

∂t̄

∂t
(6)

Using the previously introduced parameters, this equation reduces to:

1

L2
x

∂2T̄

∂x̄2
+

1

L2
y

∂2T̄

∂ȳ2
+

1

L2
z

∂2T̄

∂z̄2
=

1

tcα

∂T̄

∂t̄
(7)

A simplification that can be carried out at this point, and which is particularly convenient for
computational calculations, is to choose the same length scale for all three spatial directions. Thus,
imposing Lx = Ly = Lz = L the dimensionless heat equation reduces to:

∇̄2T̄ =
∂2T̄

∂x̄2
+

∂2T̄

∂ȳ2
+

∂2T̄

∂z̄2
=

L2

tcα

∂T̄

∂t̄
(8)

where ∇̄2 is the dimensionless Laplacian operator. In the process of removing dimensions of
partial differential equations there are multiple criteria to choose the characteristic length and time
scales. In particular, for the heat equation there are two main different criteria depending on the
characteristics of the problem [14]:

1. tc = L2/α, if heat diffusion occurs significantly throughout the domain. Here L is the length
of the sample.

6



3 Theoretical model 3.1 Dimensionless equations

2. tc = 1/ω, if the change in temperature is significant only up to a certain limited distance, l.
Here, ω is an angular frequency associated with the problem.

In lock-in IR thermography experiments, heat diffusion is a process that occurs up to distances
from the heat source close to µ, where the heat is attenuated by a factor of 1/e. Consequently, in
this particular case, the second choice of scales is the most natural one, being l = µ1. Choosing the
characteristic length as µ the equation (8) reduces to:

∇̄2T̄ = 2
∂T̄

∂t̄
(9)

Here it has been used that ω = 2πf and the definition of thermal diffusion length: µ =
√
α/(πf).

For purely aesthetic reasons, the computational model has implemented the dimensionless heat equa-
tion with tc = 2/ω, so that the previous equation becomes:

∇̄2T̄ =
∂T̄

∂t̄
(10)

The second equation from which the dimensions must be eliminated is the boundary condition
associated with the laser. In this case the laser, of power P , amplitude modulated at a frequency f
and centered at (x0, y0, 0), is assumed to have a Gaussian profile and to be focused to a radius rg (at
1/e2 of the maximum intensity) [6]. Therefore, the boundary condition in the stationary stage is:

− κ
∂T

∂z

∣∣∣
z=0

=
ηP

πr2g
e
−2

[(
x−x0
rg

)2

+

(
y−y0
rg

)2]
cos(2πft) (11)

being κ the thermal conductivity of the sample material and η the power fraction absorbed by the
sample. In this work, the negative sign is introduced as a phase in the modulation term so it will no
longer appear again. On the other hand, η is taken equal to one and a factor 2 is introduced because
when the right hand side of the equation is integrated over x and y, without having that factor, the
result is P/2. Taking this three details into account, this equation can be rewritten as follows:

κ
∂T

∂z

∣∣∣
z=0

=
2P

πr2g
e
−2

[(
x−x0
rg

)2

+

(
y−y0
rg

)2]
cos(2πft) (12)

This boundary condition becomes dimensionless using the previously introduced variables:

(x, y, z) → (µx̄, µȳ, µz̄), t → 2

ω
t̄, T → T̄ T0 (13)

Therefore, applying the chain rule, the equation (12) becomes:

1In addition, this choice greatly simplifies the subsequent analysis of the problem based on the dimensionless param-
eters.
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3 Theoretical model 3.1 Dimensionless equations

∂T̄

∂z̄

∣∣∣
z̄=0

=
2Pµ

πr2gT0κ
e
−2

[(
x̄−x̄0
rg/µ

)2

+

(
ȳ−ȳ0
rg/µ

)2]
cos(2t̄) (14)

It must be noticed that the oscillation frequency of the laser heat source, in this dimensionless
formulation, is no longer depending in any material or experimental parameters, being a constant
value in any case. Once the dimensions of heat equation and laser boundary condition are removed,
the two remaining equations are those associated with the crack. The constraints that must be satisfied
are:

• The continuity of heat flow over the crack. This condition is written as follows:

[[Q̇]] = 0 (15)

where the [[ ]] operator stands for the change on the flux over the crack [6]. Being equal to
zero, removing the dimensions of this equations is straight forward:

[[ ˙̄Q]] = 0 (16)

• A temperature discontinuity at crack position:

The crack is modeled as a thermal contact resistance Rth [6], related to the width of the crack
w through:

Rth =
w

κair

(17)

being κair the thermal conductivity of the air, which is assumed to fill the crack. Thus, the
temperature discontinuity in the crack is given by:

∆T = κRth∇T = κ
w

κair

∇T (18)

Making use of the previously introduced dimensionless variables, this condition becomes:

T0∆T̄ = κ
w

κair

T0

µ
∇̄T̄ (19)

Here the dimensionless gradient operator ∇̄ ≡ ∇/µ has been introduced. Rearranging the
terms, the dimensionless temperature jump condition due to the presence of a crack results in:

∆T̄ =
κ

κair

w

µ
∇̄T̄ (20)

Summarizing, introducing the thermal diffusion length µ as the length scale, tc = 2/ω as the
characteristic time scale and the temperature normalization factor T0, the set of dimensional four
equations that govern the physics of crack detection by lock-in IR thermography, becomes:
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3 Theoretical model 3.2 Dimensionless parameters



∇2T = 1
α
∂T
∂t

∂T
∂z

∣∣∣
z=0

= 2P
κπr2g

e
−2

[(
x−x0
rg

)2

+

(
y−y0
rg

)2]
cos(2πft)

[[Q̇]] = 0

∆T = κ w
κair

∇T

→



∇̄2T̄ = ∂T̄
∂t̄

∂T̄
∂z̄

∣∣∣
z̄=0

= 2Pµ
πr2gT0κ

e
−2

[(
x̄−x̄0
rg/µ

)2

+

(
ȳ−ȳ0
rg/µ

)2]
cos(2t̄)

[[ ˙̄Q]] = 0

∆T̄ = κ
κair

w
µ ∇̄T̄

It has to be mentioned that this entire work deals with the adiabatic problem, that is, it is assumed
that there are no heat losses due to convection or radiation mechanisms. This decision is based on the
nature of this two mechanisms. Radiation is proportional to T 4 which means that if the temperature is
not high enough its effect is negligible. On the other hand, heat losses by convection are proportional
to the difference between the room temperature and the sample temperature. However, IR thermog-
raphy experiments are carried out a few kelvins above the room temperature so the difference is not
large enough to be considered. Furthermore, this simplification is supported by the fact that, except
in a few cases, the adiabatic model fits the experimental data relatively well.

3.2 Dimensionless parameters

Once the non-dimensional equations have been obtained, the terms that appear in the new equations
can be rearranged to find characteristic independent dimensionless parameters which determine the
nature of the problem. In particular, the combination of the terms that leads to these parameters can
be found looking at the laser boundary condition (14) and the temperature jump condition at the crack
(20). In both of them thermal conductivity κ appears, so, multiplying and dividing the boundary
condition of the laser by the conductivity of the air, this equation becomes:

∂T̄

∂z̄

∣∣∣
z̄=0

=
2Pµ

πr2gT0κair

1
κ

κair

e
−2

[(
x̄−x̄0
rg/µ

)2

+

(
ȳ−ȳ0
rg/µ

)2]
cos(2t̄) (21)

Going further, in this equation the radius of the laser rg appears both in the amplitude and in the
exponential terms. So, it seems to be natural to multiply and divide the dimensionless modulation
amplitude by the thermal diffusion length:

∂T̄

∂z̄

∣∣∣
z̄=0

=
2P

πµT0κair

1
κ

κair

1(
rg
µ

)2 e
−2

[(
x̄−x̄0
rg/µ

)2

+

(
ȳ−ȳ0
rg/µ

)2]
cos(2t̄) (22)

Defining the following dimensionless parameters:

Π1 ≡
2P

πµT0κair

, Π2 ≡
(rg
µ

)2

, Π3 ≡
κ

κair

(23)

The laser boundary condition reduces to:
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∂T̄

∂z̄

∣∣∣
z̄=0

=
Π1

Π2Π3

e
− 2

Π2

[
(x̄−x̄0)2+(ȳ−ȳ0)2

]
cos(2t̄) (24)

On the other hand, defining the dimensionless parameters associated to the crack geometry,

Πw ≡ w

µ
, Πl ≡

l

µ
, Πd ≡

d

µ
(25)

being l and d the length and depth of the crack, respectively, the temperature jump condition becomes:

∆T̄ = Π3Πw∇̄T̄ if x̄ ∈
[
− Πl

2
,
Πl

2

]
, z̄ ∈

[
0,Πd

]
(26)

Therefore, it is observed that, from the manipulation of two of the four equations and the defini-
tion of six dimensionless parameters, three associated with the geometry of the crack and three with
the experimental conditions, a simplified non-dimensional formulation of the original equations is
obtained. The equations to compute are summarized in the following box.



∇̄2T̄ = ∂T̄
∂t̄

∂T̄
∂z̄

∣∣∣
z̄=0

= Π1

Π2Π3
e
− 2

Π2

[
(x̄−x̄0)2+(ȳ−ȳ0)2

]
cos(2t̄)

[[ ˙̄Q]] = 0

∆T̄ = Π3Πw∇̄T̄

(27)

In this work in addition to the parametric analysis associated to the mentioned six parameters, the
position of the laser (x̄0, ȳ0) and the inclination of the crack θ will also be considered in the analysis
in order to check their impact in the results.

IR thermography experiments in laboratories are typically carried out with lasers of power on the
range of 0.1− 10 W, radius at 1/e2 of the maximum intensity is typically on the order of 10−4 m and
are modulated at frequencies on the order of hertz. The cracks to be detected in these experiments
are typically on the order of microns. As said before, in this experiments the interest is placed on the
oscillation of the temperature so, the most natural choice of temperature scale T0 is the maximum of
the amplitude over the room temperature. Typically this values are on the order of few kelvins. Con-
sidering the mentioned variation ranges, table 1 shows typical values of the dimensionless parameters.

In this table it can be seen that the values of the first dimensionless parameter Π1 can vary from
103 to 104 while values on the order of 10−4 or 10−1 are obtained for Π2. A similar behaviour is
found for Π3, where values from 50 to almost 16000 are obtained. This leads to conclude that these
three parameters are highly dependent on the material, which is a direct consequence of choosing
the diffusion length as longitude characteristic scale. However, the same value of any dimensionless
parameter can be obtained for different materials through the appropriate selection of the rest of
experimental parameters.
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3 Theoretical model 3.2 Dimensionless parameters

κ (Wm−1K−1) [15] α (mm2s−1) [15] Π1 Π2 Π3

Cu 397.48 116.0 4685 0.0054 15899.2
AISI 304 14.64 3.68 28210 0.1963 600.0

Pb 34.309 23.3 10454 0.0270 1372.4
Lead Glass 1.13 0.74 58661 0.8490 45.2

Al 225.94 91.0 5289 0.0007 9037.6
Fe 71.965 20.4 11172 0.0307 2878.6

Table 1: Typical values of the dimensionless parameters for different materials. These values have
been calculated with P = 1 W, f = 5 Hz, rg = 0.2 mm, T0 = 2 K.
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4 Computational numerical simulations

4 Computational numerical simulations

There are two key aspects in computational numerical simulations: the mesh and the numerical
method that is used to solve the equations. The manner the equations are translated from analytical
formulation to computational formulation is an important aspect when using finite element methods
because some numerical schemes may not work for some specific problems. In the following a brief
description is these is given, even though it is not the scope of this work to go on further detail in this
topic.

On the other hand, the mesh plays a key role in solving equations by numerical methods because
it is, literally, where the equations are solved. This means that, in this case the simulated laboratory
sample, has to be as similar as possible to a continuous medium but without having to spend much
computational resources and time simulating the problem.

The simulations presented in this work have been carried out a workstation with Ubuntu MATE
20.04.4 with an Intel Xeon(R) Gold 5218 CPU @ 2.30 GHz × 64, 192 Gb memory and a graphic
memory LLVM 12.0.0, 256b.

4.1 OpenFoam

Open Source Field Operation and Manipulation (OpenFoam) [16] is a C++ object oriented library,
originally designed for computational fluid dynamics and structural analysis [17, 18]. However, after
decades of evolution, it has become a software with multiphysics capacity oriented to a wide variety of
physical phenomena, such as: combustion, electromagnetics, heat transfer and others. OpenFoam is
used to create executables that fall in two categories: those that allow the manipulation of data, known
as utilities, and solvers, which are designed to solve a specific problem in continuum mechanics [16].

Taking into account the nature of the problem to be solved in this work, among the variety of
solvers that are implemented in OpenFoam, the solvers of the thermal family have been identified as
the most suitable. Between all the options available, solidFoam has been selected as it has been de-
signed for energy transport and thermodynamics on solids. In this solver not only complex boundary
conditions, such as the ones of the laser or the crack, can be implemented but it could also benefit a
future work in which this model is used to simulate flying spot experiments [19] because it allows to
use dynamic meshes.

It is worth to mention that OpenFoam presents native parallel calculation capacity, which allows
to distribute the nodes of the mesh between the available processes. Hence, this presents a double
benefit. On the one hand, several simulations can be done simultaneously. On the other hand, faster
calculations can be performed assigning each process a set of nodes.

4.2 Numerical schemes

As mentioned before, it is beyond the scope of this work to explain in detail the methods used to
calculate the partial derivatives, gradients, etc. since the objective is to build the dimensionless model
and these methods are equally valid for equations with and without dimensions. However, it should be
mentioned that the schemes used have already been used to carry out simulations in similar physical
phenomena with proven capabilities. The finite volume schemes that have been used in this work are
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summarized in table 2.

Quantity Scheme

Time partial derivatives Crank Nicholson
Gradients Gauss linear
Laplacian Gauss linear corrected

Interpolations Linear

Table 2: Finite volume schemes used.

4.3 Solution and algorithm control

In solution and algorithm control, the solver keyword specifies each linear-solver that is used for each
discretised equation, that is, to the method of solving the set of linear equations [16]. On the other
hand, the multiple options for preconditioning of matrices in the conjugate gradient solvers (DIC,
FDIC, DILU,...) are controlled by the preconditioner keyword [16]. In this work the PCG solver and
DIC preconditioner have been used as it has been seen that they suit properly to the characteristics of
the problem.

In OpenFoam, the matrix solvers are based on reducing the error in the solution over an iterative
process, that is, the residual is evaluated by substituting the current solution into the equation and
taking the magnitude of the difference between the left and right hand sides [16]. In order to control
if that difference is small enough, there are two variables that can be used:

1. Absolute tolerance: measures if the residual is small enough to consider the solution sufficiently
accurate.

2. Relative tolerance: limits the relative improvement from initial to final solution.

Thus, the solution will be considered sufficiently accurate if the residual is lower than the absolute
tolerance, or the ratio of current to initial residuals falls below the relative tolerance. In this work the
absolute tolerance has been used as a measure of the accuracy of the simulation and it has been set to
1× 10−7.

Another aspect to be taken into account is the solution under-relaxation. This is a technique used
for improving stability of a computation that can be applied in physical simulations where variables
vary that fast that can lead to numerical divergences. Since the nature of the experiment that is being
simulated does not imply this kind of problems, the relaxation factor in this work is left as default,
that is, equal to 1. The solution and algorithm control configuration used in the simulations is shown
in table 3.

Solver Preconditioner Absolute tolerance Relative tolerance Relaxation factor

PCG DIC 1× 10−7 0 1

Table 3: Solution and algorithm control keywords used.
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4.4 The mesh

As said before, the mesh plays a key role in computational numerical simulations. There are two
main strategies to simulate cracks in materials. The first one is to model the problem as a two domain
material: the bulk and the air filling the crack. This strategy implies that, close and inside the crack, an
extremely fine mesh has to be done which dramatically increases memory resources and calculation
time due to the difference in spatial scale between the crack and the bulk [20, 21]. The second
option is to model the crack as a contact thermal resistance surface. In this approach, there is no crack
volume to mesh, because the latter is modeled as a 2D plane [2, 6], notably reducing the computational
resources required.

In OpenFoam there are two main options to model a crack. The first one consists in using the
function already implemented in OpenFoam, which allows to create the sample as an entire block and
then define the geometry of the crack. This method allows the user to simulate as many cracks as
wanted without adding complexity to the mesh. However, this strategy has a big drawback: it implies
that the geometry of the crack will be rounded to the values to the nearest node of the mesh, meaning
that the crack will no longer be as wide, long or deep as it had been modeled.

The second option is to reproduce the crack as a contact surface between hexahedral blocks,
which implies that the sample has to be divided into multiple domains that later have to be joined.
In other words, the sample has to be constructed ‘block by block’. Since the number of blocks to
create depends entirely on the type of crack (infinite, semi-infinite or finite), the main disadvantage
of following this path is that the complexity of the code increases. On the other hand, following
this methodology ensures, by construction, that the crack will have the desired dimensions. As a
consequence, in this work, this has been the followed meshing strategy.

Another key aspect to be taken into account is the geometry of the mesh. Among all the options,
the most used meshes are tetrahedral and hexahedral meshes. These two types of meshes and the
individual elements can be seen in figures 4 and 5.

Figure 4: (left) Hexahedral and (right) tetrahedral meshes.

Figure 5: (left) Tetrahedral and (right) hexahedral mesh elements.

Tetrahedral meshes are made up of elements with 4 vertices. These can be rearranged so that a
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higher resolution is acquired in one part of the mesh than in another simply modifying the density
of elements in that region. This can be done due to the versatility offered by the geometry of the
elements. On the other hand, hexahedral meshes are made up of elements with 8 vertices, which
means that, without further refinement, there is no longer the possibility to modify the density of
elements in a concrete region to obtain more resolution. However, in regular grids such as the obtained
with hexahedral elements, there are three different possibilities to achieve an increase in resolution:
increase the number of elements in the entire mesh, introduce a local gradient or a refinement. This
last two options are explained in detail in section 4.5.

Despite being computationally more expensive meshes, hexahedral ones tend to be more accurate
than the tetrahedral ones for the same number of nodes [22] because of the number of vertices of each
individual element. While tetrahedral elements only have 4 vertices, hexahedral elements have 8. This
implies that when interpolations between nodes are performed, in a hexahedral mesh the interpolation
will be done with more information because there are more nodes nearby and, consequently, the
solution will be more accurate.

In this work the meshes have been made with the native OpenFoam mesher so the type of mesh
that has been used is the hexahedral one. Mathematically the meshed domain is defined as follows:

{
(x̄, ȳ, z̄) ∈ R3|x̄ ∈ [x̄min, x̄max], ȳ ∈ [ȳmin, ȳmax], z̄ ∈ [0, z̄max]

}
(28)

4.4.1 Infinite cracks

A crack is said to be infinite if its length and depth are much larger than the thermal diffusion length
of the material. In this case an analytical solution is available only for cracks perpendicular to the
surface [1], whereas FEM is needed for the rest of tilting angles. Due to the fact that l, d >> µ, the
modeling of this case can be done supposing that the length and depth of the crack is equal to those
of the sample (ensuring that it is big enough), as it is shown in figure 6. This means that, to model the
sample, two blocks are needed. This blocks can be distinguished in figure 7. The spatial limits of the
infinite crack are:


x̄c ∈ [x̄min, x̄max]

ȳc ∈ [0, z̄max/tg(θ)]

z̄c ∈ [0, z̄max]

where θ is the angle of inclination with respect to the surface illuminated by the laser. The relation
between the maximum limit in ȳ and z̄max is obtained by geometry since, as can be seen in the crack
diagram 6:

tg(θ) =
z̄max

ȳc,max

(29)
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Figure 6: Scheme of an infinite crack

(a) (b)

Figure 7: (a) The two blocks that make up the infinite crack and (b) the final result.

4.4.2 Semi-infinite cracks

A semi-infinite crack is a slightly more general case than the infinite crack. The name semi-infinite
alludes to the fact that it is larger than the thermal diffusion length in one of the directions but it is
comparable to µ in the other one. In this work it will be assumed that the length of the crack in the
x̄ direction is much longer than the thermal diffusion length but its depth is at least comparable to it.
In this case, the regions z̄ < Πd and z̄ > Πd also have to be distinguished provided that the interface
between blocks is conformal. Taking this into account four are needed.

In terms of the coordinates of the crack, the unique change with respect to the previous case is that
the maximum value of z̄c changes from z̄max to Πd. Summarizing, the semi-infinite crack coordinates
are:


x̄c ∈ [x̄min, x̄max]

ȳc ∈ [0,Πd/tg(θ)]

z̄c ∈ [0,Πd]

being θ the angle of inclination. The four blocks and the final mesh can be seen in the figure 8.
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(a) (b)

Figure 8: (a) The four blocks that make up the semi-infinite crack and (b) the final result after joining
them.

4.4.3 Finite cracks

The finite crack is the most general case among the three considered. In this case the crack is not long
and/or deep enough to consider those dimensions much greater than µ. In addition to distinguish the
regions z̄ < Πd and z̄ > Πd, just as it is done in the semi-infinite crack case, the regions x̄ < −Πl/2,
x̄ ∈ [−Πl/2,Πl/2] and x̄ > Πl/2 have also to be distinguished, which means that the number of
blocks rises from 4 to 12. This blocks are shown in figure 9 and the final mesh in figure 10. In this
case the coordinates are:


x̄c ∈ [−Πl/2,Πl/2]

ȳc ∈ [0,Πd/tg(θ)]

z̄c ∈ [0,Πd]

(a) (b)

Figure 9: (a) Lateral view in the +x̄ direction showing the corresponding four blocks and (b) zenital
view in the +z̄ direction showing the corresponding three blocks.
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Figure 10: Final result after joining the corresponding twelve blocks.

4.5 Mesh resolution control

With the objective of improving the spatial resolution of the mesh in the regions where the studied
variables change more abruptly, i.e., where more physical information can be found, in this work
two complementary methods have been implemented. It is worth to mention that, even though the
dimensionless model is being implemented, the methodologies presented in this section are also valid
for the case with dimensions.

4.5.1 Mesh element distribution gradient

The native mesher of OpenFoam allows not only to determine the number of lines in each spatial
direction but also to modify the spacing between edges, that is, to establish a gradient of nodes. Since
no new nodes are spawned, but simply redistributed, this method to increase the mesh resolution in a
specific region does not increase the computational resources that are needed. Hence, it seems to be
natural to establish a gradient in all three spatial directions in order to increase the resolution in the
region close to the crack.

Since in the ȳ and z̄ directions the blocks are joined in pairs, establishing a gradient that ensures
the continuity of the distribution of nodes is a trivial task, but in the x̄ direction this depends on the
casuistry that is being contemplated.

In the infinite and semi-infinite cracks implementing a spatial gradient in the x̄ direction does not
add any complexity because only two blocks have to be joined. In the finite crack, by contrast, as the
regions previously mentioned have been distinguished, three blocks have to be joined on each side of
the crack in that direction. This means that the way to match the distance between edges is not so
obvious. The scheme of the problem that is going to be solved is shown in figure 11.

Figure 11: Diagram of the spacing between mesh edges. Left: regular distribution. Right: downward
spatial grading.
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Let ∆x̄e be the distance between the nodes when they are evenly spaced:

∆x̄e =
L̄

N
(30)

where L̄ = x̄max + |x̄min| and N is the number of edges. Let ∆x̄0 be the distance between the first
two nodes when a gradient (γ ̸= 1) is introduced. Then the relationship between the distance from
edge i− 1 to edge i and ∆x̄0 can be:

∆x̄i = ∆x̄0 −∆x̄0f (31)

where f is a function that must satisfy the following conditions:

1. Its value must increase while i increases.

2. f(i = 0) = 0.

3. If i = N − 1 then: ∆x̄N−1 = ∆x̄0/γ.

The simplest function that satisfies those three conditions is:

f =
i

N − 1

(
1− 1

γ

)
(32)

So, the relation is:

∆x̄i = ∆x̄0 −∆x̄0
i

N − 1

(
1− 1

γ

)
(33)

However, taking into account that γ and N are specified parameters, the goal is to obtain a relation
between ∆x̄0 and ∆x̄e. A key point here is that, even though the spacing between edges has changed,
the length of the block hasn’t. Thus:

L̄ =
N−1∑
i=0

∆x̄e =
N−1∑
i=0

∆x̄i (34)

If the right hand side of the equation is expanded:

L̄ =
N−1∑
i=0

∆x̄0 −∆x̄0
i

N − 1

(
1− 1

γ

)
(35)

Separating the two terms:
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L̄ =
N−1∑
i=0

∆x̄0 −
N−1∑
i=0

∆x̄0
i

N

(
1− 1

γ

)
(36)

The first sum is well known:

N−1∑
i=0

∆x̄0 = ∆x̄0

N−1∑
i=0

1 = ∆x̄0N (37)

On the other hand, the second sum results in:

N−1∑
i=0

∆x̄0
i

N − 1

(
1− 1

γ

)
=

∆x̄0

N − 1

(
1− 1

γ

)N−1∑
i=0

i =
∆x̄0

N − 1

(
1− 1

γ

)(N(N − 1)

2

)
(38)

Inserting the results (37) and (38) in equation (36):

L̄ = ∆x̄0N −∆x̄0

(
1− 1

γ

)(N
2

)
(39)

It can be checked from this result that, if there is no gradient (γ = 1), ∆x̄0 = ∆x̄e. Thus, at the end
of the calculation, a relation between the length of the block in the x̄ direction (L̄) and the distance
between the first two edges with gradient γ (∆x̄0) appears. This allows to calculate the distance
between the last two edges ∆x̄N−1 and, therefore, to maintain the continuity of the spacing between
edges when joining the regions x̄ < −Πl/2 with x̄ ∈ [−Πl/2,Πl/2] and x̄ > Πl/2. Considering the
distance between the last two edges (condition 3), the relation is:

∆x̄N−1 = 2
L̄

N

(
γ +

1

γ

)−1

(40)

As can be seen in figure 12, where a a mesh composed of 3 blocks, such as the finite crack one
(see section 4.4.3), is presented, the distribution of edges is regular, that is, it does not present abrupt
jumps between blocks, as it is intended with this meshing strategy.

(a) (b)

Figure 12: (a) Three block mesh without gradient and (b) same mesh with γ ̸= 1 calculated by (40).
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4.5.2 Mesh refinement

Another method to increase the mesh resolution in some regions in OpenFoam is to divide the hexa-
hedrons that are in the region of interest. Unlike the gradient method, mesh refinement increases the
computational resources because the number of nodes increases. The implementation of the refine-
ments in OpenFoam consists of:

1. Selecting the nodes of the mesh that are within the region of interest. With this objective,
geometrical entities (spheres, cylinders, boxes,...) are defined in the mesh inside which the
selected nodes remain.

2. Once the nodes of the region of interest are selected, these are divided until the desired spatial
resolution is achieved.

As mentioned before, the interest of implementing mesh refinements is that there are regions that
are physically more interesting, since they are the ones in which the variables change more rapidly.
In particular, during the multiple simulations that have been carried out in this work, several special
interest zones have been identified: the crack and the laser spot. In order to mesh these regions with
enough spatial resolution, a region proportional to the non-dimensional thermal diffusion length has
been carefully refined.

With the objective of refining the region close to the crack, the box geometry has been used as it
keeps the aspect ratio with the sample. Furthermore, during the simulations that have been carried
out, it has been noticed that a single box refinement not only increases significantly the resolution
in that region but also reduces both the number of nodes far from the crack and consequently, the
computational time. An example of this refinement can be found in figure 13 (a).

In addition to the meshing of the crack or the region close to it, an important aspect in IR ther-
mography simulations is to correctly mesh the region in which the laser is introduced. In order to
complete this task, the cylinder refinement has been chosen as it keeps the aspect ratio with the circu-
lar geometry of the laser spot. During the multiple simulations done in this work, it has been tested
that refining the cells of the laser environment three times, each time with cylinders of smaller height
and radius, it is enough to capture the laser spot appropriately. This triple refinement can be seen in
figure 13 (b). When both of these refinements are combined (see figure 13 (c)), as it is the case of this
work, the resulting mesh ends up having on the order of 250000 nodes.

(a) (b) (c)

Figure 13: (a) Single box, (b) triple cylinder refinements and (c) both of them combined.
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4.6 Processing

Once the mesh is done, the equations must be solved. At this stage of the calculation, known as
processing, it is worth to notice that even though only the stationary part of the problem is being
simulated, for numerical reasons, it may happen that the first oscillations do not represent that part
correctly until a few iterations are done. Therefore, in order to find the stable stationary situation
without undesired numerical effects a criterion that guarantees the appropriate stationary nature of
the calculation is required. In this work this criterion has been selected as the full reproducibility of
the obtained thermal waves.

Programmatically, the implementation of this condition has been carried out selecting an arbitrary
point of the stationary thermal cycle and checking its value over cycling, provided an appropriate
time resolution. When the temperature difference between cycles, i.e., the slope of the line joining
two consecutive points (as can be seen in figure 14) is found to be below an imposed threshold value,
the criterion is satisfied and the next cycle is saved as the stationary oscillation for each node of the
mesh.

Figure 14: Temperature evaluation of an arbitrary point over cycling until the stationary stability
criterion is satisfied.

4.7 Post-Processing

As mentioned before, one of the consequences of treating this problem in a simple way, from the
mathematical point of view, is that instead of solving the Helmoltz equation [4] which integrates the
harmonic nature of the lock-in experiment, the heat equation is solved. Whereas the first provides
direct solution for the thermal amplitude, the second doesn’t, resulting the temperature field. The
consequence of this is that, after the processing stage, those amplitudes must be found. This is the
post-processing stage of the calculation.

In this stage, even if the temperature field for the complete sample is calculated, the results pre-
sented in this work are limited to a line perpendicular to the crack and crossing the center of the laser
spot. This selection has been done as this would be the physically more significant region. Once
the region to plot the non-dimensional temperature amplitudes is chosen, the maximum and mini-
mum values of each thermal wave are programmatically searched, leading to the non-dimensional
temperature amplitude plot.
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5.1 Validation of the model

Once the dimensionless numerical model has been established, its validity must be checked. Although
the model can be validated against experimental data, in this case it is going to be done against
analytical or numerical models, depending on the situation. In this section first, the comparisons of
the results of the dimensionless model with the analytical model corresponding to a vertical infinite
crack [1] will be presented in figure 15. Second, the non-dimensional results for semi-infinite and
finite cracks are going to be validated against another numerical model developed by R.Celorrio et al.
[4] (in the following, DG FEM model) written in FEniCS, due to the fact that there is no analytical
solution in these cases. The associated results in this case are shown in figures 16 and 17. In order
to make the cases as realistic as possible, it has been decided to validate the model with typical
experimental parameter values (see table 4) and for two materials: AISI 304 and Cu (see their thermal
properties in table 1).

P (W) rg (mm) f (Hz) (x0, y0) (mm)

1 0.165 1 (0,0.5)

Table 4: Dimensional parameter values that have been used in order to validate the dimensionless
numerical model.

Aiming to compare the results between models, the dimensional results are transformed to dimen-
sionless following the scale variables previously introduced (see equation (13)). In order to maintain
an acceptable sensitivity of the temperature changes, even far from the heat source, instead of the
amplitude its natural logarithm is plotted. The dimensionless parameters that have been used can be
found in table 5.

Figure 15: Comparison between the non dimensional numerical results and analytical solution for
infinite vertical cracks. (a) AISI 304 and (b) Cu.
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Figure 16: Comparison between the non dimensional results and the DG FEM model in the semi-
infinite crack case in AISI 304 for two different crack inclinations. (a) 90º and (b) 45º.

Figure 17: Comparison between the non dimensional results and the DG FEM model in the finite
crack case in AISI 304 for two different crack inclinations. (a) 90º and (b) 45º.

In order to quantify the differences between the dimensional (analytical or numerical) and dimen-
sionless models, among all the statistical options, in this work the root mean square error (RMSE)
has been chosen due to the ease of interpreting the results. As it can be seen in figures 15, 16 and
17 the agreement between all the models is very satisfactory in the three presented cases, the values
presented in table 6, are going to be discussed in detail in section 6.1.
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Figure 15 (a) Figure 15 (b) Figure 16 Figure 17

Type of crack Infinite Infinite Semi-Infinite Finite
Π1 23528 4191 23528 23528
Π2 0.023 0.0007 0.023 0.023
Π3 586 15899 586 586
Πw 0.00092 0.0082 0.00092 0.00092
Πl - - - 0.92
Πd - - 0.92 0.92
ȳ0 0.46 0.45 0.46 0.46
θ(º) 90 90 90/45 90/45

Table 5: Dimensionless parameters used to obtain the results shown in figures 15, 16 and 17.

Case / Model Analytical DG FEM model

Infinite 90º (I) (figure 15 (a)) 0.017 -
Infinite 90º (II) (figure 15 (b)) 0.014 -

Semi-infinite 90º (figure 16 (a)) - 0.009
Semi-infinite 45º (figure 16 (b)) - 0.012

Finite 90º (figure 17 (a)) - 0.0027
Finite 45º (figure 17 (b)) - 0.022

Table 6: RMSE of the comparisons shown in figures 15, 16 and 17.

5.2 Parametric analysis

In this section a catalog of curves in which each non-dimensional parameter is varied, while the others
are fixed, is shown. This catalog has two main purposes. First, it can be used as a result guideline for a
variety of experimental and material properties parameters. Going more in detail, the second purpose
of this catalog, is to provide a parametric analysis showing the influence of each non-dimensional
parameter in the resulting thermal amplitude (|T̄ |) plot.

Although it is a common practice to normalize the experimental data in order to eliminate the
effect of parameters which are difficult to control, such as the absorption coefficient (η) in equation
(11), the normalization can also limit the amount of information obtained in the experiment. In order
to take advantage of both methodologies, in this work, as general rule, both normalized and non-
normalized plots are shown2.

All of the results presented in this section are obtained for a finite crack, as it is the most versatile
one. The experimental parameters that lead to these simulations are typical values of experimental
setups. It is worth to notice that the power of this non-dimensional formulation lies in the fact that
the result is not dependent on each individual experimental parameter, but depends only on their
combinations. The dimensionless parameters that remain fixed in each calculation are specified in
table 7.

2In the results in which the normalization does not have any impact, only the normalized natural logarithm of the
thermal amplitude ln(|T̄n|) is shown.
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Figure 18: Natural logarithm plot of the thermal amplitude (a) non-normalized and (b) normalized on
the transverse sample profile for Π1 = 4× 103, 1× 105, 2× 105, 3× 105.

Figure 19: Natural logarithm plot of the thermal amplitude (a) non-normalized, showing the zoomed
amplitude jump associated to the crack in the insert and (b) normalized on the transverse sample
profile for Π2 = 1× 10−7, 2× 10−7, 3× 10−7, 1× 10−8.
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Figure 20: Natural logarithm plot of the thermal amplitude (a) non-normalized and (b) normalized on
the transverse sample profile for Π3 = 50, 500, 1000, 4000.

Figure 21: Natural logarithm plot of the thermal amplitude (a) non-normalized and (b) normalized on
the transverse sample profile for ȳ0 = 0.24, 0.32, 0.40, 0.48.
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Figure 22: Natural logarithm plot of the thermal amplitude (a) normalized and (b) crack region
zoomed on the transverse sample profile for Πw = 0.001, 0.002, 0.005, 0.01.

Figure 23: Natural logarithm plot of the thermal amplitude (a) normalized and (b) crack region
zoomed on the transverse sample profile for Πl = 0.2, 0.4, 0.5, 0.75.
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Figure 24: Natural logarithm plot of the thermal amplitude (a) normalized and (b) crack region
zoomed on the transverse sample profile for Πd = 0.1, 0.2, 0.3, 0.5.

Figure 25: Natural logarithm plot of the thermal amplitude (a) normalized and (b) crack region
zoomed on the transverse sample profile for θ = 50º, 75º, 90º, 100º.
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Figure Π1 Π2 Π3 ȳ0 Πw Πl Πd θ (º)

18 - 0.027 600 0.50 0.001 1 1 50
19 25231 - 600 0.50 0.001 1 1 50
20 25231 0.027 - 0.50 0.001 1 1 50
21 25231 0.027 600 - 0.001 1 1 50
22 25231 0.027 600 0.50 - 1 1 50
23 25231 0.027 600 0.50 0.001 - 1 50
24 25231 0.027 600 0.50 0.001 1 - 50
25 25231 0.027 600 0.50 0.001 1 1 -

Table 7: Parameters used to obtain each figure of the catalog.
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6.1 Validation of the model

As mentioned before, in order to quantify the differences between models, the RMSE has been cho-
sen. However, by itself this value is not representative since its magnitude is highly dependant on
the scale on which the natural logarithm of the thermal amplitudes ranges. It is worth to notice that,
typically, for the performed calculations, the difference between the maximum and the minimum of
ln|T̄ | is, in absolute value, about 6. This means that, for example, a RMSE ≥ 0.5 (relative error
approximately greater than 10%) can be considered as a bad result while RMSE ≤ 0.1 (relative error
approximately lower than 2%) can be considered good enough.

The comparison with the analytical model is shown in figure 15. It can be seen that, qualitatively,
the results obtained with both models present a high level of agreement. Quantitatively, after a very
detailed study of the two results, a small difference in the amplitude jump is observed. In the analyt-
ical model this jump is purely vertical, since the crack leads to a temperature discontinuity. On the
other hand, in the non-dimensional model continuous finite elements are used, which means that the
temperature is a continuous function projected in all the spatial domain. Hence, a vertical discontinu-
ity with this formulation is completely impossible. However, the obtained results lead to 0.34% and
0.14% relative errors respectively, which shows that the results agree correctly and reaffirms the fact
that the difference between models appears only in practically imperceptible details.

To strengthen the validity of the dimensionless model, it is also necessary to compare results
with other types of cracks. As previously mentioned, there is no analytical solution for vertical non-
infinite cracks, so the comparison has been done with another numerical model [4]. The results of
this comparison are shown in figures 16 and 17. In table 6 it can be seen that, the obtained RMSE in
the semi-infinite (0.009 and 0.012 for the 90º and 45º cases respectively) and for the 90º finite case
(0.0027), are small values taking into account that the results range from ln|T̄ | ≈ −1 to ln|T̄ | ≈ 5,
that is, the obtained relative errors are 0.15%, 0.2% and 0.045% respectively. This small differences
are due to the fact that the dimensional model used for comparison deploys discontinuous FEM (which
allows to achieve a jump completely vertical) while, for the same reason that has been explained for
the validation with the analytical model, with the dimensionless formulation presented in this work it
is not possible to achieve purely vertical thermal amplitude jumps.

In the case of finite cracks inclined 45º, 17 (b), a small difference is observed in the ȳ < 0 region
far from the heat source. This difference is due to the meshing strategy that has been followed. In this
work, the mesh has been made with the aim of achieving a high resolution in a very close region to
the crack without having to spend much computational resources doing each simulation. This means
that the density of nodes is lower far from the crack (|ȳ| > 1). Therefore, a little bit of resolution is
lost in that region and it leads to small differences between models. Since the spatial dimensions in
this model are scaled by the thermal diffusion length, this loss of resolution appears at regions close
to the limit to which the heat will reach, so, they can be acceptable provided that the obtained RMSE
demonstrates that there is a high agreement between the two results.

Overall, the obtained RMSE results show a relative error of around 0.4% of the range of ln|T̄ | at
most, which is an extremely low percentage. In this line, consequently, the comparisons provide a
very good agreement which confirms that the model performs correctly.
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6.2 Parametric analysis

Once the non-dimensional model has been validated against the analytical and another numerical
model, the effect of varying each dimensionless parameter can be studied.

6.2.1 Π1

The effect of varying Π1 is shown in figure 18. In figure 18 (a) can be seen that increasing Π1 results
in shifting the thermal amplitude upwards. It is worth to notice that, even though this parameter is
the combination of the power of the laser, µ, T0 and the air conductivity, its effect is to increase the
overall temperature amplitude. However, as it can be seen in figure 18 (b), once the thermal amplitude
is normalized, no change is observed due to variation of Π1. As a consequence the variation of this
parameter leads to a pure vertical translation with no influence in the morphology of the amplitude
curve.

6.2.2 Π2

When the second parameter, Π2, is varied the resulting thermal amplitude plot changes in two main
aspects. The first thing that can be seen in figure 19 (a) is that when Π2 decreases the maximum value
of the natural logarithm thermal amplitude increases. However, when the results are normalized (see
19 (b)), the full width at half maximum (FWHM) is also reduced. The reason is that, even though this
parameter is the Gaussian radius divided by the thermal diffusion length, it is essentially the one that
controls the Gaussian radius of the laser. This means that if the laser is focused in a smaller region
(lower Π2), its FWHM will also be smaller. However, since it is the same laser, its energy must be the
same regardless of Π2. As the energy is related with the area under the curve, this leads to a greater
maximum. This change in the FWHM, which is unique among all dimensionless parameters, makes
each thermal amplitude plot with different value of Π2 unique.

The second effect of changing Π2 can be seen in the insert of figure 19 (a). Here it can be
noticed that the value of the discontinuity is slightly greater for increasing values of Π2. This can be
physically interpreted taking into account the relation between this parameter and rg. In this line, this
tiny difference appears because when the non-dimensional radius of the laser is larger, it is in some
sense closer to the crack, which leads to slightly higher temperatures on that side.

6.2.3 Π3

Changing Π3 shares with the change in Π1 and Π2 the effect of shifting the natural logarithm of the
thermal amplitude. In this case, what it is seen is that when Π3 decreases the ln|T̄ | plot shifts upwards
and vice versa. However, as Π3 is somehow a dimensionless thermal conductivity, its change results
in two more significant changes in the results.

The first one is in the value of the discontinuity. As the value of Π3 is increased, the temperature
jump due to the crack is greater. This effect can be seen in figure 20 and can be understood as a serial
association of the material of thermal conductivity Π3 and the crack of conductivity (Π3)air = 1. If Π3

is a large number, then the equivalent thermal resistance of the system will be practically that of the
air and, therefore, there will be lower temperatures in the other side of the crack. On the other hand, if
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Π3 is a small number, both non-dimensional thermal conductivities will be similar and, consequently,
the drop in temperature will be less significant.

Another aspect that distinguishes two thermal amplitude plots, with different values of Π3, is
their slope far from the heat source. As it can be seen in figure 20 (b), the smaller is Π3, the more
pronounced the slope will be. Returning to the physical interpretation that has been given to this pa-
rameter previously, this result is what one would expect. If the non-dimensional thermal conductivity
is small, then the thermal amplitude far from the heat source will be also small, in other words, the
temperature will practically not change with respect to the initial. Therefore the thermal amplitude
will fall faster, that is, the absolute value of the slope will increase.

6.2.4 ȳ0

When the dimensionless position of the laser (ȳ0) is varied, three significant changes appear in the
results. The first difference is the most obvious one: a horizontal displacement for increasing values
of ȳ0. Interpreting ȳ0 as the non-dimensional position of the laser, this was an expected result because,
when the energy is placed for larger values of ȳ0, the maximum is shifted in that direction. However,
no other dimensionless parameter causes this effect, meaning that each thermal amplitude plot is, as
it happens for Π2, completely unique.

The second one is the value of the jump of the thermal amplitude. As it can be seen in figure 21
(b), the lower is the ȳ0 value, the higher the jump is. Mathematically, this results makes full sense
because the jump is proportional to ∇̄T̄ , and this term is larger when the value of this parameter is
smaller. Physically this can be interpreted taking into account the relation between ȳ0 and the position
of the laser. In this line, bringing the laser closer to the crack means that the thermal amplitude on
that side will be higher and, therefore, the jump will be higher as well.

The third change, that can be clearly seen in figure 21 (a), is a different maximum value of ln|T̄ |
for decreasing values of ȳ0. The reason may be the reflexion of the thermal wave travelling backwards
from the crack which leads to a net temperature amplitude increasing effect not appreciable if the
laser is ‘far’ enough from the crack. However, a more precise analysis would be needed to clarify this
effect.

6.2.5 Πw, Πl, Πd and θ

If the geometry of the crack is changed the resulting thermal amplitude plots (figures 22, 23 and 24)
present an double change: the amplitude jump on the discontinuity and the slopes far from the heat
source. When the non-dimensional width (Πw), length (Πl) or depth (Πd) decreases, the obtained
results show that the value of the jump also decreases. In this line, this is a coherent result due to the
fact that in the limit of null values for Πw, Πl, Πd there wouldn’t be any discontinuity and hence, no
jump either.

In those figures it can be seen that not only the jump of thermal amplitude changes but also the
slopes far from the heat source. In fact, this effect is much more pronounced in the non-illuminated
side of the crack (ȳ < 0) than in the illuminated side. All in all, it is worth to notice that the effect
of these three parameters is quite similar, which means that, far from making the results unique, a
quasi-degeneracy is obtained.
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On the contrary, the effect of reducing the angle θ leads to higher thermal amplitude jumps. As
can be seen in figure 25 (b), not only the jump of temperature is larger but it starts at higher temper-
atures when the angle of inclination decreases, which may be due to an ‘accumulation’ of heat in the
illuminated side of the crack. However, this hypothesis must be studied in detail in future work.

6.2.6 Non-dimensional parameter combinations

Once the effect of each individual dimensionless parameter has been discussed, the analysis can be
extended discussing the effect of combinations of them. It must be noted that the understanding
of the potential degeneracy of this thermographic problem becomes of paramount importance when
the identification of experimental or material properties is desired based on the experimental results
(inverse problem).

Taking into account the previously derived dimensionless mathematical formulation of the de-
scribed phenomena (see equation (27)), it is not hard to see that if:

Π1

Π3

=
(Π1)

′

(Π3)′
and Π3Πw = (Π3)

′(Πw)
′ (41)

the equations don’t change, and consequently the result doesn’t change either. In order to confirm this
statement, in figure 26 two calculations, carried out with two different (Π1, Π3, Πw) triples satisfying
the condition (41) can be seen.

Figure 26: Natural logarithm plot of the thermal amplitude on the transverse sample profile for two
different (Π1, Π3, Πw) triples which satisfy (41).

Therefore, the results of validating this condition lead to go beyond the formulation of what has
previously been shown and combine this three parameters as follows. Starting with the laser spot
boundary condition (24) and multiplying and dividing it by Πw:

∂T̄

∂z̄

∣∣∣
z̄=0

=
Π1Πw

Π2Π3Πw

e
− 2

Π2

[
(x̄−x̄0)2+(ȳ−ȳ0)2

]
cos(2t̄) (42)

Introducing the following new variables:
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χ1 ≡ Π1Πw, χ2 ≡ Π2, χ3 ≡ Π3Πw (43)

where the variable χ2 has been introduced in order to maintain the same notation for all the parame-
ters, this boundary condition becomes:

∂T̄

∂z̄

∣∣∣
z̄=0

=
χ1

χ2χ3

e
− 2

χ2

[
(x̄−x̄0)2+(ȳ−ȳ0)2

]
cos(2t̄) (44)

On the other hand, after introducing these new variables, the temperature jump condition associ-
ated with the crack (26) becomes:

∆T̄ = χ3∇̄T̄ if x̄ ∈
[
− χl

2
,
χl

2

]
, z̄ ∈

[
0, χd

]
(45)

being χl ≡ Πl and χd ≡ Πd. Summarizing, the previously derived non-dimensional formulation (27),
can be reformulated as follows:



∇̄2T̄ = ∂T̄
∂t̄

∂T̄
∂z̄

∣∣∣
z̄=0

= χ1

χ2χ3
e
− 2

χ2

[
(x̄−x̄0)2+(ȳ−ȳ0)2

]
cos(2t̄)

[[ ˙̄Q]] = 0

∆T̄ = χ3∇̄T̄

(46)

This set of equations reformulates the problem that has been studied in this work, removing the
degeneracy found in Π1/Π3 and Π3Πw. It is worth to notice that, by the definition of χ1:

χ1 ≡ Π1Πw =
2Pwf

αT0κair

(47)

And the definition of χ3:

χ3 ≡ Π3Πw =
κ

κair

w√
α
πf

(48)

any combination of the experimental and material parameters that lead to the same values of χ1 and
χ3 will result in the same thermal amplitude plot.

However, in the parametric analysis it has been mentioned that the effect of the first dimensionless
parameter Π1 on the thermal amplitude plot is to shift the results upwards or downwards. As a
consequence, if the temperature amplitude is normalized, the results are unaffected by Π1. This leads
to conclude that the previously introduced condition (41) can be reduced, if the thermal amplitude is
normalized, to:

Π3Πw = (Π3)
′(Πw)

′ (49)
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Figure 27 shows two calculations carried out with two different combinations of Π3 and Πw that
satisfy condition (49). This results confirm the degeneracy of the system in relation with χ3 parameter.

Figure 27: Natural logarithm plot of the thermal amplitude on the transverse sample profile for two
different (Π3, Πw) tuples which satisfy (49).

Overall, the identification of these combinations of parameters of show the power of the non-
dimensional formulation of the problem.
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7 Conclusions

In this work a non-dimensional FEM model for crack characterization in aerospace materials by
means of lock-in IR thermography has been developed. In addition to the resolution of the equations,
the optimization of the spatial domain to be modeled has been carried out through different meshing
strategies, such as non-regular edge distribution or selective refinements of the mesh. These meshing
strategies have optimized the calculations in terms of accuracy and computational resources.

The developed model shows a very good agreement when compared with other analytical or
numerical models, although the formulation of each one has a slight impact on the results. Overall,
the comparisons show very low relative errors (at most 0.4%) which confirm the remarkable accuracy
of the developed model.

The dimensionless model has allowed a general interpretation of the lock-in IR thermography
experiment not depending on the parameters of the material or the experimental ones, but on the di-
mensionless parameters identified. These parameters have been used to perform a parametric analysis
where their effect in the thermal amplitude plots has been analyzed.

While the effect of Π1 is removable by normalization, the effect of Π3 cannot be isolated in just
one zone of the curve since it affects the morphology of the entire thermal amplitude plot. On the
other hand, despite of different morphological reshaping of the curve, the effect of Π2 and ȳ0 has
turned out to be unique, i.e., it is impossible to obtain the same thermal amplitude plot with different
values of these. It has been seen that, although the most prominent effect of Πw, Πl, Πd and θ is to
change the amplitude jump, they also show other secondary effects in other regions such as the slopes
far from the heat source. Moreover, except for θ, in the other three parameters those secondary effects
can be seen more clearly on the non-illuminated side of the crack.

Even though it is beyond the scope of this work, the results obtained for the parametric analysis
carried out allow to determine where the sensitivity of the curves is to each of the parameters. This
becomes of paramount importance when parametric inversion is performed.

Going further in the developed non-dimensional discussion, the degeneracy of the thermographic
problem has been addressed. In this line, a non-dimensional reformulation of the problem has been
presented. It has been demonstrated that there is no need to distinguish between Π1, Π3 and Πw,
since different combinations of these parameters lead to the same results. This work has allowed
to determine which combinations of experimental parameters and material properties leading to the
same amplitude thermograms which are hardly accessible by other procedures.

As a potential continuation of the developed investigation the following future work is identified:

1. The study of the degeneracy of the non-dimensional formulation searching other potential para-
metric combinations.

2. The development of inverse models which make use of the non-dimensional formulation pre-
sented in this work.

3. The introduction of more general crack geometries beyond planar.
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