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Abstract: Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to
adhere to various surfaces through biofilm production. The biofilm formation capability has been
related to the expression of certain genes, which have not been characterized in A. butzleri. In order
to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role
of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm
formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates,
and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel.
Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB,
fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT
showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced
glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri,
although future studies are necessary to achieve a satisfactory objective.
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1. Introduction

Arcobacter butzleri is a Gram-negative bacterium with a wide environmental distribu-
tion, classified as a foodborne pathogen [1] due to its association with human gastroin-
testinal disease. A. butzleri is the most prevalent among the species of the genus and is
frequently isolated from wild and farm animals’ excrements and intestinal regions (boar,
ostrich, Eurasian collared dove and raccoon), farm animals’ meat (chicken, pork, beef,
turkey, lamb, sheep, rabbit and quail meat), seafood products (clam, mussel, cockle, squid
and shrimp), dairy products (raw cow milk and fresh cheese), vegetables (carrot, spinach,
lettuce, chard, parsley, arugula and radish), environmental water and human stool [2–13].

The transmission of the species of the genus Arcobacter through the food chain seems
to be favored by their ability to form biofilms [14–16]. Many food-related pathogens
such as Aeromonas spp., Salmonella Typhimurium, Staphylococcus aureus, Listeria mono-
cytogenes, L. ivanovii, Escherichia coli, Bacillus cereus, Cronobacter sakazakii, C. muytjensii,
A. butzleri, A. cryaerophilus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Campylobacter je-
juni and C. coli can produce these resistance structures conformed by cells and extracellular
compounds [17–25]. The biofilm formation ability of Arcobacter species on different sur-
faces has also been documented [5,25], and it has become apparent that there is a notorious
variability of the adherence level among strains of the same species. Due to the difficulty of
eradicating biofilms and the rapidity with which A. butzleri develops them, preventing their
formation is vital to control the spread of this foodborne pathogen [25]. Moreover, some
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authors referred that these structures could also contribute to the increase in antimicrobial
resistance of A. butzleri since biofilm growth favors resistance gene transmission [24].

The biofilm formation process integrates different steps [26]. When planktonic bacteria
find a stressful situation (i.e., carbohydrate, protein, fatty acid or other nutrient deficits;
antibiotic exposure; and unfavorable temperature/atmosphere conditions [27–29]), cells
start to adhere in a smooth and reversible manner to an available surface and to each
other. Then, the production of exopolysaccharide (EPS) by the loosely adhered bacteria
and/or the expression of specific adhesins located on pili and fimbriae leads to their
irreversible attachment. At this point, sessile bacteria begin to form microcolonies, and
the biofilm matures as they continue growing and producing EPS [30–32]. Finally, when
the biofilm reaches a critical mass, cells detach from the outermost lawyer of growth, and
the dispersion of planktonic cells from the biofilm occurs. The composition of the biofilm
formed by Arcobacter still remains unknown, but, in general, the biofilm matrix is a complex
structure that presents channels and pores throughout nutrients, oxygen and water flow.
It is composed of approximately 15% of cells and 85% of EPS; this one is almost entirely
conformed by water and contains in its’ solid-phase mainly polysaccharides, proteins and
DNA [24,33].

Biofilm formation is dependent on many extrinsic factors such as growth medium,
atmosphere, temperature, time, inoculum density and surface, but also on the intrinsic
characteristics of each strain [14,15,25,34]. The biofilm formation capability has been re-
lated to the expression of genes of such diverse functions as motility, EPS production and
cell signaling in many different bacteria. The expression of some of those genes is cell
density-dependent, as the (p)ppGpp synthetase (i.e., spoT, relA, relP) and Quorum Sensing
(QS) genes (i.e., luxS) [30]. In fact, low cell densities have been related to cell adhesion and
high ones to cell detachment mediated by (p) ppGpp synthetases, and high cell densities
also to biofilm formation as a result of QS autoinducer production [26,35,36]. In certain
bacterial species, such as E. coli, P. fluorescens, P. aeruginosa, B. subtilis, Agrobacterium tume-
faciens and Shewanella oneidensis, flagella and other surfaces structures such as fimbria,
extracellular membrane proteins and amyloid-like fibrils are essential in the initial bacterial
attachment and subsequent biofilm formation [24,26,30,37–51]. In fact, it has been demon-
strated that functional flagella are necessary for maximum biofilm formation in species
such as Campylobacter jejuni, A. tumefaciens and E. coli. This affirmation is supported by
studies where the mutation of genes implicated in the synthesis of the flagellar filament
(flaA, flaB, flaG, fliA and fliS in C. jejuni; and fliC in E. coli) [28,40,50–52] and hook (flgE in
A. tumefaciens and P. aeruginosa) [46,53], flagellum movement (motA in A. tumefaciens, C.
jejuni and E. coli) [44,46,50,52] and flagellar gene regulation (fliA and qseB in E. coli, and
fliW in C. jejuni) [44,54] showed reduced biofilm formation or no formation at all. Further,
higher expression levels of the flaA gene were reported for L. monocytogenes growing in
biofilm compared to planktonic form [55].

The gene spoT encodes the bifunctional (p) ppGpp synthase/hydrolase SpoT [56].
Among others, this alarmone has been related to flagellar gene regulation and biofilm
formation as part of the stringent response in many bacteria such as E. coli, Legionella
pneumophila, Mycobacterium tuberculosis, C. jejuni and Helicobacter pylori [56–59]. Lower
expression levels of the flagellar genes flgH and flgE were noticed in spoT mutant strains
in Vibrio spp [26,60]. The lack of flagella hindered the initial attachment and delayed the
biofilm formation [26,60]. In H. pylori, spoT mutants formed lighter biofilms than the wild
type, showing differences in the matrix conformation [59]. This gene has also been directly
related to the upregulation of biofilm formation in E. coli, Streptococcus mutans, H. pylori
and C. jejuni [59,61,62].

In 2015, Kim et al. [63] noticed that phosphate acetate (AcP) could play a role as a
mediator in the expression of genes such as relP (a short RelA/SpoT Homologue (RSH)
with alarmone synthase function [27,64]) and luxS (implicated in QS). The AcP is created
via the Pta-AcK pathway, which has also shown an implication in the biofilm formation
process of different bacteria such as S. mutants, E. coli and C. jejuni [40,63,65]. This pathway
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is composed of the enzymes Pta (i) and Ack (ii), encoded by pta and ackA, respectively, that
work (i) transforming the acetyl-CoA into AcP and (ii) AcP into acetate [63,66]. In a recent
transcriptional study of Campylobacter spp., the presence of the pta gene was related to
biofilm production and its absence to weak or no-biofilm formation [67]. In contrast, other
studies related the absence of pta with a biofilm increase in different species [40,65,68]. On
the other hand, the highly conserved luxS gene [69–71] encodes the LuxS metalloprotease.
This enzyme is involved in the production of the autoinducer-2 (AI-2), one of the most
studied QS signaling molecules [35]. In the biosynthesis of AI-2, S-adenosylhomocysteine
(SAH) is hydrolyzed to S-ribose homocysteine (SRH) by the enzyme Pfs, then transformed
into 4,5-dihydroxy-2,3-pentanedione (DPD) by LuxS and finally self-cycled to form the
AI-2 [35,72,73]. The LuxS/AI-2 QS pathway is related to a variety of processes such as
biofilm production, plasmid transference, motility, drug resistance, adhesion and virulence-
gene expression [69,74–77]. In fact, luxS has been found necessary for an efficient biofilm
formation in S. mutans, V. cholerae, Salmonella Typhi, L. monocytogenes, Lactobacillus rhamnosus,
H. pylori, C. jejuni and Porphyromonas gingivalis [28,63,78–83].

A. butzleri presents homologous of the genes flaA, flaB, fliS, luxS, pta and spoT [5], but
their function related to the biofilm formation has not been established yet. Neverthe-
less, it is reasonable to think that they may also affect adherence and biofilm formation
in A. butzleri. Understanding the mechanism beneath the biofilm formation is vital for
designing potential control strategies. Therefore, in order to increase the knowledge of
A. butzleri pathogenesis, the aim of this study was to assess the role of six biofilm-associated
genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) [28,40,62,67,84] in the biofilm
formation ability of A. butzleri.

2. Materials and Methods
2.1. Bacterial Strains, Plasmids and Growth Conditions

Four A. butzleri strains were selected for mutagenesis assays of biofilm-associated
genes based on their different ability to form biofilms [5,14]. All of them had been previously
isolated from different food products at retail [2,5] and presented biofilm-associated genes,
as confirmed by PCR (see the following section). The reference strain A. butzleri RM 4018
was also included. All the strains and plasmids used in this study are listed in Table 1.

Arcobacter strains were routinely grown at 37 ◦C in Brain Hearth Infusion (BHI) broth
(Oxoid, Basingstoke, UK) or on Columbia agar base plates (Oxoid, Basingstoke, UK) sup-
plemented with 5% defibrinated horse blood (Liofilchem, Roseto degli Abruzzi, Italy). Es-
cherichia coli strains were routinely grown at 37 ◦C in Luria-Bertani (LB) broth or on LB agar
plates (Condalab, Torrejón de Ardoz, Spain), supplemented with ampicillin (100 µg/mL)
(CAS: 69-52-3; Sigma-Aldrich, St. Louis, MO, USA) or kanamycin (50 µg/mL) (CAS: 25389-
94-0; NZYTech, Lisbon, Portugal) when necessary. In both cases, the media were incubated
aerobically for 24–48 h.

2.2. Growth Curve Measurements

Overnight liquid cultures were diluted into fresh BHI to reach an optical density of
0.05 at 550 nm (OD550). Two hundred microliters of each prepared bacterial suspension
were inoculated into four wells of a 96-well flat-bottom microtiter plate (Nest Biotechnology,
Wuxi, China), and the plates were placed in a SynergyTM HT plate reader (BioTek, Winooski,
VT, USA) to monitor the OD550 of the bacteria every hour for 24 h. The plates were
maintained under aerobic conditions at 37 ◦C and agitated at 17 Hz. The exponential
growth rate was calculated from three independent growth experiments.

2.3. Biofilm-Associated Gene Detection

The presence of six biofilm-associated genes (flaA, flaB, fliS, luxS, pta and spoT) was
determined by individual PCRs performed on 100 ng of DNA with 1.25 U of Supreme
NZYTaq II DNA Polymerase (NZYTech, Lisbon, Portugal), 0.1 mM of each dNTP, 1X
buffer and 0.25 µM of each primer set. All the primers used in this study are listed in
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Supplementary Materials Table S1. The PCR parameters were 5 min at 95 ◦C; 30 cycles
of 94 ◦C for 30 s, annealing temperatures ranging from 50 to 56 ◦C for 30 s and 72 ◦C for
1 min; and 10 min at 72 ◦C. DNA from A. butzleri RM4018 was used as the positive control
and deionized water as the negative one.

2.4. Construction of Knockout Mutant Strains

Knockout (KO) mutants for biofilm-associated genes were constructed according to
a previously described method [85] with some modifications. Briefly, the genes and their
flanking regions were amplified by PCR using the proofreading enzyme ACCUZYMETM

DNA polymerase (Bioline, Memphis, TN, USA), 5′-A tailed using BIOTAQTM DNA poly-
merase (Bioline, Memphis, TN, USA) and cloned in the commercial cloning vector pGEM-T
Easy (Promega, Madison, WI, USA). The resulting plasmids were linearized either by
an outward PCR performed with BamHI cutting site containing primers (pGflaAB) or by
restriction enzyme digestion with MunI, ClaI, BmtI or AflII (pGfliS, pGluxS, pGpta and
pGspoT, respectively). The linearized plasmids were ligated to a kanamycin (Km) resis-
tance cassette (aph(3′)-III) obtained from the pMW2 plasmid [86] either by BamHI digestion
or by PCR amplification using primers that contained the appropriate restriction cutting
site for each case. The orientation of the cassette and the ORFs was the same in all the
constructed plasmids.

2.5. Motility Assays

The motility of the strains was assayed by stab-inoculation of single colonies into
thioglycolate semisolid agar plates (thioglycolate medium containing 0.4% agar) (Scharlau,
Sentmenat, Spain). The plates were incubated under aerobic conditions at 37 ◦C for 24 h,
and the diameter of the motility zone was measured. The assays were carried out at least
on three independent occasions.

2.6. Biofilm Formation Assays

The biofilm formation ability of the strains on polystyrene (PS), reinforced glass and
stainless steel was evaluated following previously described protocols [14] with minor
modifications. For PS and reinforced glass assays, the inocula were adjusted to an optical
density of 0.2 at 600 nm (OD600), the incubations were performed at 37 ◦C for 48 h, and
the biofilms were stained with 200 µL of crystal violet (1% water solution) (CAS: 548-62-9;
Sigma-Aldrich, Steinheim, Germany). For stainless-steel assays, 7 mL of an OD600 = 0.2 cell
suspension was added to each coupon-containing tube, and the incubations were performed
at 37 ◦C for 24 h. After gently washing with distilled water, the coupons were transferred
to 15 mL conical plastic tubes containing 7 mL of sterile 0.01 M phosphate-buffered saline
(PBS) and 15 glass pearls. The biofilms formed on PS and reinforced glass were expressed
by the biofilm formation index (BFI) according to Niu and Gilbert (2004) [87], and the
strains were subsequently categorized as strong, moderate, weak or non-biofilm formers
according to Naves et al. (2008) [88]. The biofilms formed on stainless steel were evaluated
by plate count method on Mueller–Hinton agar (Oxoid, Basingstoke, UK), expressing the
results as logUFC/cm2.

2.7. Congo Red Binding Assay

For each strain, isolated colonies from overnight cultures were suspended in physio-
logical saline (0.9% (w/v) NaCl) to 0.5 McFarland. Three 10 µL drops of each inoculum were
added onto Congo Red Agar (CRA) plates, which were composed of 37 g/L Brain Hearth
Infusion broth (Oxoid, Basingstoke, UK) and 10 g/L of Bacteriological Agar (Scharlau, Sent-
menat, Spain), supplemented with an autoclave-sterilized concentrated Congo red (CAS:
573-58-0; Acros Organics, Geel, Belgium) solution (20 mg/mL) in a final concentration of
0.1 g/L [89–91]. After 48 h of incubation at 37 ◦C, the CRA plates were observed against a
backlight to differentiate the color of the colonies. Four strains were tested on each plate,
and the experiments were performed a minimum of three independent times. Strains with
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a red phenotype on CRA plates were considered cellulose producers and those with a white
one as non-producers.

2.8. Data Analysis

Statistical analyses were performed using the IBM SPSS Statistics 26 software (IBM
Corp., New York, NY, USA). The normality of the numerical values obtained for each
strain was determined by the Shapiro–Wilk test. The adhesion capacity, growth rate and
motility of the strains were compared by Student’s t-test and one-way analysis of variance
(ANOVA). Significant differences were established at p values of <0.05.

3. Results
3.1. Construction of Knockout (KO) Mutants and Growth Analysis

Overall, all the genes were successfully knocked out. A total of 18 KO mutant strains
were obtained from the five A. butzleri studied strains (Table 1). All the five expected
mutants were obtained from the strains CCUG 30485 and CH11, four from CZ6, three
from P8 and one from BER7. The most successfully mutated gene was pta, which could be
inactivated in all the studied A. butzleri strains, followed by fliS and luxS in four. spoT and
flaAB were inactivated in three and two strains, respectively. The comparison of the various
mutants with their correspondent parent strain showed no differences in bacterial shape,
colony formation on blood agar plates or growth rate in BHI (ANOVA-based p > 0.05)
(Figure S1).

Table 1. Bacterial strains and plasmids used in this study.

Bacterial Strain or Plasmid Source/Function Reference Biofilm
Formation 3

Biofilm Associated
Genes Detected

by PCR

Arcobacter butzleri strains
BER7 Wild strain isolated from cockle [5] 2.48 ± 1.16 flaA, flaB, fliS, luxS, pta

and spoT
BER7∆pta::Km AB-BER7 derivative

∆ABU_RS02465::aph(3′)-III
This study

CCUG 30485 Human clinical isolate (ATCC 49616;
RM4018)

CCUG 1 flaA, flaB, fliS, luxS, pta
and spoT

CCUG 30485∆flaAB::Km CCUG 30485 derivative ∆ABU_RS11245-
RS11250::aph(3′)-III

This study

CCUG 30485∆fliS::Km CCUG 30485 derivative
∆ABU_RS01060::aph(3′)-III

This study

CCUG 30485∆luxS::Km CCUG 30485 derivative
∆ABU_RS00560::aph(3′)-III

This study

CCUG 30485∆pta::Km AB-CCUG 30485 derivative
∆ABU_RS02465::aph(3′)-III

This study

CCUG 30485∆spoT::Km AB-CCUG 30485 derivative
∆ABU_RS03230::aph(3′)-III

This study

CH11 Wild strain isolated from squid [5] 0.76 ± 0.13 flaA, flaB, fliS, luxS, pta
and spoT

CH11∆flaAB::Km AB-CH11 derivative
∆ABU_RS11245-RS11250::aph(3′)-III

This study

CH11∆fliS::Km AB-CH11 derivative
∆ABU_RS01060::aph(3′)-III

This study

CH11∆luxS::Km AB-CH11 derivative
∆ABU_RS00560::aph(3′)-III

This study

CH11∆pta::Km AB-CH11 derivative
∆ABU_RS02465::aph(3′)-III

This study

CH11∆spoT::Km AB-CH11 derivative
∆ABU_RS03230::aph(3′)-III

This study

CZ6 Wild strain isolated from quail [5] 3.00 ± 2.90 fliS, luxS, pta and spoT
CZ6∆fliS::Km AB-CZ6 derivative

∆ABU_RS01060::aph(3′)-III
This study

CZ6∆luxS::Km AB-CZ6 derivative
∆ABU_RS00560::aph(3′)-III

This study

CZ6∆pta::Km AB-CZ6 derivative
∆ABU_RS02465::aph(3′)-III

This study

CZ6∆spoT::Km AB-CZ6 derivative
∆ABU_RS03230::aph(3′)-III

This study
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Table 1. Cont.

Bacterial Strain or Plasmid Source/Function Reference Biofilm
Formation 3

Biofilm Associated
Genes Detected

by PCR

P8 Wild strain isolated from chicken [2] 9.44 ± 6.07 fliS, luxS, pta and spoT
P8∆fliS::Km AB-P8 derivative

∆ABU_RS01060::aph(3′)-III
This study

P8∆luxS::Km AB-P8 derivative
∆ABU_RS00560::aph(3′)-III

This study

P8∆pta::Km AB-P8 derivative
∆ABU_RS02465::aph(3′)-III

This study

Escherichia coli strains
E. coli DH5α NCCB2955 Competent cells for cloning NCCB 2

Plasmids
pGEM-T Easy Cloning vector, Ampr Promega
pGflaAB pGEM-T Easy containing

ABU_RS11245-ABU_RS11250
This study

pGfliS pGEM-T Easy containing ABU_RS01060 This study
pGluxS pGEM-T Easy containing ABU_RS00560 This study
pGpta pGEM-T Easy containing ABU_RS02465 This study
pGspoT pGEM-T Easy containing ABU_RS03230 This study
pG∆flaAB pGEM-T Easy containing

∆ABU_RS11245-RS11250
This study

pG∆fliS pGEM-T Easy containing
∆ABU_RS01060

This study

pG∆luxS pGEM-T Easy containing
∆ABU_RS00560

This study

pG∆pta pGEM-T Easy containing
∆ABU_RS02465

This study

pG∆spoT pGEM-T Easy containing
∆ABU_RS03230

This study

pG∆flaAB::Km pGEM-T Easy containing
∆ABU_RS11245-RS11250::aph(3′)-III

This study

pG∆fliS::Km pGEM-T Easy containing
∆ABU_RS01060::aph(3′)-III

This study

pG∆luxS::Km pGEM-T Easy containing
∆ABU_RS00560::aph(3′)-III

This study

pG∆pta::Km pGEM-T Easy containing
∆ABU_RS02465::aph(3′)-III

This study

pG∆spoT::Km pGEM-T Easy containing
∆ABU_RS03230::aph(3′)-III

This study

pMW2 pBluescript KS M13 +:KmR (pILL550) [86]

1 CCUG: Culture Collection University of Gothenburg. 2 NCCB: Netherlands Culture Collection of Bacteria.
3 Data obtained from Martinez-Malaxetxebarria et al. [5] and Girbau et al. [14]. Values are expressed as mean ±
standard errors.

3.2. Motility Assays

The motility of the strains, expressed in numerical values, is shown in Table 2. Rep-
resentative images can be consulted in Figure S2. The five parent strains and most of the
mutants (11 out of 18) were motile. In contrast, all those mutants in the flagellar genes
(flaAB and fliS) and one in pta (BER 7 derivative) were non-motile. This loss of motility re-
sulted as significant in all cases (p ≤ 0.001). Among the motile strains, all the obtained spoT
and luxS mutants except P8∆luxS::Km showed higher motility than their corresponding
parent strains, and so did the CCUG 30485 and CH11-derivative mutants in pta. In contrast,
CZ6 and P8-derivative mutants in the same gene showed lower motility than their parent
strains. None of the observed differences were statistically significant.

3.3. Biofilm Formation Assays

The ability shown by the strains to form biofilms on different surfaces is resumed
in Table 2. Under the experimental conditions, the majority of the strains (19 out of
22) formed biofilms on PS and were categorized as strong biofilm producers, especially
P8 (p < 0.04). The exceptions were the strains CZ6, CZ6∆luxS::Km and CZ6∆fliS::Km,
which did not show any adherence ability on this surface. Almost all mutants showed
different biofilm formation abilities from their parent strains but the only significantly
different one (p = 0.023) was that shown by BER7∆pta::Km, which showed a BFI almost
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five times higher than BER7. On reinforced glass, all the strains formed biofilms, but their
categorization differed from that on PS. Among the wild strains, BER7 was defined as
weakly adherent, CZ6 as moderately adherent and CCUG 30485, CH11 and P8 as strongly
adherent. On this material, all the mutant strains showed differences in their BFI values
from their correspondent parent, and the ANOVA showed a significant reduction in the
biofilms formed by CZ6∆fliS::Km and P8∆fliS::Km (p = 0.033 and 0.001, respectively). In
general, the biofilm formation ability of the strains was higher on PS than in reinforced
glass, and according to Student’s t-test, it was significant for CH11 (p = 0.019). Regarding
stainless steel, viable cells could be recovered from all the coupons, which indicates the
capability of all the studied strains to form biofilms on this surface. Based on the ANOVA,
the adhesion of CZ6∆spoT::Km was significantly higher than that of its parental on this
material. (p = 0.006).

Table 2. Biofilm formation ability, motility and phenotype on CRA shown by the strains in this study.

Bacterial Strain
PS 1 Reinforced Glass Stainless Steel

(logUFC/cm2) Motility (cm) CRA 4

BFI 2 Categ 3 BFI 2 Categ 3

BER7 1.679 ± 0.609 S 0.462 ± 0.093 W 2.285 ± 0.292 2.833 ± 0.233 White
BER7∆pta::Km 8.263 ± 3.108 * S 0.732 ± 0.373 M 2.427 ± 0.341 0.000 * White
CCUG 30485 5.140 ± 2.702 S 2.328 ± 0.574 S 2.877 ± 0.461 1.233 ± 0.145 Red
CCUG
30485∆flaAB::Km 5.144 ± 1.981 S 0.965 ± 0.278 M 1.832 ± 0.113 0.000 * Red
CCUG
30485∆fliS::Km 2.571 ± 1.569 S 0.913 ± 0.223 M 3.444 ± 0.737 0.000 * Red
CCUG
30485∆luxS::Km 3.191 ± 0.421 S 1.008 ± 0.337 M 2.901 ± 0.494 1.233 ± 0.186 Red
CCUG
30485∆pta::Km 5.498 ± 2.444 S 1.343 ± 0.276 S 3.000 ± 0.292 1.233 ± 0.133 Red
CCUG
30485∆spoT::Km 8.502 ± 4.728 S 1.455 ± 0.449 S 3.858 ± 0.729 0.967 ± 0.145 Red

CH11 4.265 ± 0.772 S 1.179 ± 0.435 † S 4.233 ± 0.373 1.067 ± 0.033 White
CH11∆flaAB::Km 2.822 ± 1.544 S 0.748 ± 0.205 M 3.433 ± 0.332 0.000 * White
CH11∆fliS::Km 3.171 ± 2.154 S 0.542 ± 0.187 W 4.322 ± 0.260 0.000 * White
CH11∆luxS::Km 2.650 ± 1.852 S 0.693 ± 0.200 W 3.934 ± 0.450 1.167 ± 0.067 White
CH11∆pta::Km 4.997 ± 3.366 S 0.248 ± 0.096 N 4.367 ± 0.597 1.433 ± 0.203 White
CH11∆spoT::Km 7.271 ± 4.163 S 0.331 ± 0.211 N 4.458 ± 0.456 1.200 ± 0.208 White
CZ6 0.000 N 0.851 ± 0.191 M 3.419 ± 0.213 2.533 ± 0.120 Red
CZ6∆fliS::Km 0.007 ± 0.007 N 0.176 ± 0.102 * N 4.032 ± 0.674 0.000 * Red
CZ6∆luxS::Km 0.000 N 0.379 ± 0.115 W 3.515 ± 0.224 2.800 ± 0.115 Red
CZ6∆pta::Km 4.608 ± 3.979 S 0.312 ± 0.105 N 3.094 ± 0.321 2.267 ± 0.176 Red
CZ6∆spoT::Km 4.852 ± 4.685 S 0.706 ± 0.211 M 4.700 ± 0.148 * 2.900 ± 0.058 Red
P8 17.319 ± 3.671 • S 3.825 ± 0.257 S 5.989 ± 0.140 2.600 ± 0.153 White
P8∆fliS::Km 7.961 ± 1.448 S 1.752 ± 0.270 * S 5.489 ± 0.222 0.000 * White
P8∆luxS::Km 13.706 ± 2.152 S 4.547 ± 0.752 S 5.944 ± 0.179 2.167 ± 0.088 White
P8∆pta::Km 11.132 ± 1.304 S 3.516 ± 0.761 S 5.732 ± 0.109 2.300 ± 0.153 White

1 PS: Polystyrene. 2 BFI, Biofilm Formation Index. 3 Categ, categorization according to Naves et al., [88]: Strong (S),
Moderate (M), Weak (W) and None (N). 4 CRA, phenotype shown on CRA plates. * Student’s t-based statistically
significant (p < 0.05) differences obtained when comparing wild-type strains with their derivatives on each surface.
• ANOVA-based statistically significant (p < 0.05) differences obtained when comparing the BFI values obtained
on PS for each wild-type strain. † Student’s t-based statistically significant (p < 0.05) differences obtained when
comparing biofilm formation on PS versus borosilicate.

3.4. Congo Red Agar Assays

The wild BER7, CH11 and P8 strains turned out to be non-cellulose producers based
on their phenotype on CRA plates (white growth). In contrast, the strains CCUG 30485 and
CZ6 were cellulose producers (red growth). No differences were observed between wild
and KO mutant strains. The pigmentation acquired by the strains when grown on CRA
plates can be consulted in Figure S3.

4. Discussion

The transmission and pathogenicity of many bacteria are related to their capacity
to form biofilms [14–16]. These structures have gained great interest over the last years,
and the mechanisms underlying their formation and maintenance are being elucidated in
many bacterial species [25–30,35,40,63,68,92]. Nevertheless, this knowledge is still scarce
for the foodborne pathogen Arcobacter butzleri. To address this item, in this study, we
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aimed to understand the role of flaA, flaB, fliS, luxS, pta and spoT in the biofilm formation
process of this species. For this purpose, mutants in the abovementioned genes that are
associated with biofilm formation in other campylobacteria were constructed, and their
biofilm formation ability on various surfaces of different hydrophobicity was compared
to that of their parent strains. In addition, the capability to form biofilms was also tested
using the Congo red binding assay, widely used by other authors in species such as E. coli,
K. pneumoniae, S. enterica and C. jejuni [29,93,94].

Congo red indicator binds to curli/fimbria and cellulose [95,96] and considering that A.
butzleri does not have curli/fimbria, the assay indicates cellulose production in this species.
Our results did not show differences between mutant and parent strains, suggesting that
the inactivated genes apparently do not take part in cellulose production in A. butzleri. As
far as we know, this is the first time where cellulose production by Arcobacter has been
reported. Moreover, we are not aware of the presence of genes involved in this process in
A. butzleri, which leaves the way open for new research lines. On the other hand, although
it has been satisfactorily used to detect biofilm production in campylobacteria [29], the
results obtained on the Congo red binding assay did not correlate with those obtained
on the biofilm formation assays in our case. Both cellulose-producing (red growth) and
non-producing (white growth) strains formed biofilms under the experimental conditions.
This phenomenon has been previously described in some other species [97]. Consequently,
we do not consider the Congo red binding assay to be reliable for the identification of
biofilm-forming bacteria in this species.

In accordance with previous studies held with both Gram-positive and negative bacte-
ria [28,40,98–100], the results of this study point to the flagellum as an important structure
implied in the biofilm formation of A. butzleri. The obtained mutants in the flaA and flaB
genes (CCUG 30485∆flaAB::Km and CH11∆flaAB::Km) showed reduced biofilm-formation
abilities compared with their parent strains in all the surfaces tested. Similarly, mutants of
the fliS gene, which encodes the FliS chaperone responsible for flagellin protection and trans-
port, adhered less than wild-type strains to PS and reinforced glass, especially CZ6∆fliS::Km
and P8∆fliS::Km to the latter material (p = 0.033 and p = 0.001, respectively). However,
three out of the four obtained fliS mutants, namely CCUG 30485∆fliS::Km, CH11∆fliS::Km
and CZ6∆fliS::Km, showed enhanced adhesion on stainless steel. The importance of a func-
tional flagellum for maximum biofilm formation by campylobacteria has been previously
reported. Studies held with Campylobacter spp. demonstrated that mutants on the flaA, flaB,
fliA, flaG and motA genes showed reduced adhesion and biofilm formation ability [28,50,51].
Joshua et al. [40] observed that aflagellated C. jejuni fliS mutants were unable to attach to
surfaces, and Hathroubi et al. [101] that aflagellated H. pylori mutants produced weaker
biofilms. In other species, such as V. cholerae and P. aeruginosa, mutants with affectation in
flagella showed compromised biofilm formation [102,103]. Despite not having tested the
integrity of the flagella in our mutants in the flaA, flaB and fliS flagellar genes, the decreased
motility observed for all of them could be indicative of their non-correct functionality.
These three genes are essential for the synthesis and transport of the flagellin subunits that
conform to the flagella filament [24,26,30,37–40,44–48]. Likely, the inactivation of any of
these genes led to the production of lower flagellin levels and, consequently, to abnormal
flagella with shorter filament or no filament at all, as previously reported elsewhere [104].
Mostly, the inactivation of flagellar genes is associated with a decrease in the ability to
adhere [28,40,50,51,54,67,98–101,104]. In consonance with this, different transcriptional
studies indicated that the expression of some flagellar genes is higher when bacteria grow
on a biofilm compared to the planktonic state. L. monocytogenes seems to overexpress flaA
when growing on biofilm [55]. Among campylobacteria, strongly adherent Campylobacter
strains show higher expression levels of flaB and fliS than weakly adherent ones [67], and
biofilm growing H. pylori upregulates various genes related to the formation of the flagellar
apparatus [101]. Being primarily a mobility structure, the flagellum has important func-
tions for biofilm formation as mechanosensing of surfaces [105,106] or being a component
of the biofilm matrix [101]. Even so, and in line with previous observations [107–109],
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the enhanced adhesion observed in some of our flagellar mutants indicates that, though
important, a functional flagellum is not essential for biofilm formation in A. butzleri. Future
studies may elucidate whether a truncated filament (or its absence) has an influence on the
composition or structure of the biofilm matrix. In addition, our results point to the possible
presence of other surface-induced mechanisms involved in the early steps of the biofilm
formation processes, as could be the adhesins CadF, PEB1a, JlpA, AcpA and CjaA, present
in phylogenetically closely related species [110].

In general, the biofilms formed by luxS mutants were equal to or lower than those
formed by the wild-type strains on the three studied surfaces. The role of the bacterial
autoinducer-2 (AI-2) produced by luxS has been related to Quorum Sensing (QS), and this
one with biofilm production [111]. The implication of QS in the biofilm production has
been evidenced by the inactivation of genes coding for different signaling molecules and
the subsequent reduction of the biofilm formed, such as the gene lasI in P. aeruginosa [112]
and cep in Burkholderia cepacia [113]. The gene luxS has been found necessary for an efficient
biofilm formation in S. mutans, V. cholerae, Salmonella Typhi and P. gingivalis [63,78]. In
S. mutans, K. pneumoniae and C. jejuni, the lack of a functional luxS led to a decreased
biofilm production [28,67,81,114–116], which is quite in accordance with our results. All
our mutants in luxS adhered less than their parent strains except P8 and CZ6 derivatives
on reinforced glass and stainless steel, respectively. Likewise, the absence of differences
between the biofilms produced by wild-type and some luxS mutant strains (CZ6∆luxS::Km
in PS and all luxS mutants on stainless steel except CH11∆luxS::Km) reported here had
also been previously observed in K. pneumoniae [36] and S. gordonii [117]. In contrast,
the inactivation of luxS increased the biofilm production in H. pylori [81,116]. Changes
in biofilm morphology [69,114,117], motility reduction [52], decreased autoaggregation
(which contributes to biofilm formation) [52], minimized growth [35] and reduced adhesion
to cell lines [118–120] have also been reported due to the inactivation of luxS. Nevertheless,
our results did not reflect growth differences between parent and luxS mutant strains.

Broadly, mutants of pta showed an increase in their biofilm formation ability on
PS, which was statistically significant for BER7∆pta::Km (p = 0.023), but a reduction on
reinforced glass. The effect of this mutation in biofilm formation on stainless steel varied
among the tested strains. The lack of pta has been associated with both increased and
decreased biofilm formation. The inactivation of pta led to hyperflagellated E. coli mutant
strains in a study conducted in 2005 [121]. According to the authors’ observations, the
increased intracellular phosphate acetate (AcP) pool underlies the flagellar expression
change. As mentioned above, flagella play an important role in biofilm formation; therefore,
mutants of pta could show enhanced biofilm production if they overexpress flagellar genes.
This could be the case with our pta mutants, which showed a general increase in motility
and formed higher biofilms on PS than their correspondent parent strains. Increased biofilm
productions derived from the inactivation of pta have also been reported in E. coli, C. jejuni
and S. mutans [40,63,65]. Nevertheless, and based on the reported effect of high AcP levels
in the expression of luxS and the RelA/SpoT system [63], we could hypothesize that the
inactivation of pta and the subsequent AcP increase can lead to reduced concentrations
of AI-2 and (p)ppGpp, synthesized by LuxS and RelA/SpoT systems, respectively; and,
consequently, contribute to the decrease in flagella formation, EPS production and biofilm
generation [26,27,35,57,58,60,61,63,64,71]. This would be in accordance with the biofilm
formation reduction we report here for all our pta mutant strains on reinforced glass and
for those derived from CZ6 and P8 on stainless steel, in line with the biofilm formation
reduction reported in S. mutans [63].

Regarding the spoT mutants, when compared to their parent strains, all presented
an increased ability to produce biofilms on PS and stainless steel and a reduced one on
reinforced glass. This is in agreement with the reduced biofilm formation on glass re-
ported for V. cholerae [61] and Xanthomonas campestris pv. Campestris 8004 [122] mutants.
Similarly, enhanced biofilms on PS were noticed in P. putida KT2440 [123] and V. alginolyti-
cus [26]. This gene, which encodes the bifunctional (p)ppGpp synthase/hydrolase, has
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been associated with obtaining maximum protection against stress (nutrient starvation,
heat shocks, presence of NaCl and/or ethanol, etc.) and, therefore, facilitating bacterial
pathogeny and dissemination [124,125]. Moreover, some authors have related it with the
expression of various EPS operons (i.e., vps, pea, peb, bcs) in diverse bacterial genera, such
as Vibrio, Xanthomonas and Pseudomonas; and, in consequence, with biofilm matrix pro-
duction [26,61,122,123]. Moreover, the lack of spoT has also been related to low bacterial
growth and no flagella formation, and, consequently, a reduced ability to form biofilms on
glass tubes [61,126], which is consistent with our results on reinforced glass.

It is well known that extrinsic factors such as temperature, nutrient availability,
surface material and environmental conditions influence biofilm formation in Arcobac-
ter [14,15]. The methodology employed (growth media, incubation atmosphere and time,
static/shaking culture, etc.) also affects it [111] and, therefore, contributes to the variability
of results between studies. The differences between the BFI values obtained for the wild-
type strains in this study (37 ◦C, BHI) and previous ones (30 ◦C, Arcobacter Broth) [5,14]
are a good example of the influence the temperature and growth medium can have on
bacterial adherence. Likewise, and in line with some previous studies [14,127,128], our
results once again show that the hydrophobicity of the different surfaces (i.e., PS is hy-
drophobic and reinforced glass hydrophilic) has an effect on biofilm formation. Regardless
of the mutated gene, PS seems to favor the adherence of A. butzleri under the experimental
conditions, as almost all the strains were categorized as strong biofilm producers on this
material. Nevertheless, an enhanced adhesion was previously reported for A. butzleri on
glass [5], which again remarks on the great influence of the extrinsic factors on the process
of biofilm formation.

In addition to providing useful information for the understanding of the biofilm-
forming capability of A. butzleri, this first attempt to characterize the mechanisms involved
opens up different research lines to gain additional insight into the biofilm formation
process and composition. Comparative transcriptomic analyses between biofilm and
planktonic A. butzleri cells would allow the identification of some other genes involved in
biofilm formation and maturation. Similarly, they would also allow the identification of
genes related to cellulose production if we compared producing and no producing strains
on the basis of that observed in the Congo red binding assay. In this line, characterizing the
composition of the biofilm matrix would be of great interest, as biofilms can be combated
by targeting the extracellular polymeric compound. It would also allow establishing
whether the detected cellulose is part of the biofilm matrix or not. Finally, a more in-
depth characterization of the obtained luxS mutants will allow a further understanding
of the QS-dependent processes in A. butzleri (i.e., pathogenicity), as well as studying the
potential applicability of Quorum Quenching compounds as a strategy to control and prevent
A. butzleri biofilms.

5. Conclusions

Our study sheds light on the role played by six genes (flaA, flaB, fliS, luxS, pta and
spoT) in the biofilm formation capacity of A. butzleri, although future studies are necessary
to achieve a satisfactory objective. In short, the flaA, flaB, fliS and luxS genes seem to play
a positive role in the biofilm formation capacity of A. butzleri, while the spoT gene seems
to play a negative one. Our results point to the genes flaA, flaB, fliS, luxS and spoT as
interesting targets in the design and development of anti-biofilm strategies. Therefore,
besides contributing to the general knowledge about biofilm in Arcobacter, this study sets
the basis for future research on the prevention, control and eradication of biofilms produced
by A. butzleri. Designing and developing strategies that facilitate the control of the biofilms
formed by Arcobacter is of great importance in order to prevent the transmission of this
potentially harmful bacteria, especially through the food chain. On the other hand, and
according to our result, the Congo red binding assay is not a useful method to determine
the biofilm production in Arcobacter.
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