
Degree in Computer Engineering
Computer architecture

End of degree work

Analysing the use of a SLAB allocator for
user-space programs

Author

Iker Galardi Santiago

2022

Degree in Computer Engineering
Computer architecture

End of degree work

Analysing the use of a SLAB allocator for
user-space programs

Author

Iker Galardi Santiago

Director(s)
Jose A. Pascual Saiz

Summary

Modern general purpose memory allocators have become fast and less prone to fragmen-
tation, but still, there has been a movement into using memory allocators specifically
tailored to a workload, as recently happened on operating system kernels like Linux or
FreeBSD’s. This new specifically tuned allocator is called the SLAB allocator and has
shown significant speedups on the allocation/deallocation primitives of the memory sub-
system.

Although this allocator has been designed for operating system kernels, given that it is
specifically tailored to small temporary buffers (commonly used on hardware drivers),
other workloads with the same requirements could benefit from it. Knowing that the al-
locator is particularly successful with small size allocations, a hybrid approach using the
SLAB allocator and the traditional memory subsystem for larger allocations could bring
considerable performance improvements to certain applications.

In this project, the aim is to create a from scratch implementation of the SLAB allocator

for user-space and to test the potential performance improvements of the allocation/deal-
location primitives using both synthetic and real workloads.

i

Contents

Summary i

Contents iii

List of Figures v

1 Introduction 1

2 The aims of the project 5

3 Design and implementation 7

3.1 Original slab allocator . 7

3.2 User-space slab allocator . 8

3.3 The slab pool . 10

3.4 Putting it all together . 12

4 Experimental set-up 13

4.1 Synthetic benchmarks . 13

4.2 Cfrac . 16

4.3 Benchmarking environment . 16

iii

CONTENTS

5 Analysis of the results 17

5.1 Allocation size synthetic benchmark . 17

5.2 Allocation lifetime synthetic benchmark 18

5.2.1 Cfrac algorithm benchmark . 19

6 Conclusions 21

7 Future work 23

Bibliography 25

iv

List of Figures

1.1 Example of a block list . 2

3.1 Interfaces of the original slab allocator 8

3.2 Logical view of the original slab . 8

3.3 Structure of slab allocator’s page . 9

3.4 Example list state for a slab . 10

3.5 Logical view of a slab pool . 10

3.6 Example list state for a slab . 11

4.1 Beta distribution given the parameters α = 2, β = 20 14

4.2 Distributions used for size selection. 15

5.1 Size distribution synthetic benchmark results 18

5.2 Allocation lifetime synthetic benchmark results 19

5.3 Cfrac benchmark results . 20

v

1. CHAPTER

Introduction

Memory allocations are the most common operations among computer programs, and
thus, the speed in which a program allocates memory becomes a very important part, as it
can heavily affect the overall performance of the application. Even though many solutions
have been proposed over the years, this topic can be considered still under research, as
operating systems and software alike are very sensitive to allocation time.

Traditionally, general purpose allocators such as the GNU allocator [gnu,] and Jemalloc

[Evans, 2006] have been used in almost all scenarios, as they don’t require any config-
uration and are not tailored to specific workloads. But in recent years there has been a
move into using custom memory allocators that can take advantage of specific allocation
patterns, sizes or system needs. There are several examples of custom allocators that help
in specific use cases like the SLAB allocator [Bonwick et al., 1994] used on operating
system kernels, Hoard [Berger et al., 2000] used for heavily multithreaded applications
or the smart allocator [Ramakrishna et al., 2008] suited for embedded real-time systems.

All the prior mentioned allocators use what’s called the heap in order to request and
return memory. However, the current programming model divides the memory into the
before mentioned heap (also known as dynamic memory), used for allocations not known
at compile time; and the stack, that’s used for compile time known allocation.

The stack operates like the stack data structure, by pushing and poping values following
the LIFO (last in first out) principle. This simple set of operations makes it suitable for
temporary and automatically managed memory, as these allocation times are very fast and
the temporary values can be easily removed after the scope finished. But due to the limited

1

2 Introduction

 block: 0
 size: 7
 state: busy

 block: 1
 size: 2
 state: free

 block: 2
 size: 5
 state: busy

 block: 3
 size: 2
 state: free

Figure 1.1: Example of a block list

operation set and size, the stack becomes unusable for objects that dynamically change
sizes or objects with more complex lifetimes.

In contrast, the heap is a more complex section that programs use for bigger chunks of
memory or dynamic allocations. This section does not have a specific structure, as each
memory allocator has specific needs or approaches. Traditionally, the heap operates by
two operations: malloc(size_t size), which is used to requesting memory given a
size (also called new in more modern languages); and free(void* pointer), which
can be used to return a previously allocated buffer (also called delete in more modern
languages). These routines use allocation algorithms (also known as memory allocators)
to structure the memory, ask more memory to the operating system or return unused mem-
ory.

A memory allocator can be easily understood as a list of memory blocks that is used to
keep track of what memory is free or allocated (as it can be seen in Figure 1.1). Every
time a program requests memory, the allocator will traverse the list looking for a block of
memory with enough space.

The previously mentioned algorithm can be used as a simple memory allocator, but as
can be expected, has certain issues that make it unsuitable for most use cases. One of the
issues is what’s called memory fragmentation. Taking the state of the block list of Figure
1.1, if a program requests 4 bytes, even though in total 4 bytes of memory are available
to the requester, as they are not contiguous, they cannot be assigned, leading to waste of
memory.

Furthermore, the allocation speed is a very important factor, because a frequent operation
as memory allocation being slow can lead to very questionable application performance.
In order to reduce allocation times, several allocators have used more complex data struc-
tures like trees or bitmaps, which by its nature have much lower search time complexity.
Others, in contrast, have taken the approach of having a better list management in order
to reduce traversal like the SLAB allocator [Bonwick et al., 1994].

Still, having a single algorithm for all possible situations can lead to inappropriate perfor-

3

mance and memory usage. That’s why in recent years, there has been a movement into
custom memory allocators that take advantage of their specific needs in order to squeeze
more performance and try to reduce memory fragmentation. One important example of a
custom allocator in the operating systems’ world has been the aforesaid SLAB allocator,
which is in use on the most popular operating system kernels. As Bonwick explains in his
article [Bonwick et al., 1994], this allocator was designed to improve the allocation time
and reduce memory fragmentation of temporary buffers in drivers, taking advantage of
common allocation sizes.

Taking this into account, the aim of the project is to create a scratch built implementation
of the aforementioned SLAB allocator for user-space programs and test if the custom
allocator can bring performance improvements.

2. CHAPTER

The aims of the project

The SLAB allocator is the allocator introduced in SunOS 5.4 by Jeff Bonwick to improve
the performance of the memory allocation/deallocation subsystem and to reduce memory
fragmentation. The allocator employs same sized slots in order to reduce memory frag-
mentation, and with the help of clever free list management allocation and free-ing of
memory can be done in constant time. This makes the allocator very suitable for tempo-
rary buffers and, due to its nature, the allocator is very effective with small sized memory
(1/8 of the size of a page, usually 4 KB).

The main goal of this project is to study the usage of the SLAB allocator on user-space
applications by implementing the allocator and by creating custom malloc and free

functions that use the SLAB allocator internally in order to hide the peculiar API. As the
allocator shines with small sized allocations, the custom malloc and free functions will
use the system’s implementation on larger allocation sizes.

At first, as most implementations of the aforementioned allocator are built for operating
system kernels, they are specifically bound to internal kernel virtual memory systems
and can’t easily be ported to user-space. Thus, a custom allocator needs to be built from
scratch in order to use kernel system calls instead of the virtual memory subsystem to
get and return pages from the application’s address space. The implementation will differ
in some ways with the allocator described by Bonwick [Bonwick et al., 1994] because
certain aspects of the original allocator cannot be implemented in user-space.

Although user-space programs could directly use the API given by the SLAB allocator,
which could already be an improvement, most applications do not want to use custom

5

6 The aims of the project

APIs for allocating memory, so a hybrid approach where small allocations go through
the SLAB allocator and the rest go through system’s allocator will be investigated. This
hybrid approach will use the traditional malloc and free interface and implement a list
of slabs that the implementation can use in order to speed up allocation times.

In order to see the improvements (or lack there of), a set of benchmarks should be created
in the interest of properly comparing both allocators and analyze possible bottlenecks that
could arise in the design and implementation of the custom hybrid allocator.

All this being said, these are the specific objectives of the project:

• Build a modified user-space version of the SLAB allocator.

• Test the performance of the SLAB allocator.

• Integrate the SLAB allocator as a fast path over malloc.

• Test the performance and possible bottlenecks of the integration

3. CHAPTER

Design and implementation

This chapter describes how the slab allocator was implemented in user-space and how the
mechanism to automatically use slabs was implemented in a low overhead way. As the
slab allocator’s API is not how current C programs interact with the heap, a small bridge
had to be constructed to utilize slabs transparently. The source code of the implementation
and the benchmarks (see Chapter 4) can be found in GitHub1

3.1 Original slab allocator

The slab, as described by Bonwick, is an object cache used to allocate and construct ob-
jects in a fast manner. Each slab has a front end and a back end, each for a specific need:
the front end interface is used by the user to allocate and free memory; and the back end

interface is used by the slab in order to grow or shrink its size based on kernel events
(such as memory pressure) or capacity (in order to grow it’s size when it’s getting full).
Both of those interfaces can be seen in Figure 3.1.

Internally, the slab maintains a reference count and a list of free buffers. Each buffer is
handled by a structure called bufctl which maintains the linkage and buffer pointer (as
it can be seen in Figure 3.2). Still, this logical layout can not be directly transferred into
small sized buffers, as it’s bufctl would occupy as much as the buffers by themselves.
Thus, for small size slabs, the buffer itself serves as the linkage by allocating an extra
word.

1https://github.com/ikergalardi/userspace-slab-allocator

7

https://github.com/ikergalardi/userspace-slab-allocator

8 Design and implementation

Slab

allocate

free

front-end back-end

reap

grow

Figure 3.1: Interfaces of the original slab allocator

3.2 User-space slab allocator

The aforementioned architecture works well in the kernel, as the allocator can be tightly
integrated with the kernel and receive events and statistics about memory pressure. But as
user-space lacks those statistics and tight integration, the backend becomes useless. Thus,
for the user-space allocator, the decision to completely remove the backend was done as
it would greatly simplify the implementation. The mechanisms for growing and shrinking
are still relevant in user-space, so that responsibility has been changed to another structure
called slab pool.

The implementation is laid out in memory as shown in Figure 3.3 occupying the whole
page for allocations. The header stores basic information such allocation size on that slab,
the pointer to the start of the bufctl structure, a pointer to the start of the allocable buffers
and a magic number in order to identify if a page is used as a slab or by other things. The
bufctl structure is used as a linked list of buffers and to store its status.

slab

bufctl bufctl bufctl bufctl

buffer buffer buffer buffer

Figure 3.2: Logical view of the original slab

3.2 User-space slab allocator 9

header bufctl bufctl .. buffer buffer

page

Figure 3.3: Structure of slab allocator’s page

Even though physically the bufctl structure is laid out as an array, internally it works
like a linked list by having the previous and next bufctl’s index (apart from buffer’s
state, busy or free). This architecture leads to a simple optimization to achieve constant
time allocations while maintaining a small sized structure. By knowing the index on the
physical array of the structure, the buffer it points to can be easily computed, while the list
can be reordered in order to have free buffers first and make allocations in constant time.
This strategy is what the original slab allocator uses in order to reduce allocation times,
but the user-space implementation differs by grouping all the bufctls instead of having
each bufctl next to it’s buffer.

As mentioned before, in order to achieve constant time allocations, the bufctl list order
is modified for every allocation or deallocation to maintain free buffers first. This is done
by moving allocated buffers to the end and moving by moving freed buffers to the start of
the list. This way, if the first bufctl is busy, means that the whole slab is full and another
needs to be created. Pseudocode shown on Listing 3.1 explains the way allocations and
deallocations are performed.

1 void* allocate(slab) {

2 slab.bufctl[0].isfree = false;

3 ptr = ptr_of_bufctl(slab.bufctl[0])

4 move_bufctl_to_end(slab.bufctl[0])

5 return ptr;

6 }

7 void deallocate(slab, ptr) {

8 index = get_index_of_bufctl(ptr);

9 slab.bufctl[index].isfree = true;

10 move_bufctl_to_start(slab.bufctl[index]);

11 }

Listing 3.1: Allocation/deallocation algorithms of the slab

With that reordering, we can assume that the list will be on a state similar to what is shown

10 Design and implementation

free free ... busy busy

Figure 3.4: Example list state for a slab

on Figure 3.4. Knowing that, we can assume that if the first slab is busy, the whole slab is
full. Thus, the algorithm can allocate inside the slab in constant time.

As the implementation has lost the capabilities of growing and shrinking, that responsi-
bility is passed to a new structure called slab pool, that will manage lists of slabs and will
grow or shrink it as it needs.

3.3 The slab pool

As mentioned on the section before, the slab itself has lost the capabilities of growing and
shrinking in order to simplify the implementation. So, in order to add the same function-
ality, the structure called slab pool has been created.

slab slab slab slab

Figure 3.5: Logical view of a slab pool

The slab pool is a doubly linked list of slabs (as it can be seen in the Figure 3.5) that is
able to allocate and free slabs to remove unnecessary slabs or allocate more when needed.
It provides the same API as the slab, but this time, whenever there is not enough space to
allocate a new buffer, it automatically creates new slabs.

As with the slab itself, the slab pool tries to maintain favorable ordering in order to reduce
the time searching for slabs with available space. A similar strategy has been taken, but
taking into account that a slab can have three states (compared to the two states of a buffer,
busy or full): empty, partial or full. In order to have a situation similar to what’s shown on
Figure 3.6, partial slabs are considered empty as they can still allocate at least one buffer.
Actions taken for each allocation/deallocation are shown on the Listing 3.2.

At first, checking for both the first and the second slab for space seems strange; but it’s
important to note that when several slabs are appended at once (as explained later), the
first slab can become full while the rest are not touched.

3.3 The slab pool 11

1 void* allocate(pool) {
2 if(pool.slab[0].hasspace)
3 return allocate(pool.slabs[0])
4

5 move_slab_to_end(pool.slabs[0])
6 if(pool.slab[0].hasspace)
7 return allocate(pool.slabs[0])
8

9 append_new_slabs_at_start()
10 return allocate(pool.slabs[0])
11 }
12 void deallocate(pool, ptr) {
13 index = get_index_of_slab(ptr);
14 deallocate(pool.slabs[index]);
15 move_slab_to_start(pool.slabs[index]);
16 }

Listing 3.2: Allocation and deallocation algorithm for slab pool

It is worth mentioning the cost of a system call on program runtimes, specially when
the operating system kernel has to do heavy work or multiple small work. This was a
problem for the slab pool, as allocating pages one by one made so that when applications
did allocations heavily, the slab pool would spend most of it’s time mapping pages into the
virtual address space. Other small problem was when the application had many temporary
buffers, as this would lead to a sequence of unnecessary mapping/unmapping that could
be avoided. To solve this, the slab pool maps several pages in a single mmap system call
and with the help of a simple heuristic tries not to unmap parts of the virtual address space
unnecessarily.

The aforementioned heuristic keeps track of how many slabs have still enough space to
allocate on them, and with that knowledge tries to keep enough slabs in order to reduce
unnecessary slab creation and destruction. When the heuristic considers that there are
enough empty slabs, the next slabs that get empty are automatically destroyed. During
testing, there were many scenarios where the allocation pattern lead to destroy a slab
and immediately create another one, by keeping a buffer of slabs available that kind of
behaviour is mostly mitigated.

partial/free partial/free ... busy busy

Figure 3.6: Example list state for a slab

12 Design and implementation

3.4 Putting it all together

Now that the main structures are explained, we can put it all together in order to provide
the typical malloc / free interfaces. For this, several slab pools are needed for each
size. As previously mentioned, the idea behind this bridge is to provide a fast path over
the system memory allocator, so having the correct configuration of slab pools becomes
important for the specific use case.

At the start of the program, the allocator creates several slab pools of different sizes, and
whenever the smalloc function is called, the allocator searches in the slab pools in order
to find a pool with enough size. In the case that no suitable pool is found, the allocator
uses the system malloc function as a last resort.

For the sfree function, the allocator searches for a magic number at the start of the page,
in order to see if the allocated pointer was provided by the system allocator. If that’s
the case, the allocator simply calls system’s free and returns. If that’s not the case, the
allocator goes through all the slabs until one of them is able to deallocate the pointer.

Summarizing, both functions smalloc and sfree follow the traditional heap manipula-
tion API, and thus, they can be easily integrated into any program.

4. CHAPTER

Experimental set-up

This chapter describes how the user-space slab allocator was benchmarked and compared
to glibc’s allocator by creating a synthetic benchmark that could be configurable for dif-
ferent size allocation patterns, and how real world applications were ported to use the slab
allocator.

4.1 Synthetic benchmarks

The benchmarking process is going to be divided into two distinct parts: performance test-
ing using synthetic benchmarks and performance testing using a real world application.
Synthetic benchmarks are traditionally used to simulate workloads and test the perfor-
mance in those simulated cases. In this case, the main use for the synthetic benchmarks
is to test favorable and not so favorable cases in order to properly study the the poten-
tial benefits and drawbacks. Using real world world applications helps see if the tested
performance benefits and drawbacks are reflected in real world workloads.

The first synthetic benchmark created was the random size allocation benchmark that
makes allocations in mass, selecting the size with the help of the beta distribution. The
beta distribution takes two parameters in order to give different forms. For example, if the
parameters given are α = 2 and β = 20, the form that the distribution takes can be seen
in the Figure 4.1.

13

14 Experimental set-up

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

x

P
(X

 =
 x

)

Figure 4.1: Beta distribution given the parameters α = 2, β = 20

With the help of the GNU Scientific Library1, we can choose at runtime the allocation
size, given a maximum and a minimum. With this, we can model different allocation
size scenarios in order to test the speed benefits when targeting small sizes (favorable to
the slab allocator) and to test the penalties when targeting bigger allocation sizes (which
won’t even touch the slab allocator in most cases). Several parameters have been selected
for size distribution and allocation lifetime. The selected values try to:

• Show the speedup when allocations always go through the slab allocator.

• Show a more "realistic" situation where some values go through system allocator
and other through the slabs.

• Show the performance penalties when the slabs are not touched.

• Show the behavior of the allocator on different allocation patterns.

Knowing the aforementioned intentions, the selected parameters can be seen on Figure
4.2. With the first and the last distributions, we can test both extremes, when every al-
location uses the slab allocator and no allocation uses the slab allocator. Meanwhile, the
second distribution is a middle ground, a more "realistic" workload for the allocator.

Apart from allocation sizes, the order in which allocations and deallocations are made
can take effect on performance. So another benchmark was created in order to address
this. This second synthetic benchmark will create an array of operations that later will be

1https://www.gnu.org/software/gsl/

https://www.gnu.org/software/gsl/

4.1 Synthetic benchmarks 15

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

x

P
(X

 =
 x

)

α = 20, β = 2

0

1

2

3

0.00 0.25 0.50 0.75 1.00

x

P
(X

 =
 x

)

α = 10, β = 10

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

x

P
(X

 =
 x

)

α = 2, β = 20

Figure 4.2: Distributions used for size selection.

16 Experimental set-up

performed. The parameter given to the benchmark is the average spacing of the malloc

and its respective free is called lifetime (denoted by the letter d). When creating the
operations array and a malloc operation is placed, it’s respective free operation will be
placed d operations later.

In the case of the lifetime synthetic benchmark, the distance values 20,200,2000,20000
have been selected according to some patterns observed on other applications like cfrac

and dash.

4.2 Cfrac

It is important to always benchmark with real world applications, for this, the chosen real
world application has a beneficial allocation pattern, as when those patterns do not occur
the slabs aren’t even touched, and those are easily tested synthetically (patterns that don’t
use slabs will simply use glibc’s allocator, so the performance differences can be tested
more easily synthetically).

The used application is Cfrac [Collins, 1999], which is a general purpose factorization al-
gorithm used for Microsoft’s mimalloc benchmark suite 2 in order to test the performance
of an allocator for small short-lived allocations. As the pattern and sizes in which this
algotithm uses are the best case scenario for the slab allocator in theory, this benchmark
will be used in order to test real world performance benefits.

4.3 Benchmarking environment

In order to have a proper environment for benchmarking, a server using a Intel(R) Xeon(R)

CPU E5-1607 v3 @ 3.10GHz CPU and Ubuntu 22.04 LTS was used. It is important to use
a server in order to gather benchmarking information, as servers typically do not have
as much operating system noise as desktops or laptops have (unpredictable background
processes like automatic updates, changing power needs on battery, etc.).

It is important to note that changes in hardware should not affect much on the results.
Of course, execution time may vary from processor to processor as certain processors are
faster or slower, but metrics like acceleration factor should not be affected as no processor
specific tweaks have been made.

2https://github.com/daanx/mimalloc-bench

https://github.com/daanx/mimalloc-bench

5. CHAPTER

Analysis of the results

This chapter describes the obtained results after running the aforementioned benchmarks.
The showed results are the average of 10 executions of the same benchmark and its stan-
dard deviation.

5.1 Allocation size synthetic benchmark

Figure 5.1 shows the results obtained after executing the benchmark on the allocation
size synthetic benchmark. As theorized, when allocations use the slab allocator as a fast
path, performance improvements can be seen. Meanwhile, as expected, when the slab
allocator does not even get used as requested memory size slabs are not created, a small
performance penalty can be observed. This benchmark shows the potential benefits the
slab allocator gives over more traditional allocators like glibc’s one.

This benchmark can be used to see the potential benefit that this hybrid allocator has over
glibc’s memory allocator. As this benchmark allocates and deallocates buffers at once, the
benchmark can hide performance bottlenecks when handling all the slab orderings. Still,
the results show promise of the performance improvements this allocator can provide to
applications.

17

18 Analysis of the results

0

2500

5000

7500

10000

glibc alloc glibc free slab alloc slab free

T
im

e
 (

n
s
)

α = 2 , β = 20

0

2500

5000

7500

10000

glibc alloc glibc free slab alloc slab free

T
im

e
 (

n
s
)

α = 10 , β = 10

0

3000

6000

9000

glibc alloc glibc free slab alloc slab free

T
im

e
 (

n
s
)

α = 20 , β = 2

Figure 5.1: Size distribution synthetic benchmark results

5.2 Allocation lifetime synthetic benchmark

Figure 5.2 shows the results obtained after executing the benchmark on the allocation size
synthetic benchmark. With these results the main problem of the tested implementation
arises, as when complex allocation patterns arise the allocator struggles to keep up with
the performance given by the glibc allocator.

This benchmark shows performance bottlenecks not seen on the benchmark before. Using
the perf 1 tool we can inspect that the main problem was list management on the slab pool.
The slab pool, as explained before, tries to maintain an optimal order within all the slabs
to avoid traversing long lists of slabs, but continuous reordering of the slab list slows down
the execution. To improve performance, maybe not reordering the cases when the optimal
order is already there could be a good option.

1https://perf.wiki.kernel.org/index.php/Main_Page

https://perf.wiki.kernel.org/index.php/Main_Page

5.2 Allocation lifetime synthetic benchmark 19

0

20

40

60

80

glibc alloc glibc free slab alloc slab free

T
im

e
 (

n
s
)

d = 20

0

25

50

75

100

125

glibc alloc glibc free slab alloc slab free

T
im

e
 (

n
s
)

d = 200

0

25

50

75

100

125

glibc alloc glibc free slab alloc slab free

T
im

e
 (

n
s
)

d = 2000

0

25

50

75

100

glibc alloc glibc free slab alloc slab free

T
im

e
 (

n
s
)

d = 20000

Figure 5.2: Allocation lifetime synthetic benchmark results

5.2.1 Cfrac algorithm benchmark

Figure 5.3 shows the results obtained after executing the benchmark on the cfrac algo-
rithm. This benchmark does not show any preference of allocator, as the allocation time
does not affect the overall performance of the algorithm. This benchmark is a good indi-
cation that the allocation time does not affect performance on many applications.

The lack of execution time differences was stunning at first, but after carefully analyzing
the impact that allocation time had on the application it was clear. Most of the time the
Cfrac application was simply doing its calculations and only 0.1% of the application time
was the actual allocation/deallocation time. Thus, the performance difference between
both allocators was insignificant.

20 Analysis of the results

0.0

0.3

0.6

0.9

glibc allocator slab allocator

T
im

e
 (

s
)

Figure 5.3: Cfrac benchmark results

6. CHAPTER

Conclusions

As seen on the results, the implemented slab allocator does not show the performance
benefits theorized. This lack of performance comes from two distinct places: time and
implementation details. Even though the slab itself is much faster than the standard al-
locator, when layers of slab management come into place on real world applications or
random pattern benchmarks, the performance lacks as the concrete implementation is not
mature enough. This could be solved by just having more development and testing time.

The size synthetic benchmark shows the promise that the algorithm has, as mass allocation
followed by mass deallocation does not let the implementation have to reorder the slabs
much and the performance benefits of the non-resizable slab shines through. Knowing
this, we can determine that with enough development time, the hybrid approach studied
on this project could help improve performance on certain workloads.

Even though the shown results aren’t good, the fact that certain workloads could ben-
efit from significant performance improvements (like the results shown on random size

benchmark). The flexible nature of the bridge between the SLAB allocator and the tradi-
tional API shows that using a better configuration specifically tailored to an application
or with better tuning of the heuristic could drastically improve allocation times on an ap-
plication, hopefully improving the general performance. Still, as said before, the allocator
itself needs some work in order to show the theorized performance gains.

21

7. CHAPTER

Future work

As this project’s purpose was to test the potential benefits of using the slab allocator in
user-space, the project can be considered finished. Still, to be able to use the available
source code for production, several points need to be considered:

• Project testing has been limited. Although tests are available, there are not many
neither good for production. So before even trying to improve performance or add
features, a better testing framework should be considered.

• Multithreading support is missing, so multithreaded applications can cause race
conditions on the allocator and give unpredictable results. Locks remove race con-
ditions, but global or per slab pool locks should be avoided, as they could cause
performance penalties.

• Implement debugging features for use-after-free-like bugs. The original SLAB allo-
cator article mentions several debugging mechanisms implemented on SunOS, but a
better integration with user-space would be also beneficial (aborting of application,
showing stack trace, etc.).

Testing and multithreading aside, several SLAB specific features were discarded as they
did not directly fit what it was tested. Still, undermentioned features can potentially im-
prove performance and ease of use:

• Investigate slab coloring. Slab coloring is proposed on the SLAB allocator article
in order to improve cache and bus utilization, and thus, performance.

23

24 Anexo

• Improvements to the heuristic should be made, as the current implementation is
quite simple. Maybe kernel specific statistics could be gathered periodically through
system calls and try to remove as many unmappings as possible and return memory
only when necessary.

Bibliography

[gnu,] The gnu allocator. https://www.gnu.org/software/libc/manual/html_

node/The-GNU-Allocator.html. Accessed: 2022-04-02.

[Berger et al., 2000] Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson, P. R.
(2000). Hoard: A scalable memory allocator for multithreaded applications. ACM

Sigplan Notices, 35(11):117–128.

[Bonwick et al., 1994] Bonwick, J. et al. (1994). The slab allocator: An object-caching
kernel memory allocator. In USENIX summer, volume 16. Boston, MA, USA.

[Collins, 1999] Collins, D. C. (1999). Continued fractions. The MIT Undergraduate

Journal of Mathematics, 1:11–20.

[Evans, 2006] Evans, J. (2006). A scalable concurrent malloc (3) implementation for
freebsd. In Proc. of the bsdcan conference, ottawa, canada.

[Ramakrishna et al., 2008] Ramakrishna, M., Kim, J., Lee, W., and Chung, Y. (2008).
Smart dynamic memory allocator for embedded systems. In 2008 23rd International

Symposium on Computer and Information Sciences, pages 1–6.

25

https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html

	Summary
	Contents
	List of Figures
	Introduction
	The aims of the project
	Design and implementation
	Original slab allocator
	User-space slab allocator
	The slab pool
	Putting it all together

	Experimental set-up
	Synthetic benchmarks
	Cfrac
	Benchmarking environment

	Analysis of the results
	Allocation size synthetic benchmark
	Allocation lifetime synthetic benchmark
	Cfrac algorithm benchmark

	Conclusions
	Future work
	Bibliography

