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Abstract

We analyze the consequences of consumers’ behavior concerning personal arbitrage in a spatial

discrimination context where firms know consumers distribution but cannot distinguish them by

location. The firms’ equilibrium pricing policies provide incentives for consumers not to

demand their preferred varieties of products but rather to purchase more standard varieties. This

behavior may explain a decrease in observed market diversity: the demanded varieties tend to

agglomerate around the center of the market. We also deal with efficiency in the presence of

personal arbitrage and show that it is efficient for the cost of adapting the product to the

consumers needs to be shared through arbitrage, but oligopoly gives rise to an inefficient level of

personal arbitrage.
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1. Introduction

In some markets, we observe that products are standardized: only one type of product is sold

even though consumers’ preferences may differ as to the best variety. In other markets, several

varieties are produced but not as many as to satisfy the preferences of all consumers, so that

some of them end up buying products that are close to, but not exactly, their preferred varieties.

Examples include the acquisition of software: many of us do not buy an application that is the

best suited to our needs, rather, we have to settle for something that is close enough; note that it

would be possible for a consumer to order a custom-made application, but in most cases this is

not done because it would be too expensive. Another example is transport: we do not find a bus

stop at every doorstep; people walk a few minutes to the nearest one.1 We account for these

phenomena on the basis of personal arbitrage.2 We show that in equilibrium, consumers and

firms share the costs of adapting the product to the consumers’ needs, and the part of the cost

paid by consumers may be in terms of utility loss. We also show that it is efficient for cost to be

shared through arbitrage, but oligopoly gives rise to an inefficient level of personal arbitrage.

A common feature of most papers on spatial price discrimination is that consumers’ locations

are assumed to be known and firms take the product to those locations. However, some authors

have addressed the problem faced by firms when demand is not known. Stole (1995), Hamilton

and Thisse (1997) and Pires and Sarkar (2000) consider second degree price discrimination

through the use of nonlinear pricing in an oligopoly setting where firms are spatially

differentiated. In these papers the optimal pricing policies are obtained under the assumption that

firms may commit themselves to a pricing strategy before consumers make their purchase

decision, and this assumption may be appropriate in many circumstances (firms might commit

themselves to prices through announcements in newspapers, catalogs, etc.). Nevertheless,

changing pricing policies is not very costly and therefore commitment may be weak. This would

                                    
1 Rhee et al. (1992) study standardization in the presence of attributes that are unobservable by firms.
2 This type of arbitrage is associated with the transferability of demand between different packages or bundles
(for example, price-location packages) offered to consumers. See, for example, Tirole (1988).
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be the case for some products with so many varieties that the price list is not publicly available.

Rather, the consumer asks for a price quote specifying the required product characteristics (for

example, a piece of furniture made to order). In this paper, we deal with the problem of firms’

pricing under unknown locations when there is no commitment to pricing policies. In practice,

this absence of commitment implies that firms’ policies should be best responses to consumers’

behavior and viceversa. In this context consumers are given an active role3 and personal arbitrage

appears under a new light, although some arbitrage would also be present with firms’

commitment to the pricing schedules.

When transportation costs are quadratic (see, for example, d’Aspremont et al., 1979)4 and firms

set their basic varieties at both ends of the market, if consumers are not less efficient than firms

in transportation we find an extreme personal arbitrage behavior: in a subgame perfect

equilibrium, all consumers decide to demand the same variety at the center of the market, even

though their preferences may differ. The demanded variety is such that competition between

firms is intense and the equilibrium delivered price for that variety is the lowest.5 To obtain this

result we do not need any kind of explicit or implicit coordination on the part of consumers;

each consumer finds it optimal to demand the same variety, possibly different from his/her most

preferred variety of the product.6 The reason is just that his/her favorite variety is more

                                    
3 Other papers giving active roles to consumers are Fujita and Thisse (1986) and García, Georgantzís and Orts
(1996). In these papers consumers decide their location in the market.
4 Models of product differentiation involving a quadratic utility loss function include Novshek and Sonnenschein
(1979), Eaton and Wooders (1985), Neven (1985), Economides (1989) and Friedman and Thisse (1993). See
Anderson et al. (1992), chapter 4, for a more general discussion of this assumption. On the other hand, many
ideal-point models used in the literature of marketing assume that preferences are negatively related to the squared
(weighted) distance between location and the individual’s ideal point (see, for example, Green and Srinivasan,
1978).  
5 Recent work has shown that the key for the principle of Minimum Differentiation to hold is the moderation of
price competition. Competition may be relaxed by introducing product differentiation in some other dimension
(see, for example, De Palma et al., 1985), by considering unobservable attributes in consumer brand choice
(Rhee et al., 1992), by fixing market price exogenously, by assuming competition in quantities rather than
prices (Anderson and Neven, 1991), by allowing price matching policies (Zhang, 1995) or by considering
collusion on price (Friedman and Thisse, 1993). Our result would provide an explanation of the principle of
Minimum Differentiation based on consumer behavior.
6 The possibility of arbitrage is also present in Eaton and Schmitt (1994). In that paper consumers and firms
have different transportation costs and consumers are free to buy the product at any point in the space; consumers
do not buy their ideal product if the price reduction on a different variety is more than the utility loss from not
getting the preferred product.
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expensive, since competition on that particular variety is weaker than on the standard variety; and

the price difference is higher than the incurred utility loss.

More generally, when the locations of the firms are not fixed (in terms of product differentiation,

they choose where to set the basic variety), we show that consumers tend to agglomerate around

the center of the market and, therefore, the demand distribution is more concentrated than the

distribution of preferences.7 The equilibrium firms locations are inefficient because they do not

minimize the social transportation cost. From a social point of view, it would be optimal for

consumers and firms to share transportation costs; in other words for consumers to practise

efficient arbitrage, but arbitrage behavior depends on firms’ pricing policies and in equilibrium

its level will not be optimal. Furthermore, even if locations were fixed at the efficient levels, in

equilibrium there would be a welfare loss due to inefficient arbitrage associated with equilibrium

pricing policies.

In this paper the shape of transportation costs plays an important role. In a product

differentiation framework, the concavity or convexity of transport costs can be related to the

shape of the customizing-cost curve.8 In this case transportation cost is usually viewed as a

convex function of distance (Thisse and Vives, 1988). In the geographical context, it is usually

assumed that, due to economies of scale in transportation, transportation costs are concave (see,

for example, Hoover, 1937, and Thisse and Vives, 1988), but for the sake of computational

simplicity the standard assumption in the literature of spatial competition is that transportation

costs are linear. However, some factors may penalize long-distance freight; for instance, there

may be congestion along the transport route (for example, transportation downtown).9 Taking

                                    
7 We obtain similar results under linear-quadratic transport cost (see Gabszewicz and Thisse, 1986) or under a

more general family of convex transportation costs given by t(d) = tdα, where d denotes distance and 1 < α ≤  2
(see Economides, 1986 and Anderson et al., 1992, chapter 6). In Appendix 1, we generalize our results by
allowing any convex transportation cost function.
8 See the interpretation of spatial price discrimination in terms of product differentiation in Greenhut et al.
(1987), MacLeod et al. (1988), Thisse and Vives (1988) or Aguirre et al. (1998).
9 See Greenhut et al., 1987, p. 276, for other justifications of convex transportation costs. On the other hand,
in some models of product differentiation freight costs are paid in terms of the good as “iceberg transport costs”
(see, Samuelson 1954, and Martinez-Giralt and Usategui, 1997):  the inverse of the rate at which the good loses



-5-

into account these features, many works in the literature of spatial price competition assume

convex (in particular, quadratic) transportation costs.

Under asymmetric transportation costs for consumers and firms, personal arbitrage is an

equilibrium phenomenon whenever consumers are more efficient than firms in short-distance

transportation. Nevertheless, it is under convex transportation technologies that the possibility of

arbitrage becomes most relevant, not only because equilibrium pricing policies involve arbitrage

by consumers, but also because it is optimal, even from a social welfare point of view, for there

to be arbitrage.

Even in a geographical interpretation, transport cost may be different for firms and consumers.

Consumers may transport goods themselves as a non-market activity so that the cost (in terms of

time, wear and tear, gasoline, etc.) coincides neither with the equilibrium price in the market for

transport services nor with the transport cost for the firm (for instance, a worker’s time cost

includes taxes while consumers’ time spent in non-market activities is not taxed; the transport of

products by the firm may also require insurance against freight damage). With respect to this

point, Lewis (1945) states:

“We must also note precisely what transport cost means in this context. MTC
(marginal transport cost) is a measure of all the inconvenience associated with
buying at a distant shop. It is not the same as what it would cost the shop in
money to deliver one’s purchases. A customer who shops in the centre of the
town may be quite capable of carrying home a pair of shoes without much
extra trouble or inconvenience, and if asked to pay an extra sum equal to what
delivery would cost the shop, might prefer to carry for himself” (p. 208-209).

The consequences of arbitrage have been largely ignored in the literature on spatial price

discrimination. Usually, optimal pricing policies satisfy a restriction to prevent arbitrage by

consumers or arbitrage is simply assumed away.10 However, as Machlup (1949), Scherer (1970,

                                                                                                     
its value when distance increases is an index for the transport cost and this index is considered a convex function
of distance.
10 An exception is a recent paper dealing with arbitrage and convex transportation costs by Barros and Martínez-
Giralt (1996), who study the implications for the location of firms of convex transportation costs and arbitrage
under FOB pricing;  in their paper arbitrage is allowed only for firms and to a limited extent.
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p. 270-271) and Phlips (1983, p. 28) illustrate personal arbitrage may be a real economic

phenomenon, for example, under the basing-point system. That arbitrage was a concern in the

US steel industry until 1924 can be confirmed, for instance, in Machlup (1949) (“The Basing-

point System”, p. 139-142) which dedicates a few pages to the problem of “diversion of

shipments” in this industry and also in the cement industry. Here are some excerpts: 11

“Even if sellers under the basing-point system refuse to quote prices f.o.b.
place of shipment and insist on quoting delivered prices, buyers may get wise to
the fact that producers are willing to absorb large amounts of freight on
shipments to distant destinations. A smart buyer might try to buy in the guise of
a distant customer and divert the shipment to a destination much closer to the
producing mill”.

“The buyer can divert shipments from one destination to another most easily if
he picks up the products at the mill in his own truck. Let us assume that a steel
consumer has two establishments, one close to and the other distant from a steel
mill. Either the latter consuming point or both are governed by a basing-point
away from that mill. Knowing that the mill will absorb all or a part of the
freight to the distant consuming point, he might order the steel needed for both
his establishments as if he wanted it all in the distant place”.

This paper is organized as follows. Section 2 sets up the model. In Section 3, we solve the game

to obtain the subgame perfect equilibria and present the main results. The equilibrium price

schedule is such that the demanded varieties tend to agglomerate around the center of the market.

We show that personal arbitrage is an equilibrium phenomenon whenever consumers have

convex transportation costs or are more efficient than firms in short-distance transportation.

Section 4 briefly analyzes welfare and policy implications. Section 5 offers concluding remarks.

2. The model  

We consider a model with a continuum of consumers and two firms denoted by A and B. The

two firms produce a homogeneous product but may have different locations on [0,1]. Buyers are

uniformly distributed with a unit density on the interval [0,1]. The location of a consumer is

denoted by x and defined as the distance to the left point of the market. We will refer to x as the

                                    
11 In a pure location context, convex transportation costs may not be convincing in many circumstances. Under
linear or concave transport cost, our model would account for these arbitrage phenomena as long as consumers
were more efficient than firms on short distance transportation.
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type of consumer located at x. Firms know the distribution of consumer types, but are unable to

identify the type of an individual buyer: x is private information of each buyer. Consumer x may

order delivery of the product to a location x̂ , possibly different from x. The reservation value for

the good, R, is the same for all consumers and each one purchases precisely one unit of the

product from the firm providing the lowest final (delivered) price including the transport cost

incurred by the consumer. When the two firms have the same delivered price at a given location,

the consumer chooses the supplier with the lower transportation cost.12

The location of firm A is denoted by a, the distance from the firm to the left point of the market,

and the location of firm B is b, the distance from the firm to the right endpoint of the market.

With no loss of generality we assume a ≤ 1 - b. Marginal costs are constant and identical for

both firms; for the sake of notational simplicity prices are expressed net of marginal cost. We

assume that firms sell at a constant unit price at a given location, although they may spatially

price discriminate: firms use delivered pricing policies.

We consider asymmetric transportation costs for consumers and firms: tf(d) is the transportation

cost for firms and tc(d) the transportation cost for consumers, where d is the Euclidean distance

between two locations in the market.13 Transportation costs are strictly increasing functions of

distance, tf’(d) > 0 and tc’(d) > 0. Some of the main results of the paper are obtained by

assuming quadratic transportation costs: tf(d) = tfd2 and tc(d) = tcd2.14 We assume consumers

have a reservation value high enough for one firm to find it profitable to serve the whole market:

R > tf(1).

The timing of the game is as follows. At stage 1, firms choose their locations in the market

simultaneously and independently. At stage 2, the two firms decide on the price level for each

                                    
12 The assumption that price ties are broken in the socially efficient way is fairly standard in the literature. See,
for example, Lederer and Hurter (1986) for a justification.
13 See Gronberg and Meyer (1981) for a model with different transportation cost for consumers and firms.
14 In Appendix 1 we allow more general transportation technologies for firms and consumers and we show that
our main results do not depend on this assumption.
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possible variety and consumers decide which variety to demand, simultaneously and

independently.15 Denote by x̂  the variety demanded by consumer located at x. Then, if

consumer x finally buys the good, the supplier will deliver it at location x̂ . Finally, firms’ price

schedules and demanded varieties are observed and consumers buy the product from the

supplier offering the lowest price at the requested location.

Since firms and consumers decide price schedule and product variety simultaneously, neither

has any ability to precommit. This description fits well in markets where goods are produced to

order and the consumer has to specify the design of the product. This is the case for instance of

custom-made (clothing, etc.) or custom-built (houses, etc.) products; other examples include the

acquisition of software, furniture and so on. 16 Our model predicts that in this context, if

transportation costs are convex buyers will not demand their preferred product design, but will

rather tend to ask for more standard varieties.

3. Equilibrium analysis  

We now solve the sequential game by backward induction to obtain the subgame perfect

equilibria.

3. 1. Second stage: optimal pricing policies and consumers’ behavior

Equilibrium pricing policies

We obtain the optimal price schedule (the best response) for any set of requested varieties or

announced locations. Let X̂  = { x̂  ∈ [0,1]} be a set of announced locations. Let pA( x̂ ) and

pB( x̂ ) be the delivered prices at location x̂  ∈ X̂ . The delivered price at x̂  must cover the

transportation cost.17 Define xAB  as the location such that tf(|a - xAB|) = tf(|(1 - b) - xAB|), i.e. the

                                    
15 We could allow consumers to announce different types to the two firms, but consumers have nothing to gain
by doing this, so we ignore the possibility.
16 This description of market behavior fits also many industrial procurement procedures. In fact, the model can
be interpreted as a model for a non-final (intermediate) product, so that consumers are firms and the product is
used as input in the production of a final good.
17 We assume that firms do not price below cost. If a firm were to price below transport cost at a given
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midpoint location between a and b:

x
b a

AB =  
 -   +  1

2
 (1)

At a given location x̂  ∈ X̂ , competition is à la Bertrand: with cost asymmetries if x̂ ≠  xAB  and

with the same cost if x̂  = xAB. When x̂  < xAB, firm A’s transportation cost is lower than firm

B’s. The opposite is true when x̂  > xAB. This implies that in equilibrium the delivered price at x̂

will equal the transportation cost of the firm located further from x̂ .

Given the previous argument, when firms A and B are located at a and b, respectively, the

equilibrium pricing policies are given by:18

               pA( x̂ ) = pB( x̂ ) = max { tf (|a - x̂ |), tf (|(1 - b) - x̂ |)}   for all x̂  ∈ X̂  (2)

When X̂  does not coincide with [0, 1], there are varieties which are not demanded by any

consumer. At those locations any price quote is a best response since no sales will be made at

that price. However, we impose the restriction that firms choose for each location a price that

would be optimal if a consumer decided to demand that variety. This restriction selects a unique

equilibrium for the game. Note that if firms could perfectly discriminate among consumers’

locations, (2) would be also the equilibrium price schedule with x̂  = x. Denote by X̂ f (f = A, B)

the set of announced locations for which either firm f (f = A, B) quotes the lowest delivered price

or, if both firms quote the same price, firm f is not the high transportation cost firm. Note that

X̂ f  is a subset of X̂ . Denote by F̂  the cumulative distribution function of announced locations.

Profits for the two firms are:

                                                                                                     
location, it could do at least as well by pricing at transport cost for any given price of the other firm. This is a
usual assumption in the literature of spatial price discrimination. See, for example, Lederer and Hurter (1986),
Thisse and Vives (1988), DeFraja and Norman (1993) and Aguirre and Martín (2001).
18 See Lederer and Hurter (1986) for a formal proof.
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         -   -  |  -   -  |  { (| ( ) ˆ ) (| ˆ )} ˆ( ˆ)
ˆ ˆ

t b x t a x dF xf
x X

f

A

1
∈∫  (3)

         -  |  -   -   -  |  { (| ˆ ) (| ( ) ˆ )} ˆ( ˆ)
ˆ ˆ

t a x t b x dF xf
x X

f

B∈∫ 1  (4)

Consumers’ optimal behavior

The surplus of consumer x when he/she announces x̂  and buys from firm f (f = A, B) is given

by:

Sx( x̂ ) = R - pf( x̂ ) - tc(| x̂  -  x |) (5)

Given firms’ locations and pricing policies, consumer x chooses x̂  so as to maximize his/her

surplus. To maximize surplus, the requested variety x̂  (by consumer x) minimizes the sum of

delivered price at the announced location plus the transportation cost to the true location.

Consumer x requests his/her preferred variety, x̂   = x, when:

pf(x) ≤ pf( x̂ ) + tc(| x̂  -  x |),   ∀ x̂  ≠  x (6)

i.e., given firms’  pricing policies in equilibrium, (2), when:

 

  max { tf (|a - x |), tf (|(1 - b) - x |)} -  max { tf (|a - x̂ |),  tf (|(1 - b) - x̂ |)} ≤ tc(| x̂  -  x |) (7)

Suppose that consumer x ∈ [0, xAB], is considering whether to be served at location x or x̂ ;

consumer x does not have any incentive to demand a less preferred variety:

tf (|(1 - b) - x |) - tf (|(1 - b) - x̂ |) ≤ tc(| x̂  -  x |)            for any  x̂  ∈ X̂A   (8)

and
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tf (|(1 - b) - x |) - tf (|a - x̂ |) ≤ tc(| x̂  -  x |)                    for any  x̂  ∈ X̂B  (9)

                              (Insert Figure 1)

When transportation costs are convex, consumer x is better off buying the good at some location

other than his/her own. Figure 1 shows the incentives to arbitrage under convex transportation

costs. In this case, there are locations at which the difference in expected delivered prices makes

up for the utility loss from not consuming the most preferred variety of the product. Under

convex transportation costs, given firms’ locations and anticipated pricing policies, consumer x

demands the product at a location ˆ*x  such that his surplus, (5), is maximized:

ˆ*x  = argmin
x̂  

 [ max { tf (|a - x̂ |),  tf (|(1 - b) - x̂ |)} + tc (| x̂  - x |)] (10)

                      

where x is the true location. Notice that if x ∈ [0, xAB] then x̂  ∈ [0, xAB], since xAB =

argmin[max{tf (|a - x̂ |),  tf (|(1 - b) - x̂ |)}]. Thus, the problem for a consumer x ∈ [0, xAB] is:

min
x̂  

tf (|(1 - b) - x̂ |) + tc (| x̂  -  x |)

From the first order condition:19

  tf ’(|(1 - b) - x̂ |) =  tc ’(| x̂  - x |) (11)

                         

Under quadratic transportation costs, condition (11) implies that tf [(1 - b) - x̂ ] = tc( x̂  - x) and

therefore:

                ˆ min {
(1 )

,*x
b t t x

t t
xf c

f c
AB =   }

− +

+
       for x ∈ [0, xAB]

                                    
19 Second order conditions are satisfied since the transportation cost functions are convex.
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Hence, consumers located at x ∈ 0
1

2
,

( ) ( )( )a t t b t t

t
f c c f

c

+ + − −







  buy the product at

(1 -  )b t t x

t t
f c

f c

+

+
, while consumers located at x ∈ 

a t t b t t

t
xf c c f

c
AB

( ) ( )( )
,

+ + − −









1

2
 buy at xAB:

ˆ

(1 -  )
,

( ) ( )( )

( ) ( )( )
,

*x

b t t x

t t
x

a t t b t t

t

x x
a t t b t t

t
x

f c

f c

f c c f

c

AB
f c c f

c
AB

=

+

+
∈

+ + − −









∈
+ + − −

































            for 

                     for 

0
1

2

1

2

(12)

Next, consider consumers located at x ∈ [xAB, 1]. Using a similar reasoning it is easy to check

that:

                                             ˆ max { , }*x
at t x

t t
xf c

f c
AB =   

+

+
 for x ∈ [xAB, 1]

Therefore, consumers located at x ∈ x
b t t a t t

tAB
f c c f

c
,
( )( ) ( )1

2

− + + −







  buy at xAB, and

consumers located at x ∈ 
( )( ) ( )

,
1

2
1

− + + −









b t t a t t

t
f c c f

c
 buy the product at 

at t x

t t
f c

f c

+

+
:

ˆ

,
( )( ) ( )

( )( ) ( )
,

*x

x x x
b t t a t t

t
at t x

t t
x

b t t a t t

t

AB AB
f c c f

c

f c

f c

f c c f

c

=

∈
− + + −









+

+
∈

− + + −

































                 for 

               for 

1

2
1

2
1

(13)

We refer to this result as personal arbitrage because all consumers demand the product at a

location different from the real one and incur transportation costs, even though the system used

is delivered pricing. Note that personal arbitrage would be absent in equilibrium only when

tc →∞ .

The following proposition summarizes the above results:



-13-

Proposition 1:  Given firms’ locations, a and b:

(i) In equilibrium firms price according to:

pA( x̂ ) = pB( x̂ ) = max { tf(|a - x̂ |), tf(|(1 - b) - x̂ |)}   for all x̂  ∈ X̂

(ii) Under quadratic transportation costs, the distribution of consumers’ locations and the

distribution of demanded varieties differ. The cumulative distribution function of consumers’

locations is F(x) = x, for x ∈ [0, 1], while the cumulative distribution function of demanded

varieties is   

ˆ ( ˆ )

ˆ ( ) ( ) ˆ

ˆ ˆ

* *

* *

* *
F x

t t

t
x b

t

t
b

t

t t
x x

t t

t
x a

t

t
x x

t at

t t

f c

c

f

c

f

f c
AB

f c

c

f

c
AB

c f

f c

=

+
− − − ≤ <

+
− ≤ ≤

+

+



















1 1               if    
+

  

                      if             
(14)

We have shown that under quadratic transportation costs there is a difference between the

distribution of consumer locations and the distribution of demanded varieties. Consumers do not

demand their preferred product variety: they practice personal arbitrage and, as a consequence,

there is concentration of demand on varieties located around the central place between the two

firms. Consumers’ preferences are uniformly distributed with unit density along [0, 1].

However, from (12) and (13), the distribution of demanded varieties ˆ*x  has two parts: they are

uniformly distributed with density 
t t

t
f c

c

+
 on the interval [( ) , ]1−

+

+

+
b

t

t t

t at

t t
f

f c

c f

f c
, and there is a

mass point at xAB with weight ( )1− −b a
t

t
f

c
. The smaller a, b and tc the higher the concentration

of demand around the center of the market. In the extreme case, when tc  ≤ tf and firms are

located at the endpoints of the market, a = b = 0, all consumers demand the same variety x̂  = xAB

for all x, for which the delivered price is lowest. In this case, all consumers buy the product at xAB

and the result of minimal product diversity (from the point of view of consumer demand) holds:

only one variety is sold in the market. See Figure 2.

                               

(Insert Figure 2)
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Personal arbitrage arises under quadratic transportation costs, and it causes partial agglomeration

of consumers demand on the frontier between the two firms’ market areas. Since market areas

are determined by the locations chosen by firms, we need to solve the first stage of the game to

take firms’ incentives into consideration.  

3.2. First stage: location decisions

In the first stage firms decide their locations by taking into account the effect on pricing policies,

transportation costs and the behavior of consumers. The results are presented as Proposition 2.

Proposition 2: The equilibrium firms’ locations are a b
t t

t t
c f

f c

* *= =
+

+

3

6 4
.

Proof: Note that firms obtain zero profit from sales to consumers buying at xAB. At such

location, transportation costs are equal for both firms and, hence, the equilibrium price is equal to

the common marginal cost. Therefore, at xAB profits are zero regardless of any sharing rule we

may consider. Firm A’s profit may be written as:

ΠA f fb t

t t

x

a b t b x t a x dF x
f

f c

AB

( , ) { (| ( ) ˆ ) (| ˆ )} ˆ ( ˆ )*
( )

   -   -  |  -   -  |* * *
 - 

=

+
∫ 1

1
                     (15)

where ˆ*x , ˆ ( ˆ )* *F x   and xAB  are given by (12), (14) and (1), respectively.  We can use (12) to write

firm A’s profit in terms of the true consumer location:

ΠA f
c

f c
f

f c

f c

a t t b t t

t
a b t

t b x

t t
t a

b t t x

t t
dF x

f c c f

c( , )
[( ) ] ( )

( )

( ) ( )( )

 

2

=
− −

+









 − −

− +

+























+ + − −

∫ 1 1
2

0

1

2
(16)

Using Liebnitz’s Rule, the first order condition of firm A’s maximization problem is:
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∂
∂

ΠA
f

f c

f c

a t t b t t

ta b

a
t a

b t t x

t t
dx

f c c f

c
( , ) ( )

( ) ( )( )
 

= − −
− +

+











+ + − −

∫ 2
1

0

1

2 = 0  (17)

From (17) we obtain firm A’s reaction function, a b
b t t

t t
c f

f c

*( )
( )( )

( )
=

− +

+

1 3

3
. Using a similar

reasoning, from the first order condition of firm B’s maximization problem, we get

b a
a t t

t t
c f

f c

*( )
( )( )

( )
=

− +

+

1 3

3
. Thus, the equilibrium locations are given by a b

t t

t t
c f

f c

* *= =
+

+

3

6 4
.              

Q.E.D.

Note that when arbitrage is taken into consideration, in equilibrium firms locate closer to each

other than in the standard case of spatial price discrimination where firms locate at the quartiles

(see, for example, Lederer and Hurter, 1986). When tf   = tc, then a b* *= =
2
5

; firms locate closer

to the center if  tf  > tc: a b* *= >
2
5

, and further from the center if tf  < tc: a b* *= <
2
5

. This is an

unexpected result and shows the importance that consumers’ arbitrage behavior (usually

ignored) may have under convex transportation technologies. Not only do firms locate closer to

the center with convex costs, but consumers also concentrate their demands around the center of

the market. Figure 3 shows the equilibrium demand distribution function.

                                  (Insert Figure 3)

4. Welfare and policy implications   

In this section we analyze the welfare effects of personal arbitrage. We will see that this behavior

creates inefficiencies in terms of excessive transportation costs. We evaluate welfare effects from

two points of view: in subsetion 4.1, we analyze efficient arbitrage by consumers and firms’

optimal locations from a first best perspective; in subsection  4.2, we study the second best

optimal locations for firms.
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4.1. Efficient arbitrage  and first best locations   

First, we show that the first best locations under convex transportation costs are the same as with

concave or linear transportation technologies, and this is so even when we consider the efficient

level of personal arbitrage.

Denote by x̂e
 the efficient location, defined as the location where consumer x should be served

in order to minimize the total transportation cost. For x ∈ [ 0, xAB], x̂e  is the solution to:

min
x̂  

 { tf(|a - x̂ |) + tc(| x̂  - x |)}

Note that if x ∈ [0, xAB] then x̂e  ∈ [0, xAB] since tf(|a - xAB|) = tf(|(1 - b) - xAB|). From the first

order condition:

tf    ’(|a  - x̂e |) = tc ’(| x̂e  - x |) (18)

Hence, under quadratic transportation costs, it must be the case that tf(a - x̂e ) = tc( x̂e  - x) and

then:

    x̂
at t x

t t
e f c

f c
=

+

+
              for  x ∈ [0, xAB] (19)

Consumers located at x ∈ [0,  xAB] should buy the good at 
at t x

t t
f c

f c

+

+
. Notice that, to minimize

total freight costs, consumers located at 0 should purchase the product at 
at

t t
f

f c+
, consumers at

a should buy at a, and consumers at xAB should buy the product at 
a t t b t

t t
f c c

f c

( ) ( )

( )

2 1

2

+ + −

+
.

Next, consider consumers located at x ∈ [xAB, 1]. Using a similar reasoning it is easy to check

that:
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ˆ
( )

x
b t t x

t t
e f c

f c
=

− +

+

1
          for  x ∈ [xAB, 1] (20)

Therefore, the efficient demand distribution function is:

ˆ ( ˆ )

ˆ ˆ
( ) ( )

( )

ˆ ( )
( )( )

( )

F x

t t

t
x a

t

t

at

t t
x

a t t b t

t t
t t

t
x b

t

t

b t t at

t t

e e

f c

c

e f

c

f

f c

e f c c

f c

f c

c

e f

c

f c c

f c

 =  

              if                

        if       

+
−

+
≤ ≤

+ + −

+
+

− −
− + +

+
≤

2 1

2

1
1 2

2
ˆ̂

( )
x

t b t

t t
e c f

f c
≤

+ −

+



















 
1 (21)

The next proposition states the first best locations for firms given efficient personal arbitrage by

consumers.

Proposition 3: First best locations are  a be e= =
1
4

.

Proof: See Appendix 2A.

With convex transportation costs, in the social welfare optimum consumers would not get their

favorite product but something between that and the variety that the firm is best fitted to produce.

The efficient locations are  a be e= =
1
4

. Note that equilibrium locations are efficient only in the

limit: lim a
tc

  *

→∞
=

1
4

 and  lim a
t f

  *

→
=

0

1
4

.

             (Insert Figure 4)

Figure 4 shows the efficient demand distribution function. Note that efficient arbitrage requires

that consumers at locations x ∈ [0, 1
2
] order delivery uniformly (with density 

t t

t
f c

c

+
) around

firm A’s location and consumers at locations x ∈ [1
2
, 1] order delivery uniformly (with density

t t

t
f c

c

+
) around firm B’s location. Comparing Figures 3 and 4 we can see that in equilibrium the

demand distribution is too concentrated compared to the efficient distribution. In other words,

even though there is some arbitrage in the first best, in equilibrium there is inefficient arbitrage.

Efficiency requires consumers and firms to share transportation costs optimally. From

Propositions 2 and 3, in equilibrium firms set their basic variety inefficiently close to each other.

This is not, however, the only source of inefficiency, as the following Corollary points out.
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Corollary 1:  Under convex transportation costs even if firms had fixed locations at the first

best,  a be e= =
1
4

, in equilibrium there would be a welfare loss due to inefficient arbitrage.

From a product differentiation point of view it is interesting to compare equilibrium product

diversity with the efficient level. If we consider the length of the support of the cumulative

distribution function as a measure of product diversity (for instance, if the demand distribution

function had a support [0,1] then 100% of product varieties would be demanded), we have

Corollary 2: Equilibrium product diversity is lower than the efficient level.

From a social welfare point of view, the efficient level of product diversity depends on the

comparison between transportation costs for consumers and firms. In particular, the more

efficient consumers are in transportation the lower the efficient level of product diversity is. At

the limit, when tc → 0 efficiency requires only two varieties, a and b. Only when tc → ∞ would

maximal product diversity be optimal. However, the market outcome implies too low product

diversity. In equilibrium, a [ ]
4

6 4
100

t

t  +  t
. c

f c
 per cent of the potential product varieties will be

served. However, efficiency requires higher product diversity, namely  [
( )

]
4

4
100

t

t  +  t
. c

f c
%.

We have shown that the welfare effects are unambiguously negative. First, firms locate

inefficiently close to each other and, secondly, even if locations are fixed at the efficient levels

equilibrium pricing policies give rise to inefficient arbitrage and transportation costs are not

minimized. The welfare loss associated with inefficient arbitrage is due to excessive

transportation costs. In terms of product differentiation, firms that could produce specialized

products sell standard varieties to consumers who would like more specialized products. From a

social point of view, it is optimal for consumers and firms to share transportation costs. In other

words, it is necessary for consumers to practice efficient arbitrage, but arbitrage behavior

depends on firms’ pricing policies and it will not be optimal. To induce consumers towards

efficient arbitrage each firm should price at its own transportation cost: p(x) = min{ tf (|a - x |), tf

(|(1 - b) - x |)}.
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4.2. Second best locations

We obtain second best locations for firms by minimizing the total transportation cost given

equilibrium pricing policies and condition (14), the equilibrium distribution function of

consumer demand.

Proposition 4: Second best locations are

˜ ˜
( ) ( ) ( ) ( )

( )
a b

t t t t t t t t t

t

f c f c c c f f c

f

= =
− − + + +5 4 11 8

10

2 2 2 2

2

Proof: See Appendix 2B.

(Insert Figure 5)

It is easy to check that ˜ ˜ * *a b a b= > = . Only at the limit, equilibrium locations are equal to the

second-best locations: lim a lim a
t tc c

  *

→ →
= =

0 0

1
2

˜  and  lim a lim a
t tf f

  *

→∞ →∞
= =

1
2

˜ . Figure 5 shows the second

best demand distribution function (the dotted line), ˜ ( ˜)F x (that is, the equilibrium demand

distribution function, condition (14), evaluated at the second best locations). Comparing ˜ ( ˜)F x

and F x* *( ˆ ) (the distribution function (14) evaluated at the equilibrium locations) we can see that

in equilibrium the demand distribution is too concentrated compared to the (second best)

efficient distribution. For example, when tf   = tc (then a b a b* *= = < = =
2
5

5
5

˜ ˜ ) in equilibrium

20% of consumers buy the product at the center of the market while in the second best outcome

this percentage drops to 10.5%.

5. Concluding remarks  

We have shown that under convex transportation costs, consumers may find it in their interest to

demand not their most preferred varieties but more standard varieties. As a consequence of this

personal arbitrage behavior, product diversity decreases, giving rise to a demand distribution that

is not only more concentrated than the distribution of preferences but also more concentrated

than the efficient distribution.
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Our results could be generalized in several directions. The assumption of inelastic demand could

be relaxed without altering the result of the tendency to agglomeration under convex

transportation costs. The timing of the game could be changed. Timing reflects commitment and

it is difficult to judge who has more commitment power, the firm setting prices or the consumers

announcing location, so that in our model those decisions are simultaneous. If consumers took

their decision before firms, the outcome of the game would be the same, but if we allowed firms

to move first and make price offers conditioned on announced location, formally this would

amount to a revelation game where consumers declare their type. If firms could commit

themselves to the price schedule, then in general the optimal policy is not to price at the rival’s

marginal cost at each location in the local market, since the firm could do better by inducing

consumers to demand varieties closer to the base variety. Thus, the game would be one of

preference revelation with competition between firms. Unfortunately, a location-price equilibrium

for that duopoly model is not easy to characterize and the question is left for further research.
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Appendix 1

Convex and nonconvex transportation technologies

In this Appendix we show that our results do not depend on the assumption of quadratic

transportation costs for consumers and firms, and some of them not even on convex

transportation costs. The first observation is that personal arbitrage is an equilibrium

phenomenon whenever consumers’ transportation costs are such that tc’(0) = 0, and firms’

transportation technology such that tf’(d) > 0 for d > 0 and tf’(0) ≥ 0 for d = 0. To see why this

is so, consider the optimization problem for a consumer at x ∈ [0, xAB]:

         min
x̂  

 p( x̂ ) + tc(| x̂  -  x |)

In equilibrium p( x̂ ) = tf(|(1 - b) - x̂ |) for x̂  ∈ [0, xAB]. The first order condition is:

tf’(|(1 - b) - ˆ*x |) - tc’(| ˆ*x  -  x |) = 0 (A1)

Assume that tf and tc are such that the objective function is convex and (A1) characterizes the

solution for the consumer. If ˆ*x  = x then tc’(| ˆ*x  - x |) = 0 since by assumption tc’(0) = 0 which

implies tf’(|(1 - b) - ˆ*x |) = 0 but that is not possible when tf’(d) > 0 for any d > 0.

We conclude this Appendix by showing that personal arbitrage may be an equilibrium

phenomenon with nonconvex transportation technologies. Consider asymmetric transportation

costs, linear in distance, for consumers and firms: tfd is the transportation cost for firms and the

transportation cost for consumers is given by t d
t d d d

d d
c

c( )
for ˜

for ˜
=

≤

∞ >









              

                
. Obviously, if

consumers are more efficient in transportation than firms, tc < tf and d̃  = 1, all consumers will

engage in an extreme arbitrage behavior by purchasing at the center of the market. However, for

personal arbitrage to arise in equilibrium it is sufficient that consumers be slightly more efficient

than firms in very short-distance travels (i.e. tc < tf and any d̃  > 0 no matter how small).20

                                    
20 Similar results are obtained if firms have concave transportation costs and consumers are more efficient in
short hauls.
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Appendix 2

A. First best locations

Given the efficient demand distribution function, the total transportation cost is:

TC a b t a x t x x dF xf
e

c
e e e

at

t t

a t t b t

t t

f

f c

f c c

f c( , ) { ( ˆ ) ( ˆ ) } ˆ ( ˆ )

( ) ( )

( )
= − + −

+

+ + −

+

∫  2 2

2 1

2

          

+   +  { ( ˆ ) ( ˆ ) } ˆ ( ˆ )
( )( )

( )

( )

t b x t x x dF xf
e

c
e e e

b t t at

t t

t b t

t t

f c c

f c

c f

f c 1 2 2
1 2

2

1

− − −
− + +

+

+ −

+

∫  (A2)

From (19) and (20), we can express the total transportation cost in terms of true consumer

locations:

TC a b t a x
t

t t
t a x
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dF xf

c

c f
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f
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b a

( , ) ( ) ( ) ( )

( )

= −
+













+ −
+

























− +

∫  

2 2

0

1

2

      + − −
+













+ − −
+
























− +∫  t b x

t

t t
t b x

t

t t
dF xf

c

c f
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f
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1 1

2 2
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(A3)

It is easy to check, from the first order conditions of the transportation cost minimization

problem, that:  a b be( ) ( )= −
1
3

1  and  b a ae( ) ( )= −
1
3

1 . Therefore, the first best locations

are  a be e= =
1
4

. Q.E.D.

B. Second-best locations

The second best optimal locations for firms will be obtained by minimizing the total

transportation cost given condition (14), the (equilibrium) cumulative distribution function of

announced location. In equilibrium, consumer x demands the variety ˆ*x (see conditions (12) and

(13)) given by
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ˆ

(1 -  )
,

( ) ( )( )

( ) ( )( )
,
( )( ) ( )*x

b t t x

t t
x

a t t b t t

t

x x
a t t b t t

t

b t t a t t

t
at

f c

f c

f c c f

c

AB
f c c f

c

f c c f

c

f

=

+

+
∈

+ + − −









∈
+ + − − − + + −









                              for 

            for 

0
1

2

1

2

1

2
++

+
∈

− + + −







































t x

t t
x

b t t a t t

t
c

f c

f c c f

c
                                      for 

( )( ) ( )
,

1

2
1

Given equilibrium pricing policies and the associated inefficient arbitrage by consumers, the total

transportation cost can be written as
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(A4)

From the first order conditions of the transportation cost minimization problem we obtain that

the second-best locations are

˜ ˜
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Figure 1. Personal arbitrage and the tendency for consumers to

demand at locations closer to the center of the market.
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Figure 2. Distribution function for demanded varieties, ˆ( ˆ)F x .

Minimal product diversity with locations fixed at a = b = 0, and

consumers more efficient than firms in transportation.
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Figure 3. Equilibrium demand distribution function, F x* *( ˆ ).
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Figure 4. Efficient demand distribution function. F(x): distribution

function of preferences. F xe e( ): first-best demand distribution

function.
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Figure 5. Second-best  demand distribution function. F(x): distribution

function of preferences. F x* *( ˆ ): equilibrium demand distribution

function. ˜ ( ˜)F x : second-best demand distribution function.
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