
Degree in Computer Engineering
Computer science

End of degree work

Benchmarking the performance and energy
consumption of the AVX512 and VNNI

instruction sets

Author

Jon Arriaran Cancho

2022

Degree in Computer Engineering
Computer science

End of degree work

Benchmarking the performance and energy
consumption of the AVX512 and VNNI

instruction sets

Author

Jon Arriaran Cancho

Director(s)
Jose Antonio Pascual

Contents

Contents v

List of Figures ix

Abstract 1

1 Introduction 3

2 The aims of the project 5

3 Project management 7

3.1 Description of the phases and their features 7

3.1.1 Management phase . 8

3.1.2 Development phase . 9

3.1.3 Documentation of the project . 9

3.2 Estimations . 9

3.3 Deviations . 10

4 Preliminaries 11

4.1 Introduction to the Project Deployment Cluster 11

4.2 Slurm Workload Manager introduction 13

4.3 Introduction to RAPL program . 14

4.4 Singularity containers introduction . 15

v

CONTENTS

5 Zagreus Benchmark Development 17

5.1 Zagreus development and explanation 17

5.1.1 main.c and globals.h files . 18

5.1.2 avx512.c and avx512.h files . 22

5.1.3 avx512_vnni.c and avx512_vnni.h files 25

5.1.4 Zagreus makefile . 29

5.2 Zagreus benchmark execution description 29

6 Energy analysis of the executions 35

6.1 What is wanted to get . 35

6.2 How RAPL works . 36

6.3 Creation of RAPL launcher scripts . 36

6.4 Changes done to Zagreus to implement RAPL 37

7 Analysis of the results 39

7.1 AVX512 and VNNI comparison . 40

7.2 VNNI instructions comparison . 43

7.2.1 Size configuration analysis . 43

7.2.2 Execution modes analysis . 44

7.3 Analysis of the Zagreus execution inside Singularity 45

8 Final conclusion and future work 47

Bibliography 49

Appendices

A Execution result formatting and chart generation 53

A.1 get_results.py definition and explanation 53

A.1.1 Result taking and formatting code part 54

A.1.2 Chart generating part . 58

vi

B Energy consumption chart generating additions 63

C Singularity containers 67

C.1 What is wanted to get . 67

C.2 Creation of RAPL launcher scripts . 68

vii

List of Figures

3.1 Estimation of tasks and their final required time. 10

4.1 Physical Description of node 150 . 12

4.2 RAPL example . 15

5.1 main.c libraries . 18

5.2 main.c parameter managing . 21

5.3 main.c behaviour execution . 21

5.4 avx512.c private variables initializations 22

5.5 avx512.c 1, 2, 3 execution mode descriptions 23

5.6 avx512.c 4 and 5 execution mode descriptions 24

5.7 avx512_vnni.c variables description . 25

5.8 avx512_vnni.c 1 to 4 execution modes description 26

5.9 avx512_vnni.c 5 execution mode description 27

5.10 _mm512_dpbusd_epi32(src, a, b) instruction description 27

5.11 _mm512_dpbusds_epi32(src, a, b) instruction description 28

5.12 _mm512_dpwssd_epi32(src, a, b) instruction description 28

5.13 _mm512_dpwssds_epi32(src, a, b) instruction description 28

5.14 makefile file description . 29

5.15 launcher script description . 30

ix

LIST OF FIGURES

5.16 launcher_info script description (SBATCH part) 30

5.17 launcher_info script description (BASH part) 32

6.1 launcher_rapl script description . 37

6.2 launcher_rapl_info script description . 37

6.3 Variables initialization example for energy consumption data reading . . . 38

6.4 Energy and power result examples . 38

7.1 AVX512 vs AVX512+VNNI execution time charts 40

7.2 AVX512 vs AVX512+VNNI frequency charts 41

7.3 AVX512 vs AVX512+VNNI energy charts 41

7.4 AVX512 vs AVX512+VNNI power charts 42

7.5 VNNI size execution time charts . 43

7.6 VNNI size execution time charts . 43

7.7 VNNI size energy charts . 44

7.8 VNNI mode execution time charts . 45

7.9 VNNI mode execution energy and power charts 46

7.10 Singularity usage comparison charts . 46

A.1 .out result type file example . 54

A.2 get_results.py time variables initialization 55

A.3 get_results.py frequency variables initialization 56

A.4 get_results.py execution time taking . 57

A.5 get_results.py average calculation and time variables writing 58

A.6 get_results.py execution frequency taking 58

A.7 get_results.py execution frequency taking 58

A.8 get_results.py chart equations creation 60

A.9 get_results.py chart plotting . 61

x

LIST OF FIGURES xi

A.10 Execution time generated chart example 61

B.1 Power chart generation code for execution mode comparison 64

B.2 Energy chart generation code for size comparison 65

C.1 launcher_sing script description . 68

C.2 launcher_rapl_sing script description 68

C.3 launcher_sing_info script description . 69

C.4 launcher_rapl_sing_info script description 69

Abstract

This project is focused on measuring the execution time, the energy consumption and
the performance of the new instruction set introduced by Intel in the Cascade Lake se-
ries of processors which are called Vector Neural Network Instructions (VNNI). These
instructions are part of the AVX512 instruction set, and they are specifically designed to
accelerate deep learning codes. To analyse the performance of these instructions, a set
of benchmarks will have to be designed and developed. In addition, the impact of using
these instructions inside HPC containers will be also evaluated because HPC clusters are
the natural place to use these high-end architectures.

1

1. CHAPTER

Introduction

The birth of this project was inspired by the most recent Intel Xeon Cascade Lake series
processors, which were released with the possibility of executing VNNI instructions ap-
plying the already available AVX-512 instruction set. A similar behaviour of the VNNI
instruction set has been executed only on GPUs until nowadays, so the performance and
efficiency these instructions could reach on a processor, it is, at least, something unknown
and worth studying.

AVX-512 is a set of CPU instructions that affects storage, compute and network function-
alities. The number 512 in the name of the set refers to the size, in bits, of the register file.
The registers define how much data can be operated within an instruction at a time. Its
predecessor, AVX2, could only compute with a 256 bits register file. So AVX-512 dupli-
cates AVX2 on the number of floating points per seconds (FLOPS) per clock it can reach.
In other words, AVX-512 is able to process twice the number of data elements that AVX2
is able to process. It can also accelerate performance for workloads and use cases, such as
scientific simulations, AI, 3D modelling, cryptography. . .

The fact that the considerable AVX-512 instruction set performance upgrade can be used
alongside VNNI instructions, brings the processors the possibility to may compete with
GPUs. The reason why GPUs are used to execute Vector Neural Network Instructions
similar behaviours, is because Neural Networks need the computational power and per-
formance that GPUs offers. Due to, GPUs are capable of executing simple instructions
with lots of numbers at one time.

3

4 Introduction

A Neural Network [7] consist of a computational learning system that uses a network of
functions to understand and translate a data input in one form into the desired form. The
concept of that feature was inspired by human biology neurons, which understands inputs
from human senses and bring the brain an output from them. While input and outputs
were calculated on different cycles of the instruction execution, the way of execution
itself evolves and improves, decreasing the time to obtain the next output from an input
by increasing the performance of the method to get it.

VNNI uses this execution method for executing some types of complex calculations, as
well as image classification, speech recognition, language translation, object detection
and Artificial Intelligence. The third generation [2] of VNNI originally uses last VPDDP-
BUSD 8-bit instruction type and BFLOAT16 floating-point format, allowing to reach
more efficient and faster results compared to their own older versions.

The main goal of the project is to create and develop a set of benchmarks which will use
these VNNI instructions with AVX-512 set in many ways. So, it could be possible the
evaluation and comparison of the performance and energy efficiency they could obtain.
The set of benchmarks will be executed on a cluster deployed at the Informatics Faculty
of the UPV/EHU in Donostia/San Sebastián. The physical description and the way of
how this cluster is managed is going to be described later. The evaluation will be made
on different scenarios inside this cluster, consisting of many modes of executing the same
main benchmark, in a different amount of cores.

Once the base evaluations were done, the idea is to continue evaluating their performance
with other technologies such as RAPL and inside Singularity HPC containers, for in-
stance, complementing with them the previously made evaluations. Finally, better and
more complete conclusions of the power consumption, execution time and frequency per-
formance of the VNNI instruction set will be drawn.

2. CHAPTER

The aims of the project

As previously stated, this project main goal consist of testing the most recent VNNI in-
struction set with AVX-512 [1] instruction set on the Intel Xeon Cascade Lake series
processors. The main idea is to first execute this test on a cluster using these VNNI on
different ways and configurations. From those executions, an output and conclusions of
the result will be got and taken, comparing the results obtained with the outcome of other
configurations.

The program that will implement the usage of VNNI instructions have to stress the pro-
cessors, as we need to put the processors of the cluster on their execution performance
limit, to see how they respond with different loads. Therefore, the first aim of the project
is going to be creating a set of benchmarks which demands a lot of loads to the processor.

The program will be written in C language, because the C programming language is one
of the few languages that implements the possibility of using the AVX-512 instruction set.
This instruction set can be imported to the program with immintrin.h [4] header, mostly
known as Intel Intrinsics. This package contains all the instructions needed for vectoriza-
tion, as the ones used on AVX-512. The VNNI instructions, which are also included in
the same package, are four in particular. The program will use these one at a time, plus
an additional mixed mode of the four, along with another modes of common AVX-512
instructions. Benchmarks result will contain the execution time of the selected mode and
the frequency of the processors during that test, saving all the results on a .out file type.
However, it is necessary to format these outputs, so we could manage them in a better
way.

5

6 The aims of the project

The second aim of this project entails adding the possibility of capturing the energy con-
sumption as the execution of the benchmark goes. To achieve this, RAPL [10] technology
will be used. This technology is implemented on C language and gets the energy con-
sumption of the processors while it is executing any other thing. The implementation of
this feature implies little changes on the Benchmark, as we need to get the new energy
consumption data.

Finally, the project will also be executed inside Singularity [11] HPC containers [3], which
are supposed to be prepared to execute stressful programs. Singularity technology brings
the potential of using high loads programs without affecting the performance, and that
performance is what is going to be analysed. To sum up, these are the three aims this
project it is based on:

1. Create the benchmark for executing VNNI and AVX512 instructions.

2. Add to the benchmark the energy measure and analysis of the executions.

3. Analysis of the performance of executing the benchmark inside Singularity con-
tainer.

Once these aims are reached and completed, the results will be analysed and compared,
getting a final conclusion of the performance that AVX-512 instruction set and VNNI
instructions could get.

3. CHAPTER

Project management

A planning on a project, through its different stages, is an essential step. A good planing
is capable of identify the risks in the project and helps on the managing the most valuable
resource in a large scale project of this sort, that is, time. The objective of the planing is
to expose every aspect of the project of significance that must be committed in due time
with deadlines in check and to find how to efficiently distribute the tasks in that regard, so
that potential delays can be prevented, and the project can be successfully completed in
time.

The management work will be divided in three main categories, namely: Project manage-
ment, project development and, as the last category, documentation of the project. These
three main phases cover the major aspects and the crucial decisions, as well as how dif-
ficulties have been confronted through the project entire process. The modules of each
phase constitute its focus points that have to be dealt with for the most adequate transition
and evolution towards milestones and goals.

3.1 Description of the phases and their features

The different phases of the project will be explained here to show which has been the
dynamic of the project, how each part alone provides useful guidance and, all in all, a
watchful observation about how the entire process works as a whole.

7

8 Project management

3.1.1 Management phase

The principal focus in this phase is to estimate the cost of different tasks and how the
project could potentially evolve across its duration. Since this is an early phase of the
project, estimating the time, resources and potential risks is of huge importance to be able
to track afterwards if the project is going according to plan or there are some (major)
deviations with regard to how it was planned in the beginning.

After choosing the specific tasks that have to be carried out, the most volatile part consists
on placing them in the correct moment and for the right amount of time. Additionally, the
project has to be tracked periodically to ensure that the milestones set for the project are
being met or if there is need of some readjustments that allow to better handle tasks for
the best possible outcome.

There are three main modules that define the management of the project to take into
account:

• Planning: The main points of the project have been covered, estimating their possi-
ble duration and the resources needed for their realization, as well as searching for
when these objectives can be fulfilled and the order in which they are completed.
The result is a set of activities ordered and placed across the time with their respec-
tive milestones and with a risk management plan to be ready for risks with prior
knowledge on how to avoid them. Finally, the scope of the project is determined.

• Tracking: In order to check whether the objectives are being completed under the
given time and to counter the present risks that can cause unexpected delays, the
project is analysed during its progression. Finding new risks, modifying the mile-
stones and creating new objectives or replacing older ones is the main purpose.

• Communication: This parts joins the previous two modules and an assessment is
conducted to evaluate how is the project progressing and to identify which tasks are
going according to plan and which others are not. All of this is explained in detail to
the directors of the project so that they can be up-to-date and informed of any kind
of alterations in the plans. These issues are handled in periodical meetings when
certain milestones have been finished or when a new risk has emerged. In the end,
the tasks until the next meeting are decided, which are usually intentions for a short
term.

3.2 Estimations 9

3.1.2 Development phase

The project is heavily oriented towards testing and analysing the VNNI commands perfor-
mances in the new Intel Xeon Cascade Lake processors. Most of the development phase
consist on create some programs to execute and test these commands. The development
will be done on different programming languages, using each one on the best situations. C
language will be use on the development of the Benchmark, and Python for the formatting
and analysing of the results got by the Benchmark. The main problems of the develop-
ment phase will be the proper developing of the programs, and the proper execution of
them. It can be from programming issues due to the compilation of the program, to the
warranty of that our results are not influenced by the load of the cluster.

One all of this type of issues are studied, the programs will be developed, with a previous
study of what we want to get as a result, to finally compare and draw conclusions about
them.

3.1.3 Documentation of the project

The last part involves the report and final conclusions of the project, where the most
relevant knowledge and information is gathered about the research conducted, both for
the theoretical part and for the practical application. Since bench-marking requires a good
background, the document relies on the analysis of amount of result and provides charts
that further help to view easily the conclusions and results.

The amount of executions it has to be done through this phase is huge, so it is necessary
to keep a good planing of how storage and manage them.

3.2 Estimations

After covering the three phases that compose the project, the initial estimation of time
and the finally needed amount of time to complete the tasks will be displayed. In bold, the
estimation for a phase is registered, while below, for each phase, each specific task of the
project is broken down belonging to that phase. The estimated time and the final time of
each task are summed for finding out how much time each phase has required in table on
Figure 3.1.

10 Project management

Estimated time Final time
Management phase 65 67
Planning 30 25
Tracking 20 30
Communication 15 12
Development phase 55 84
Benchmark Development 10 8
Result formatting program development 15 25
Chart generator program development 15 25
RAPL implementation 5 20
Singularity Implementation 10 6
Documentation phase 220 210
Benchmark explanation and documentation 30 35
Result formatting program explanation and documentation 20 25
Frequency analysis 30 25
Execution time analysis 30 25
Energy Consumption analysis 50 40
Final conclusion discussion 40 45
Find out possible future work 20 15
Total amount of time 340 361

Figure 3.1: Estimation of tasks and their final required time.

3.3 Deviations

The deviations occurred have altered the initial planning, requiring some modifications in
the task and even including a new task that wasn’t intended in the first place. Some other
minor deviations are also addressed.

The major deviation corresponds to getting and formatting correctly the results obtained
by the program developed in the first aim. Due to the addition of the other technologies,
the raw results of the benchmark add more lines of values to read, so the first format-
ting program version does not create the results in the correct way. This program will be
changed first with the addition of RAPL to measure energy and power, and also changed
for a second time when it was going to be launched by Singularity. The other tasks of the
project were done as expected and planned, taking more time than the expected on some
tasks of the documentation phase.

4. CHAPTER

Preliminaries

On this chapter, a little introduction to different technologies and some basic knowledge
will be given. This is intended to could situate and understand the deep explanations of
all the part that confront the main investigation of this project better. The introductions
will be given respecting the order of their usage during the development of the project.
First, for instance, the cluster where the project will be located is going to be introduced,
because the chapter where this information is necessary is the next to this one.

4.1 Introduction to the Project Deployment Cluster

This project, as mentioned in the introduction chapter, will be carried out by executing
a benchmark program, getting results in many ways and modes. This benchmark must
be executed on a controlled and trusted environment, so the results are as reliable as
possible for their final analysis. It is also necessary suitable processing power, because the
benchmark that is going to be executed, generates many processing loads for its correct
running.

On top of that, the executor processors must include the possibility of using the AVX-512
and VNNI instruction set. For all of these reasons, Priscilla cluster is the perfect choice
to could generate and execute the benchmark on the best conditions. On this section, a
physical and hardware explanation of this Priscilla cluster is going to be described.

11

12 Preliminaries

Priscilla cluster is located on the Informatics Faculty in Donostia/San Sebastián, and
owned by the Intelligent Systems Group1 at the University of the Basque Country. The
cluster is deployed on the first floor of the faculty, next to other type and independent
amount of clusters, and all of them are refrigerated and equipped with the best security
system. Priscilla is built as a cluster. Every node is numbered and each of them have, at
least, two processors of the same type.

The only nodes of the cluster capable of executing the instruction sets the project is based
around are the ones numbered from node 50 to 53 and the node number 150. On the next
Figure 4.1 a physical description of the node 150, the only one from the nodes mentioned
which includes GPUs, is shown:

Figure 4.1: Physical Description of node 150

1http://www.sc.ehu.es/ccwbayes/

4.2 Slurm Workload Manager introduction 13

As you can see on the image, every node has two Intel Xeon Cascade Lake series 4210R
processors, which have the aptitude to execute the already mentioned VNNI instructions
also using AVX-512 instruction set. These two processors count with 10 processor cores
(extendable to 20 by activating hyper-threading) and are connected to each other using a
pair of UPI links.

In addition, on this, and only on node 150, four RTX 2080 TI GPUs are connected by PCI
Express, and working simultaneously with NVLinks. As previously said, nodes between
50 and 53 are exactly the same as the node 150, but with the omission of the GPUs. All
nodes also have 512 GB of DDR4-3200 RAM memory and one TB of SSD memory.

There are more nodes than these mentioned ones on the cluster, but they are uncapable
of running VNNI. Consequently, they are going to be kept out of this explanation. The
whole cluster will be managed by Slurm Workload Manager, which will be introduced in
the section below.

4.2 Slurm Workload Manager introduction

Slurm Workload Manager is an open source, highly scalable cluster management and job
scheduling system for large and small Linux clusters. Slurm does not require any kernel
modifications for operating, and it has three main functionalities.

First of all, it allocates exclusive and/or non-exclusive access to the resources of the cluster
that users can approach for a period of time, so they can perform whatever they want to
execute on the cluster. It also provides a framework for starting, executing and monitoring
work on the set of allocated nodes. And as a final functionality, it arbitrates contention for
resources by managing a queue of pending.

All of these functions can be complemented with optional extra plugins, which are used
for accounting, advanced reservation, gang scheduling, topology optimized resource, re-
source limits and other likes add-ons. Accounting and advanced reservation plugins are
going to be used on this project.

Slurm [12] is based on a centralized manager, slurmctld, to monitor resources and work.
Each cluster (node) has a slurmd daemon, which can be compared to a remote shell: it
waits for work, executes that work, return status, and wait for next work. These daemons
provide fault-tolerant hierarchical communications.

Users have some tools to execute and manage all the job and events they want to carry

14 Preliminaries

out. This user tools include srun to initiate jobs, scancel to terminate queued or running
jobs, sinfo to report system status, squeue to report the status of the jobs and sacct to get
information about jobs that are running or have completed.

But this commands will not be used for launching the main job, just for visualizing the
actual state of the jobs. Instead, Slurm also provides the possibility to run a job from a
sbatch function, which allows users to queue a job from a .sbatch file, where users can
configure a job to run on the way they want.

4.3 Introduction to RAPL program

RAPL energy measurement is a technology aimed to read and measure the energy con-
sumption of any program execution on Linux. RAPL can read Linux kernel results on
three different ways to extract the energy information from there.

The first way is to directly read the files under /sys/class/powercap/intel-rapl/intel-rapl:0

using the Linux kernels powercap [9] interface, which provides a consistent interface
between the kernel and the user space that allows power capping drivers to expose the
settings to user space in a uniform way. This requires no special permissions, and it has
been available since Linux 3.13.

The second way is to use the perf event interface [8], which requires root privileges, and it
is executed as sudo perf stat -a -e "power/energy-cores/" /bin/ls. This tool was introduced
on Linux 3.14, and it is available on all other newer versions. It is also used to read the
performance of an event by the creation of a description file for each executed event or
event group. The last way is to use raw-access to the underlying MSRs [6] under /dev/msr.
This file contains all the information relevant to the CPU, but it is a protected file, so a
root privileges are necessary to read the information.

RAPL is going to be used with the powercap interface, as it is not necessary to provide
privileges. The concept is to read and measure energy performance during the execution
of our tests, so the obtained results could be compared to see what configuration is more
worthy on energy consumption later. The programs produce results like in the following
Figure 4.2:

4.4 Singularity containers introduction 15

Power units = 0.125W
Energy units = 0.00001526J
Time units = 0.00097656s
Package thermal spec: 130.000W
Package minimum power: 51.000W
Package maximum power: 200.000W
Package maximum time window: 0.046s
Package energy before: 48460.887909J
PowerPlane0 (core) for core 0 energy before: 36127.280838J
DRAM energy before: 0.000000J
Sleeping 1 second
Package energy after: 48468.194504 (7.306595J consumed)
PowerPlane0 (core) for core 0 energy after: 36128.297287 (1.016449J consumed)
DRAM energy after: 0.000000 (0.000000J consumed)

Figure 4.2: RAPL example

RAPL could also be used with PAPI, an addition program for reading RAPL values in
different ways, so it can generate and plot some charts. But self generated charts will be
used as explained on the appendix Chapter A, so this tool is not going to be used alongside
the project.

4.4 Singularity containers introduction

Singularity is a container solution created by necessity for scientific and application driven
workloads. It improves the very well-known containers’ usability nowadays, giving better
performance on the scientific and computation (HPC) community. A container consist of
grouping and isolating applications which are going to be executed on a specific operative
system.

Containers also could be seen as a machine virtualization, which contains the operative
system and all applications want to be included on it. With that, it is possible to group
different operative system for executing and use any application, because they connect and
use the container, which includes all needed to execute. Being a controlled environment,
a cluster could be installed on it, so any host who connects to the cluster, no mattering
which operative system is using, can use what it is inside the container.

The only bad side of the containers is that their use reduces the performance when talking
about executing so demanding programs, as the ones used on scientific and computa-
tion fields. Here is when Singularity appears, to provide us the possibility of executing a
demanding program, such our VNNI instruction, without the downgrade on their perfor-
mance.

16 Preliminaries

Singularity also is able to save a container as an image file. This file contains the entire
container and can be copied, shared, archived and more, giving to Singularity such a good
mobility of compute. Image file mobility reasons also gives a very good reproducibility.
As other container use cases, like Docker, it is necessary to install first all the needed into
the container. From operative system to every package and application needed to perform
what it is wanted on it, but this is something that is going to be explained later on this
document, side by side, with the explanation of what is what it is going to be configured.

5. CHAPTER

Zagreus Benchmark Development

The purpose of this chapter is to explain deeply all the development carried on the creation
of the main program will be used on the project. The idea is to explain all the parts that
confront the program, explaining why and how that way of development is taken on each
part one by one. As it is necessary for a correct understanding of a program, partially some
figures will be implemented along with the explanation of the moment, representing the
exact part of the code is referring to as line numbers. First of all, an explanation about the
development of the program will be given, continuing with an explanation about how it
will be executed, separated on their respective sections.

5.1 Zagreus development and explanation

The chosen name for the benchmark it is going to execute on the described cluster is
Zagreus. This program will execute the repeatedly referred VNNI instruction set with
AVX-512, but on this section, a deeper explanation and description of the program will
be done step by step. The program was made on C language, because the C programming
language is one of the few languages capable of using the instructions and importing
the needed packages, together with C++ and assembly languages. The whole program is
separated on different C files, giving each file one specific role in the program.

17

18 Zagreus Benchmark Development

5.1.1 main.c and globals.h files

The main C file of Zagreus is named main.c, and it is the heart of our program, where
the other parts of the program are managed. These are the necessary libraries for the main
file of the program (all the references to a specific part of some codes are shown with the
same code lines as in the program):

2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <immintrin.h>
5 #include <time.h>
6 #include "avx512_vnni.h"
7 #include "avx512.h"

Figure 5.1: main.c libraries

As we can see on the Figure 5.1 above, stdio.h and stdlib.h libraries are the first two
imported on the program. These are two of the most important header files used in C pro-
gramming. stdio.h is the header file for Standard Input Output and contains the usually
used printf() and scanf() declarations. Meanwhile, stdlib.h header file contains declara-
tion of malloc(), free(), rand() and atoi(). Furthermore, time.h header file contains some
declarations for getting the actual time of the device during the execution of the program.
However, immnitrin.h is the most important header file of all of them. That is because it
is use in other C files too and contains the declarations for could execute AVX-512 and
VNNI instruction sets.

In addition to this already created headers, another created headers will be imported to
the main program. These avx512_vnni.h and avx512.h headers, will contain declarations
of functions created on the other C files of the program, those that execute a specific role
of the program. As it will be shown and described later in this section, these example of
header contains declarations that are going to be used on the program. Once necessary
libraries are successfully imported on the main file, some final global variables will be
created to use on the execution, being below listed variables the parameters who describe
the behaviour of Zagreus benchmark:

5.1 Zagreus development and explanation 19

• mode: this variable is used for selecting the main execution mode of the program.
There are only two program behaviours. First of them, it is aimed to execute only
AVX-512 base instructions just for setting a ground of information, for later could
compare it with AVX-512 and VNNI combined instructions performance. The sec-
ond behaviour is aimed to execute those VNNI instructions with AVX-512. There-
with, the parameter is saved as int type number, where:

- [mode = 1] equals to AVX-512

- [mode = 2] equals to AVX-512 + VNNI.

• command_num: this variable is used for describing the quantity of instructions
will be executed. This value will be multiplied by 1,000,000, just for simplifying
the way at the time of passing parameters. For example, if 500 number is given as
the parameter input, 500 will be stored as int type number but will be multiplied
and used as 500,000,000 later.

• m512_size: AVX-512 consist of instructions that use a number type sized by 512
bytes. This number could be filled in different ways, but in the project only four
types will be used to see if different sizes could take effect and change the perfor-
mance of the benchmark. This is going to be only used on VNNI instruction set,
due to there are the only instructions that use m512 number type. This parameter
will save the chosen size for the instance of the execution, creating a 512 byte size
number as in the following examples:

- [m512_size = 8] 64 numbers of 8 byte size to create a m512 number type.

- [m512_size = 16] 32 numbers of 16 byte size to create a m512 number type.

- [m512_size = 32] 16 numbers of 32 byte size to create a m512 number type.

- [m512_size = 64] 8 numbers of 64 byte size to create a m512 number type.

20 Zagreus Benchmark Development

• exec_mode: in addition to the behaviours of the Zagreus benchmark, the program
has also the possibility to chose between five different modes of executing the main
program behaviour. This parameter saves which of the five execution modes will be
executed for the chosen main behaviour. These are the ten configurations altogether:

For mode 1 behaviour (AVX-512)

- [exec_mode = 1] only a mul type command.

- [exec_mode = 2] mul and add type commands.

- [exec_mode = 3] mul, add and reduce type commands.

- [exec_mode = 4] 3mul, 2add and reduce type commands.

- [exec_mode = 5] 3mul, 3add, 2div and reduce commands.

For mode 2 behaviour (AVX-512 + VNNI)

- [exec_mode = 1] _mm512_dpbusd_epi32() instruction execution.

- [exec_mode = 2] _mm512_dpbusds_epi32() instruction execution.

- [exec_mode = 3] _mm512_dpwssd_epi32() instruction execution.

- [exec_mode = 4] _mm512_dpwssds_epi32() instruction execution.

- [exec_mode = 5] on each iteration of command_num one of the previous four
instruction will be executed randomly.

These parameters will be saved as global variables, which could be used on the other
files of the program by a helper header called globals.h. On this header, these parameters
will be described as extern int type and just including the header on the other files the
variables will be accessible to use. All the executions and instructions functionalities will
be explained deeper later on their respective C file development descriptions. But this is
all in all, the parameter managing done by main.c program, implemented on the program
with the next lines of Figure 5.2:

5.1 Zagreus development and explanation 21

21 //Get parameters
22 //---
23 mode = atoi(argv[1]);
24 command_num = atoi(argv[2]);
25 m512_size = atoi(argv[3]);
26 exec_mode = atoi(argv[4]);
27 //---
28

29 //Detection of errors on arguments
30 //---
31 if (mode <= 0 || mode > 3) {
32 fprintf(stderr, "Error on mode selection \n"
33 "Argument has to be between 1-3 \n");
34 return 1;
35 }
36 else if (command_num <= 0) {
37 fprintf(stderr, "Error on command_num selection \n"
38 "Argument has to be higher than 0 \n");
39 return 1;
40 }
41 else if (m512_size <= 0) {
42 fprintf(stderr, "Error on vectors sizes selection \n"
43 "Argument has to be higher than 0 \n");
44 return 1;
45 }
46 else if (exec_mode <= 0 || exec_mode > 5) {
47 fprintf(stderr, "Error on execution mode selection \n"
48 "Argument has to be between 0 and 5 \n");
49 return 1;
50 }
51 //---

Figure 5.2: main.c parameter managing

After the parameters are read and formatted correctly, the main.c file executes the correct
configuration, looking to the mode parameter to execute the correct behaviour in the exe-
cution. On this part of the program, the current time will be taken for once the execution
is done, take the time again and print the execution time by calculating the different be-
tween the two measurements. As you can see on the below Figure 5.3, the execution of
the behaviour itself is managed by two functions described on the execute_avx512() and
execute_avx512_vnni() external C files:

55 clock_gettime (CLOCK_REALTIME, &t0);
56 if (mode == 1) { execute_avx512();}
57 if (mode == 2) { execute_avx512_vnni();}
58 clock_gettime (CLOCK_REALTIME, &t1);
59 tex = (t1.tv_sec - t0.tv_sec) + (t1.tv_nsec - t0.tv_nsec) / (double)1e9;
60 printf("%.2fs \n", tex);
61

Figure 5.3: main.c behaviour execution

22 Zagreus Benchmark Development

5.1.2 avx512.c and avx512.h files

This part of the program is aimed to execute the AVX-512 instructions, and it is based on
a single function named execute_avx512(). The header program avx512.h just references
to execute_avx512(), so the inclusion of the header on other files of the program will
allow using the function. The description of this execute_avx512() is stored on the C type
file. As previously stated in the 5.1.1 Subsection where the parameters were explained,
this behaviour of the benchmark has five execution modes. Before execute any of these
modes, some allocations and initializations have to be done.

10 int i, j;
11 int reduce;
12 float *a, *b;
13 __m512 va, vb, vmul, vadd, vdiv;
14

15 //Reserve memory for helpful vectors
16 a = (float *) aligned_alloc (64, 64*sizeof (float));
17 b = (float *) aligned_alloc (64, 64*sizeof (float));
18

19 //Initialize vectors with random numbers
20 srand (1);
21 for (int j = 0; j < 64; j++) {
22 a[j] = (rand() % 10);
23 b[j] = (rand() % 10);
24 }

Figure 5.4: avx512.c private variables initializations

As it is shown on the code part of Figure 5.4 above, two named a and b float list variables
are reserved on the memory, using aligned_alloc() function included on stdlib.h header.
After the reservation of these variables, they will be initialized by rand() instruction, so
there are never two same executions, getting as a consequence more reliable results.

Once all of this is done, the execution mode will be executed, divided on two for functions.
The first of them will be performed the same time as the command_num parameter, and on
each cycle of this loop, the execution mode will be done 1,000,000 times. This is done on
this way because of the limits of an int number type, due to the result of the multiplication
of the parameter and 1,000,000 exceeds the maximum size of an int. The next Figure 5.5
describes the different execution modes:

5.1 Zagreus development and explanation 23

26 switch(exec_mode) {
27 //Execution mode 1, only a mul command
28 case 1:
29 for (i = 0; i < command_num; i++) {
30 for (j = 0; j < 1000000; j++) {
31 va = _mm512_load_ps(&a[0]);
32 vb = _mm512_load_ps(&b[0]);
33 vmul = _mm512_mul_ps(va, vb);
34 }
35 }
36 break;
37

38 //Execution mode 2, mul and add command
39 case 2:
40 for (i = 0; i < command_num; i++) {
41 for (j = 0; j < 1000000; j++) {
42 vadd = _mm512_setzero_ps();
43 va = _mm512_load_ps(&a[0]);
44 vb = _mm512_load_ps(&b[0]);
45 vmul = _mm512_mul_ps(va, vb);
46 vadd = _mm512_add_ps(vadd, vmul);
47 }
48 }
49 break;
50

51 //Execution mode 3, mul, add and reduce command
52 case 3:
53 for (i = 0; i < command_num; i++) {
54 for (j = 0; j < 1000000; j++) {
55 vadd = _mm512_setzero_ps();
56 va = _mm512_load_ps(&a[0]);
57 vb = _mm512_load_ps(&b[0]);
58 vmul = _mm512_mul_ps(va, vb);
59 vadd = _mm512_add_ps(vadd, vmul);
60 reduce += _mm512_reduce_add_ps(vadd);
61 }
62 }
63 break;

Figure 5.5: avx512.c 1, 2, 3 execution mode descriptions

There are only five functions used on these execution modes. As you can see, the more
you increase the number of the execution mode, more increases the total load of it. The
first thing done on each execution is to charge the previously reserved randomly initialized
vectors on _m512 type variables, using _mm512_load_ps() or _mm512_setzero_ps() for
initializing the helper variables.

After this first steps, different amount of multiplications, sums, divisions and reduc-
tions were done by using _mm512_mul_ps(), _mm512_add_ps(), _mm512_div_ps() and
_mm512_reduce_add_ps() respectively. The same happens with execution modes 4 and 5
described on the Figure 5.6:

24 Zagreus Benchmark Development

65 //Execution mode 4, 3mul, 2add and reduce command
66 case 4:
67 for (i = 0; i < command_num; i++) {
68 for (j = 0; j < 1000000; j++) {
69 vadd = _mm512_setzero_ps();
70 va = _mm512_load_ps(&a[0]);
71 vb = _mm512_load_ps(&b[0]);
72 vmul = _mm512_mul_ps(va, vb);
73 vmul = _mm512_mul_ps(va, vmul);
74 vadd = _mm512_add_ps(vadd, vmul);
75 vmul = _mm512_mul_ps(vadd, vmul);
76 vadd = _mm512_add_ps(va, vmul);
77 reduce += _mm512_reduce_add_ps(vadd);
78 }
79 }
80 break;
81

82 //Execution mode 5, 3mul, 3add, 2div and reduce command
83 case 5:
84 for (i = 0; i < command_num; i++) {
85 for (j = 0; j < 1000000; j++) {
86 vadd = _mm512_setzero_ps();
87 va = _mm512_load_ps(&a[0]);
88 vb = _mm512_load_ps(&b[0]);
89 vmul = _mm512_mul_ps(va, vb);
90 vmul = _mm512_mul_ps(va, vmul);
91 vadd = _mm512_add_ps(vadd, vmul);
92 vmul = _mm512_mul_ps(vadd, vmul);
93 vadd = _mm512_add_ps(va, vmul);
94 vdiv = _mm512_div_ps(vadd, vb);
95 vdiv = _mm512_div_ps(vdiv, va);
96 vadd = _mm512_add_ps(vdiv, vmul);
97 reduce += _mm512_reduce_add_ps(vadd);
98 }
99 }

100 break;
101 }
102

103 //Free used memory
104 free(a);
105 free(b);

Figure 5.6: avx512.c 4 and 5 execution mode descriptions

_mm512_mul_ps(): This instruction performs a multiplication between two _m512 num-
ber types.

_mm512_add_ps(): This instruction performs a sum between two _m512 number types.

_mm512_div_ps(): This instruction performs a division between two _m512 number types.

_mm512_reduce_add_ps(): performs a reduction function for a _m512 number type.

Once the execution is done, the reserved memory is released by free() function and the
program will continue its execution on the main.c file, ending the benchmark as previously
explained, taking the time after execute this part of the code, and calculating the spent time
of the execution.

5.1 Zagreus development and explanation 25

5.1.3 avx512_vnni.c and avx512_vnni.h files

On the same way that avx512.c and avx512.h files work, these two files describes a func-
tion that is used on main.c file. On this case, the function is called execute_avx512_vnni()

and it has a similar functionality as avx512_vnni.c, being possible to use it by import-
ing the header file. On the C type file, the first lines correspond to the description and
initialization of the variables will be use on the next parts of the function.

12 int i, j;
13 srand(1);
14 __m512i src, result, A, B;
15 int a = (rand() % 10) + 1;
16 int b = (rand() % 10) + 1;
17 int c = (rand() % 10) + 1;
18

19 uint64_t arr_a[512 / m512_size];
20 uint64_t arr_b[512 / m512_size];
21 uint64_t arr_src[512 / m512_size];
22 for (int j = 0; j < 512 / m512_size; j++) {
23 switch (m512_size) {
24 case 64:
25 arr_a[j] = (uint64_t) a;
26 arr_b[j] = (uint64_t) b;
27 arr_src[j] = (uint64_t) c;
28 break;
29

30 case 32:
31 arr_a[j] = (uint32_t) a;
32 arr_b[j] = (uint32_t) b;
33 arr_src[j] = (uint32_t) c;
34 break;
35

36 case 16:
37 arr_a[j] = (uint16_t) a;
38 arr_b[j] = (uint16_t) b;
39 arr_src[j] = (uint16_t) c;
40 break;
41

42 case 8:
43 arr_a[j] = (uint8_t) a;
44 arr_b[j] = (uint8_t) b;
45 arr_src[j] = (uint8_t) c;
46 break;
47 }
48 }
49

50 A = _mm512_loadu_si512((__m512i *) & arr_a);
51 B = _mm512_loadu_si512((__m512i *) & arr_b);
52 src = _mm512_loadu_si512((__m512i *) & arr_src);

Figure 5.7: avx512_vnni.c variables description

26 Zagreus Benchmark Development

As you can see on the previous Figure 5.7, three _m512i number type arrays will be ini-
tialized as the base of our function. For this, some random numbers will be generated
and resized with parsing, depending on the _m512_size selected and passed as param-
eter. After the resizing, the main _m512i variables will be initialized by the use of the
_mm512_loadu_si512.

Once the initializations are done, the execution of the instruction will be tested starts. As
in the avx512.c file, the behaviour of the VNNI instruction testing has also five execution
modes, selected by the exec_mode parameter, which are going to be explained following
the next two Figures 5.8 and 5.9.

54 switch (exec_mode) {
55 case 1:
56 for (i = 0; i < command_num; i++) {
57 for (j = 0; j < 1000000; j++) {
58 result = _mm512_dpbusd_epi32(src, A, B);
59 }
60 }
61 break;
62

63 case 2:
64 for (i = 0; i < command_num; i++) {
65 for (j = 0; j < 1000000; j++) {
66 result = _mm512_dpbusds_epi32(src, A, B);
67 }
68 }
69 break;
70

71 case 3:
72 for (i = 0; i < command_num; i++) {
73 for (j = 0; j < 1000000; j++) {
74 result = _mm512_dpwssd_epi32(src, A, B);
75 }
76 }
77 break;
78

79 case 4:
80 for (i = 0; i < command_num; i++) {
81 for (j = 0; j < 1000000; j++) {
82 result = _mm512_dpwssds_epi32(src, A, B);
83 }
84 }
85 break;

Figure 5.8: avx512_vnni.c 1 to 4 execution modes description

On each execution mode from 1 to 4, a specific VNNI instruction will be executed and
tested, command_num parameter described amount of times by a for loop function. How-
ever, on the last fifth execution mode, each cycle of the command_num for function loop,
randomly one of the previous four function will be selected and executed.

5.1 Zagreus development and explanation 27

87 case 5:
88 for (i = 0; i < command_num; i++) {
89 for (j = 0; j < 1000000; j++) {
90 int command;
91 command = rand() % 4;
92 switch (command) {
93 case 0:
94 result = _mm512_dpbusd_epi32(src, A, B);
95 break;
96

97 case 1:
98 result = _mm512_dpbusds_epi32(src, A, B);
99 break;

100

101 case 2:
102 result = _mm512_dpwssd_epi32(src, A, B);
103 break;
104

105 case 3:
106 result = _mm512_dpwssds_epi32(src, A, B);
107 break;
108 }
109 }
110 }
111 break;

Figure 5.9: avx512_vnni.c 5 execution mode description

_mm512_dpbusd_epi32(src, a, b): this VNNI function multiply groups of 4 adjacent pairs
of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, producing
4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit
integer in src, and store the packed 32-bit results in dst.

FOR j := 0 to 15
tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j]))
tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1]))
tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2]))
tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3]))
dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4

ENDFOR
dst[MAX:512] := 0

Figure 5.10: _mm512_dpbusd_epi32(src, a, b) instruction description

_mm512_dpbusds_epi32(src, a, b): this VNNI function multiply groups of 4 adjacent
pairs of unsigned 8-bit integers in a with corresponding signed 8-bit integers in b, pro-
ducing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding
32-bit integer in src using signed saturation, and store the packed 32-bit results in dst.

28 Zagreus Benchmark Development

FOR j := 0 to 15
tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j]))
tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1]))
tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2]))
tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3]))
dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)

ENDFOR
dst[MAX:512] := 0

Figure 5.11: _mm512_dpbusds_epi32(src, a, b) instruction description

_mm512_dpwssd_epi32(src, a, b): this VNNI function multiply groups of 2 adjacent pairs
of signed 16-bit integers in a with corresponding 16-bit integers in b, producing 2 inter-
mediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer
in src, and store the packed 32-bit results in dst.

FOR j := 0 to 15
tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j])
tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1])
dst.dword[j] := src.dword[j] + tmp1 + tmp2

ENDFOR
dst[MAX:512] := 0

Figure 5.12: _mm512_dpwssd_epi32(src, a, b) instruction description

_mm512_dpwssds_epi32(src, a, b): this VNNI function multiply groups of 2 adjacent
pairs of signed 16-bit integers in a with corresponding 16-bit integers in b, producing
2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit
integer in src using signed saturation, and store the packed 32-bit results in dst.

FOR j := 0 to 15
tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j])
tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1])
dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2)

ENDFOR
dst[MAX:512] := 0

Figure 5.13: _mm512_dpwssds_epi32(src, a, b) instruction description

In this case, it is not necessary to free any reserved memory, due to has not been done any
reservation previously. After executing the requested execution mode the requested times
amount, the function will end and the benchmark will continue on the main.c file, taking
and calculating the execution time of it.

5.2 Zagreus benchmark execution description 29

5.1.4 Zagreus makefile

Zagreus benchmark compilation will be done using a makefile. This allows us to could
compile the program in an easier and more comfortable way. As you can see on the next
Figure 5.14 lines, the description of this makefile is something so simple, being the make

command the way of building the program and make clean as the way of deleting the
unnecessary files.

all: main

colors.o: colors.c colors.h
gcc -c colors.c

avx512_vnni.o: avx512_vnni.c avx512_vnni.h
gcc -c avx512_vnni.c -mavx512f -march=cascadelake

avx512.o: avx512.c avx512.h
gcc -c avx512.c -mavx512f

main.o: main.c avx512.h
gcc -c main.c -mavx512f

main: main.o avx512.o avx512_vnni.o colors.o globals.h
gcc -o main main.o avx512.o avx512_vnni.o colors.o -mavx512f -g

clean:
rm -f main *.o

Figure 5.14: makefile file description

It is very important to add the -mavx512f and -march=cascadelake packages on gcc in-
struction, due to without these packages the cluster will not be able to know that VNNI
and AVX512 instructions will be executed on the program, and an error will be shown at
the time of compiling the Zagreus benchmark.

5.2 Zagreus benchmark execution description

As mentioned, the way to execute some program on the Priscilla cluster is managed by
Slurm Workload Manager. So the next scripts were created to automatize the execution of
the benchmark for the best usability of the program. The automatization of the execution
consist of two parts. The first one, passes the parameters to generate the .sbatch file on
the way it is desired and execute it. The second script, takes the parameters passed by the
first script and generates the correct .sbatch file. But they will be better explained with the
below Figure 5.15:

30 Zagreus Benchmark Development

1 #!/bin/sh
2 for i in {1..20}
3 do
4 ./launcher_info $i $1 > slurm.sbatch
5 sbatch slurm.sbatch
6 done

Figure 5.15: launcher script description

launcher is the name for the first script described before. It relates to a single for loop,
which increments the i variable from 1 to 20 values. This variable represents the amount
of cores will be used on the execution of the full benchmark. So in total, twenty exe-
cutions of the benchmark will be done, each of them with a different amount of cores
on a specific cluster node. The node will be selected by the execution of this script, and
passed as parameters to the second script next to the amount of cores on the first line of
the loop. Following, once the .sbatch file was generated, it will be executed by a sbatch

slurm.sbatch command.

For example, an execution of the Zagreus benchmark for getting the first results of it, will
be done by executing a command like: ./launcher 53. On this example we are generating
20 jobs, each of them with different amount of core usage on the node number 53 of
the Priscilla cluster, and the results will be saved on a .out files. This will be explained
together with the next script explanation on Figure 5.16.

1 #!/bin/sh
2 dolar='$'
3 cat <<File
4 #!/bin/bash
5 #SBATCH --job-name=zagreus
6 #SBATCH --output=zagreus_node$2_$1_cores.out
7 #SBATCH --ntasks=$((2*$1))
8 #SBATCH --threads-per-core=1
9 #SBATCH --ntasks-per-core=1

10 #SBATCH --mem-per-cpu=2G
11 #SBATCH --partition=AVX
12 #SBATCH --nodelist=node$2
13 #SBATCH --exclusive

Figure 5.16: launcher_info script description (SBATCH part)

The first look of this launcher_info script seems more convoluted than the launcher one. It
consists of two parts, the first describes and manage Slurm configuration, and the second
one describes the commands will execute on the Slurm execution.

5.2 Zagreus benchmark execution description 31

As you can see on the Figure 5.16, Slurm configuration is given by some labels at the
start of the .sbatch file, so following #SBATCH string some labels could be passed. The
name of the execution and the name of the output file, where the results will be prompted,
are –job-name and –output. In our case, the output file name will be different depending
on the node where it is executing the program and the amount of cores it is using for the
execution.

Continuing, the configuration of the resources will be used by the program it is configured.
The labels for that are –ntask, which defines how many cores of the program will be used
on the execution, and –mem-per-cpu, a label that describes so much memory of the CPU
will be allocated for the execution of the program. –ntask is supplemented by –threads-

per-core and –ntask-per-core, this labels define how many threads will be used per core,
in case that our CPU cores have more than one, and how much ntask could be executed
by a single core. Setting last one to a single nstask per core, it is insured to use one core
of the CPU per each ntask configured before on the –ntask label.

In addition, the –partition one describes which Slurm partition of the cluster is going to
be used on the execution of the program. These partitions collect a group of nodes on
them, so if is wanted to execute something on X numbered node, this labels has to contain
a partition where this X node is included. The different partition list could be deployed by
executing sinfo command on the cluster.

–nodelist describes on which node the configured program will be executed. As explained
just before, the node must be on the partition description. As the last, but not less important
label, –exclusive label will be added. This configuration reserves all the cores of the node
where the program will be executed, ignoring if they will be used or not. This will be done
to prevent any deviations on the results of the benchmark.

Imagine that the program is being executed by only two cores out of twenty available on
the selected node. The remaining eighteen cores will be free for executing on them any
other program, and this could change and decrease the total power of the node, altering
the results of the benchmark, as it could show a decreased performance due to the simul-
taneous executions and communications on the whole node. Allocating all the cores of
the node, it is insured that only the necessary executions will be done during the Zagreus

execution.

32 Zagreus Benchmark Development

15 echo "#AVX mode"
16 for j in {1..5}
17 do
18 echo "#${dolar}j mode"
19 for i in 500 1000 2000 5000
20 do
21 echo "#${dolar}i times"
22 for k in ${dolar}(seq 1 ${dolar}CORE)
23 do
24 ./Zagreus/main 1 ${dolar}i 16 ${dolar}j &
25 done
26 wait
27 echo "#Frecuency"
28 lscpu | grep -e "CPU MHz:"
29 done
30 done
31 echo "#AVX+VNNI mode"
32 for j in 8 16 32 64
33 do
34 echo "#${dolar}j size"
35 for k in {1..5}
36 do
37 echo "#${dolar}k mode"
38 for i in 500 1000 2000 5000
39 do
40 echo "#${dolar}i times"
41 for l in ${dolar}(seq 1 ${dolar}CORE)
42 do
43 ./Zagreus/main 2 ${dolar}i ${dolar}j ${dolar}k &
44 done
45 wait
46 echo "#Frecuency"
47 lscpu | grep -e "CPU MHz:"
48 done
49 done
50 done
51 File

Figure 5.17: launcher_info script description (BASH part)

On the Figure 5.17, it is shown the part of the code from the launcher_info script that
describe which commands will be executed on the cluster. This is a simple BASH script
where both behaviours of the Zagreus benchmark will be executed, each of them using all
the configurations possible of the selected behaviour.

Zagreus AVX512 testing behaviour will be launched on the first place, and the parameters
given to the benchmark will be incremented on the next order: command_num and then
exec_mode. This means that the configuration will start with exec_mode = 1, and it will
be executed for the 500, 1000, 2000 and 5000 values of exec_mode, being like that for all
the exec_mode possibilities.

It is important to launch as many as benchmark tests as cores of the node we are using,
and add at the end of the execution command a & symbol, so every node waits to all of
them have finished continuing with the next configuration.

5.2 Zagreus benchmark execution description 33

The second part of the code references to the second behaviour of Zagreus benchmark,
the one that uses the VNNI instructions with AVX512 instructions. It works on the same
way of the previous behaviour, executing all the command_num possible values for each
exec_mode possible values. But, in addition, it executes every exec_mode possible values
for each m512_size values, which are, 8, 16, 32 and 64.

In total, a hundred of configurations of the Zagreus benchmark will be executed and saved
for every node core amount, being two thousands the configurations have to be executed
for a whole test of the benchmark. Doing what has been shown up to now, the test is only
able to get the execution time of the benchmark, because of that, and for complementing
the obtained results, a Linux lscpu command will be executed after every cycle of the
whole test.

This lscpu command returns valuable information of the current status of the CPU. But it
will be used on the script just for getting the frequency value of the CPU after executing
the Benchmark, and complementing with that, the Slurm script result getting, for, in a
future, format, analyse and take conclusions of them.

6. CHAPTER

Energy analysis of the executions

After the first aim is completed correctly, the project is ready to implement a technology
overhead to the achieved until now, complementing the entire functionality with another
type of result. In this case, RAPL will be the technology chosen for getting the energy
consumption of the executions of the Zagreus benchmark, as it was introduced in Section
4.3. Besides, this chapter will bring all the information, collected on different sections,
about the changes done to the actual Zagreus in such a way to obtain this new type of
measures and RAPL implementation.

6.1 What is wanted to get

The main reason to implement this RAPL program is measuring some energy. The used
energy is going to be obtained by measuring the quantity of Joules spent on an execution
of the benchmark. On the same way, the power used on executions will be measured by
Watts. All of this data will be taken from the CPU status during the execution.

The idea, after getting this energy and power information, is to generate some charts of
them, so it simplifies the way of viewing the new measure results. For that it is necessary
to change the program that generates this charts, and thereby, the way of getting this new
information from the raw results created by Zagreus. In addition, it is necessary to do
little changes in the way of executing the benchmark with Slurm, but all of this will be
explained in the next sections.

35

36 Energy analysis of the executions

6.2 How RAPL works

The version1 of RAPL it is going to be used on the program simplifies the utility and
usage of the energy measures, and it is implemented on a bash language. It works reading
the information of the CPU stored on a specific directory of the computer it is executing,
all of this is detailed on its explanation Section 4.3.

So, the functionality of this bash script consist on reading, by a simple cat command of
Linux, on different points of the execution, the information save on the files. After this,
the information taken will be gathered and presented as an output by a printf command.
On the case of the usage it will be given in this project, only two of the printed final results
will be useful for it, but it gives to much more additional, and not less useful measures.

The name of the bash script is rapl_logger.sh and it is so easy to use. It executes by an
execution command of Linux, and it has to be followed by the program that is wanted
to be measured, reaching to having to execute something similar to this ./rapl_logger

<your-app> <params-of-your-app>. It is supposed that RAPL works without having to
set special read permissions of the files it reads, but some troubles happened when the
program was tried on the project. Finally, some permissions were given to RAPL, looking
for simplifying its implementation.

6.3 Creation of RAPL launcher scripts

As it is needed to change the mode of executing the benchmark for implementing RAPL
and measure consumed energy and power, some changes has to be done on the scripts that
launches this benchmark. Similar to the original script that launches the benchmark, that
was explained in a previous Section 5.2. Copying the functionality of the previous script,
a new script called launcher_rapl will be implemented, and it will launch another new
script called launcher_rapl_info that contains the details of generating the .sbatch file for
using RAPL, shown after the next Figure 6.1 as Figure 6.2.

1https://github.com/ulopeznovoa

6.4 Changes done to Zagreus to implement RAPL 37

1 #!/bin/sh
2 for i in {1..20}
3 do
4 ./launcher_rapl_info $i $1 > slurm.sbatch
5 sbatch slurm.sbatch
6 done

Figure 6.1: launcher_rapl script description

22 for k in ${dolar}(seq 1 ${dolar}CORE)
23 do
24 ./Zagreus/rapl_logger.sh ./Zagreus/main 1 ${dolar}i 16 ${dolar}j &
25 done

41 for l in ${dolar}(seq 1 ${dolar}CORE)
42 do
43 ./Zagreus/rapl_logger.sh ./Zagreus/main 2 ${dolar}i ${dolar}j ${dolar}k &
44 done

Figure 6.2: launcher_rapl_info script description

This time the changes are so simple on the launcher_rapl_info, so it is only shown the
lines of the script that changes in comparison to Figure 5.17. It just modifies the way of
executing Zagreus benchmark to put it along RAPL functionalities.

6.4 Changes done to Zagreus to implement RAPL

Some changes have to be done also on how the results are taken for the generation of
the .res formatted result files. In addition, and with these new formatted results that will
contain the energy and power data measured by RAPL, two new type of charts will be
generated. The charts will show the results of each test type for every core amount config-
uration of the Zagreus execution, as it does until now for frequency, but with the addition
of a comparison between each execution mode implemented on VNNI behaviour.

These will be done to compare the performance difference between all the four VNNI
instructions, due to, each execution mode from 1 to 4, contains a test of each instruction,
as it was introduced in Figure 5.8 and its explanations.

Just the same way that the frequency is taken until now, and as it was described on Figures
A.3 and A.6, some variables will be defined and filled for energy and power measures.

38 Energy analysis of the executions

The variables will save the data of two behaviours of the benchmark, but on the VNNI
behaviour also the differences between sizes and execution modes will be collected for its
comparison. The names these variables will take goes from each execution configuration
it is wanted to collect, as it is abridged on the next Figure 6.3.

49 energy_num = 0
50

51 energy_min_avx = 100000000
52 energy_max_avx = 0
53 energy_count_avx = 0
54 energy_summatory_avx = 0
55

56 energy_min_size8 = 100000000
57 energy_max_size8 = 0
58 energy_count_size8 = 0
59 energy_summatory_size8 = 0
60

61 energy_min_mode1 = 100000000
62 energy_max_mode1 = 0
63 energy_count_mode1 = 0
64 energy_summatory_mode1 = 0

101 power_num = 0
102

103 power_min_avx = 100000000
104 power_max_avx = 0
105 power_count_avx = 0
106 power_summatory_avx = 0
107

108 power_min_size8 = 100000000
109 power_max_size8 = 0
110 power_count_size8 = 0
111 power_summatory_size8 = 0
112

113 power_min_mode1 = 100000000
114 power_max_mode1 = 0
115 power_count_mode1 = 0
116 power_summatory_mode1 = 0

Figure 6.3: Variables initialization example for energy consumption data reading

The results will be read from the .out raw result’s container file, and it will be formatted
as a .res file, following the formula, one more time, it is used on the frequency case. The
result will be written as it can be shown on the next Figure 6.4, showing only examples of
AVX and size8 and mode1 of VNNI behaviour.

Energy During Test

Min energy avx: 0.10 kJ
Max energy avx: 2370.19 kJ
Average energy avx: 539.50 kJ
Min energy size8: 0.07 kJ
Max energy size8: 3414.15 kJ
Average energy size8: 380.86 kJ
Min energy mode1: 0.07 kJ
Max energy mode1: 1310.99 kJ
Average energy mode1: 147.74 kJ

Power During Test

Min power avx: 0.04 kW
Max power avx: 56.94 kW
Average power avx: 11.63 kW
Min power size8: 0.05 kW
Max power size8: 247.82 kW
Average power size8: 27.58 kW
Min power mode1: 0.05 kW
Max power mode1: 247.82 kW
Average power mode1: 30.18 kW

Figure 6.4: Energy and power result examples

7. CHAPTER

Analysis of the results

On this chapter, the different conclusions of the project will be presented and explained
deeply. The different conclusion will be based on the comparison of the different test
were done until now. They will look to get the best option and way of executing the
VNNI instruction set on a CPU with AVX512 instruction set, and look how efficiently
they can operate. It is also wanted to give a general view of the energy consumption of
them, along with the analysis of the Singularity program usability, always emphasizing in
the performance obtained with all the chances of using this VNNI instructions.

The conclusions will be given one by one separating different aimed comparisons on sec-
tions, being each section a comparison and little conclusion of what is being analysed.
The comparisons will be gone from the behaviours, execution modes and sizes to a spe-
cific VNNI instructions, complementing all of them with the amount of usage cores, used
energy, obtained frequency and time of the execution. For the last, a final conclusion will
be done on the next chapter, providing an explanation that summarizes what it is reached
and learned on the project.

The conclusions are based in all the results taken in the executions, but only few charts
of the complete results were shown. The complete results will be available on the next
GitHub 1 link, together with the complete files used on the project.

1https://github.com/G2Jezrien/AVX512-and-VNNI-instruction-set-performance-and-energy-
consumption-benchmarking

39

40 Analysis of the results

7.1 AVX512 and VNNI comparison

AVX512 are more common and used instructions than VNNI ones nowadays, but the last
Intel CPUs integrates the possibility to use them together, combining their functionality.
AVX512 instructions are able to do easy mathematical operations, such as sums, divisions
and reductions with a huge amount of numbers. VNNI instructions instead are able to
execute some complex mathematical operations, as it was explained before in Section
5.1.3.

It was thought that executing this VNNI complex instructions will decrease the perfor-
mance that the usage of AVX512 instructions usually have. That is why this comparison
was done, looking for if the performance difference between the base and more usually
used AVX512 and VNNI+AVX512 instructions is something to be considered. The next
Figure 7.1 will help to explain the conclusion taken about their performance, as in all the
generated charts, three quadratic equations will be shown (Poly max, min and avg) along
with another three lines of the same colour for raw results values (Raw max, min and avg).
Red colour describes the maximum, green colour the minimum, blue colour the average
reached values.

Figure 7.1: AVX512 vs AVX512+VNNI execution time charts

As it can see, the charts are nearly identical, even in the raw values of them. In conclusion,
the usage of the complex operations that carries VNNI instruction sets, does not make any
considerable changes on the performance they could reach in comparison to more usual
and less complex AVX512 instructions. The previous measures were done looking at the
performance based on the execution time, but what can be said about the frequency values
on each of them. For being in the same conditions of the last comparison, the charts that
equals to the results viewed on the Figure 7.1 will be shown and analysed, as Figure 7.2.

7.1 AVX512 and VNNI comparison 41

In terms of frequency, less value is equal to less performance, or in other words, less fre-
quency involves more time to execute something. This time, the results and conclusions
taken about the Figures 7.2 is something unexpected, being base AVX512 instructions
which get the lower values. This means that in terms of frequency, VNNI+AVX512 in-
structions get the best performance.

Figure 7.2: AVX512 vs AVX512+VNNI frequency charts

Continuing with the analysis of the instructions sets, let’s take a look at the energy they
consume on their respective executions. The more logical answer will be that the con-
sumed energy will be alongside with the frequency performance they have, due to lower
the frequency is, more is the CPU working, so more energy will consume. This analysis
will be made based on the next Figures 7.3 and 7.4.

Figure 7.3: AVX512 vs AVX512+VNNI energy charts

42 Analysis of the results

Comparing the consumed energy in both behaviours of the benchmark, it is seen that
the average obtained kJ consumption is higher on the VNNI instructions execution. The
difference between AVX512 and VNNI is not too big, but it is something considerable,
being the exact difference close to 5000 kJ on the most differentiable cases. In other
words, AVX512 is more or less 33% more efficient in relation to the consumed energy
during the Zagreus executions measured in Joules.

Figure 7.4: AVX512 vs AVX512+VNNI power charts

In the case of the measured power consumption, the average values in both of the be-
haviours have not almost any differences between them, as it can be seen on Figure 7.4.
Nevertheless, the minimum used power is always higher on the VNNI execution cases,
coming up with the conclusion that the minimal power necessary to use these instruc-
tions is higher. As the average energy consumption has to be more or less equal on both
behaviours, the maximum power consumption is expected to be higher on the AVX512
executions. Maximum used power reaches 22% higher kW on the most differentiable
cases of the AVX512 behaviour, fulfilling what it is expected.

A special mention to something that happens on all the obtained results. As you can see in
the charts explained over this section, the value of the results for the usage of cores from
14 to 17 approximately is higher in nearly all the analyses done. As said, this happens
for all the behaviours and their respective execution modes of Zagreus. It seems that both
AVX512 and VNNI have some troubles at the moment of using this quantity of cores,
maybe the explanation for this is that the communications needed to use more than 15
cores are best exploited using 18, 19 or 20 cores.

7.2 VNNI instructions comparison 43

7.2 VNNI instructions comparison

7.2.1 Size configuration analysis

Figure 7.5: VNNI size execution time charts

As it can be seen in the Figure 7.5, the obtained maximum, minimum and average execu-
tion times of the VNNI behaviour test are almost exactly in all the size copnfigurations.
The difference between using any size for filling the _mm512 number type that use the
VNNI instructions does not impact on their execution time performance. Exactly the same
conclusion can be deduced from the charts that shown the frequency during the previous
executions on Figure 7.6. In addition, supporting on the Figure 7.7, it can be stated that,
even in terms of energy consumption, the fact that choosing different configurations of
sizing does not really affect the performance of using the VNNI instruction set.

Figure 7.6: VNNI size execution time charts

44 Analysis of the results

Figure 7.7: VNNI size energy charts

7.2.2 Execution modes analysis

As it was introduced and explained in Section 5.1.3, every execution mode from 1 to 4
of the VNNI benchmark refers to a concrete instruction of this set. On this comparison,
it is wanted to analyse if these four instructions have any differences in the moment of
executing them. All of them are prepared to do a similar mathematical calculation, being
the most differentiable ones, the modes 1 and 2 with respect to modes 3 and 4. So the next
results will be aimed to that difference, aiming at first to the execution time.

The below Figure 7.8, shows that the results from executing the VNNI behaviour as execu-
tion mode 1, which refers to executing the _mm512_dpbusd_epi32(src, a, b) instruction,
and execution mode 4, which refers to executing the _mm512_dpwssds_epi32(src, a, b)

instruction, are almost exactly to each other.

7.3 Analysis of the Zagreus execution inside Singularity 45

Figure 7.8: VNNI mode execution time charts

There is no considerable deviations between the results taken in both cases. It is not rele-
vant which VNNI instruction will be executed, the performance is not going to be influ-
enced by executing one or other instruction of the set. This conclusion gain more strength
looking at the power and energy. The next chart on the Figure 7.9 will show that.

7.3 Analysis of the Zagreus execution inside Singularity

According to what it was explained in the previous Section 4.4 and its chapter, Singularity

will be implemented to see if its use affects the performance of the VNNI instruction set
executions. It was expected to get worst results by using Singularity because it brings other
functionalities that did the execution more comfortable and versatile. As you can see on
the Figure 7.10, the charts shows a difference of ten seconds on the same configuration
between using and not using Singularity. The performance difference is more or less 8%.
This difference is a considerable when talking about the programs that are executed on
clusters. For example, on the execution of a three-hour program, an 8% means that it is
necessary 14.4 minutes more to execute the same program inside Singularity container.
This may not be seen as a huge difference, but in the example of executing a program that
needs a year to be completed, the difference between executing inside Singularity or not
is a month that is a lot of extra time.

46 Analysis of the results

Figure 7.9: VNNI mode execution energy and power charts

Figure 7.10: Singularity usage comparison charts

8. CHAPTER

Final conclusion and future work

The creation of this project was defined to measure and analyse the performance that the
last Intel Cascade Lake series processors could reach with the usage of VNNI instruction
set. In the course of the development of this project, a benchmark called Zagreus was self
created to measure and test these instructions on the stated processors. Afterwords, the
results obtained by executing Zagreus benchmark in different ways were formatted with
another self created program, this time, the one named get_results.py. Some chart were
generated assigning as a basis the formatted results, as such concluding with their support
the following.

With regard to the comparison of the performance of the usually more used AVX512
instruction set, this VNNI instructions reach better performance results even tough the
calculations these VNNI instructions do are more complex than the AVX512 ones. Re-
ferring to the amount of manners of executing the Zagreus benchmark, it was concluded
that the size of filling the _m512 numbers used on the VNNI instructions is not relevant to
their performance. In addition, as well as the previous sizing, the four instructions inside
the VNNI set are equal in terms of performance.

Notwithstanding the fact that the analysis done until this time of project were not so
relevant, it was discovered that the different amount of cores using on the execution really
impact in their performance. These configurations being between the 15 and 17 cores
are the worst performing ones. Furthermore, it is also observed that using Singularity

containers to execute the benchmark alters its efficiency. So, it is not worth using this
Singularity technology due to the differences in the execution time of using them or not.

47

48 Final conclusion and future work

Personally, this project has helped me in my growth and improvement on being the best
Computer Engineer I could be. I have learned to approach a project of this calibre taking
into account the unforeseen events that may occur in its progress, which could make it
deviate less from its path in the search of the final purpose. This end of degree project,
whose shape was given by four years worth of hard work and study hours, set the end
of one of the most important phases of my life. It also gives me the possibility to put
the conceptual, practical, and academic skills acquired throughout these four years into
practice. During this learning period, I have been capable of resolving all kinds of issues
related to my future job, as well as granting access to the working life as a Computer
Engineer.

It is imperative that research is not only focused on exploring what it was created for,
besides being open to further research and analyses. In brief, it is not enough to just
scratch the surface, but it is sought to delve and elaborate as much as possible on the
theme. In case someone desires to continue investigating about this topic, some possible
future work will be introduced in the next paragraphs.

The first line of investigation could be the comparison between VNNI instruction set
usage on the processors capable of executing them and any kind of GPU that is also able
to execute the set. The most important thing on this future work has to be the creation of a
program that simulates how the VNNI instructions exactly work on a processor in a GPU.
With that, both technologies run the same instruction the same way in order to be able to
compare them on the best possible conditions.

On the other hand, as it was discovered on the development process of this project, the
effect of the use of 15 to 17 cores executing VNNI instructions could also be worth re-
searching. The performance this core amount gained in comparison to the other is divided
by a huge difference. In this case, the main aim of this investigation would be to deepen
on how the CPU manage the communications done between all the cores, so conclusions
can be drawn to explain why the underperformance of this core amount happens.

Bibliography

[1] Avx512. https://www.intel.es/content/www/es/es/

architecture-and-technology/avx-512-overview.html.

[2] Avx512 3rd gen. https://www.intel.com/content/dam/www/public/us/en/
documents/product-overviews/dl-boost-product-overview.pdf.

[3] Containers. https://www.icot.es/introduccion-a-los-containers/.

[4] Intel intrinsics. https://www.intel.com/content/www/us/en/docs/

intrinsics-guide/index.html.

[5] Matplotlib. https://matplotlib.org/.

[6] msr interface. https://man7.org/linux/man-pages/man4/msr.4.html.

[7] Neural network. https://www.analyticsvidhya.com/blog/2021/05/

beginners-guide-to-artificial-neural-network/.

[8] perf event interface. https://man7.org/linux/man-pages/man2/perf_event_
open.2.html.

[9] Powercap. https://www.kernel.org/doc/html/latest/power/powercap/

powercap.html.

[10] Rapl program. https://web.eece.maine.edu/~vweaver/projects/rapl/.

[11] Singularity. https://sylabs.io/guides/2.6/user-guide/introduction.

html.

[12] Slurm workload manager. https://slurm.schedmd.com/documentation.html.

49

https://www.intel.es/content/www/es/es/architecture-and-technology/avx-512-overview.html
https://www.intel.es/content/www/es/es/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-overviews/dl-boost-product-overview.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-overviews/dl-boost-product-overview.pdf
https://www.icot.es/introduccion-a-los-containers/
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://matplotlib.org/
https://man7.org/linux/man-pages/man4/msr.4.html
https://www.analyticsvidhya.com/blog/2021/05/beginners-guide-to-artificial-neural-network/
https://www.analyticsvidhya.com/blog/2021/05/beginners-guide-to-artificial-neural-network/
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
https://web.eece.maine.edu/~vweaver/projects/rapl/
https://sylabs.io/guides/2.6/user-guide/introduction.html
https://sylabs.io/guides/2.6/user-guide/introduction.html
https://slurm.schedmd.com/documentation.html

Appendices

51

A. APPENDIX

Execution result formatting and chart generation

Once the Zagreus benchmark was executed, some .out type files were generated. Every
execution will have its own output file. Thus, the program will link all these outputs into
another new file, and generate different charts with all the read data. In order to visualize
this results in a better way and format and then generate some charts from them, a Python

based script has been developed and implemented. This script has the main function of
taking all the previously generated .out files and format them, how it does is what is going
to be explained in this appendix chapter. The explanations will be supplemented by parts
of the code of the script that accords to the explanation is giving at the moment, and all
the code references will contain the same line numbers as in the original script.

A.1 get_results.py definition and explanation

get_results.py is the name of the script that generate the formatted results and different
charts is separated on two parts. First of the will be getting the raw results, which are
generated without a very good visualization. So it will take all the .out file one by one,
and it will calculate some statistical parameters from them. This will be explained deeper
on a subsection later on this appendix chapter.

The second part of the script, consist of taking the formatted results generated with the
previous part of the program and plot all of them on a more comfortable view. This is
going to be done with the help of some Python packages and mathematical expressions,

53

54 Execution result formatting and chart generation

which will allows the script to generate plots with statistics and round them on a linear
rounded equations.

A.1.1 Result taking and formatting code part

As mentioned before, this part of the program will read the results of the Zagreus bench-
mark, and supporting with some private variables will create some mathematical statistics.
The selected statistics are the minimum, maximum and average of the time spend on each
configuration of the benchmark test. The next Figure A.1 is an example of a view of a raw
results of the benchmark test.

#AVX mode
#1 mode
#500 times
1.93s
1.99s
2.00s
2.00s
2.00s
2.00s
2.02s
2.59s
2.71s
2.72s
#Frequency
CPU MHz: 1933.661
#1000 times
3.89s
3.93s
3.95s
3.96s
3.97s
3.97s
3.97s
3.97s
5.10s
5.40s
#Frequency
CPU MHz: 1919.666

Figure A.1: .out result type file example

This example only shows the first two configurations of the complete file, but it is enough
to see how the result are generated and previously will be taken and formatted. As you
can see, different hints will be described with the use of the # character, with the purpose
of facilitate the different sections of the results.

On this concrete example, a AVX512 mode behaviour was launched, first five hundred
times and hereinafter one thousand times. It is shown also that it was executed with ten

A.1 get_results.py definition and explanation 55

cores of the CPU, due to ten time execution results, measured on seconds, were saved from
one section to other, which ends with the current frequency of the CPU on the execution
of the configuration measured on MHz.

Once the examples of the raw result are shown, it is feasible to start explaining how the
Python script takes this results step by step. First of all is to ensure about the environment
is ready for work, so the necessary directories, where the output is going to be stored, will
be created. Some variables will also be initialized for saving the data while the formatting
is being done. These variables will be int type numbers, as it can be seen on the next
Figure A.2:

16 mode = 1
17 summatory = 0
18 lines = 0
19 minimum = 100000000
20 maximum = 0
21 frec_num = 0

Figure A.2: get_results.py time variables initialization

· mode: will save what mode of the behaviour the result is referencing to, and it will
change from 1 to 5 values, starting from the value 1, that is, mode 1.

· summary: saves the sum of the time values of a test configuration, to calculate the
average time with lines and initialized as 0.

· lines: saves the number of the time result lines read, to calculate the average time
with summary, and it starts as 0.

· minimum: saves the minimum execution time for each configuration of the bench-
mark, initialized as 100000000, due to, any execution time will be less than that
value, and that simplifies the code.

· maximum: saves the maximum execution time for each configuration of the bench-
mark, starting at 0.

· frec_num: saves the current frequency value position on the test, for getting easier
to separate correctly frequency results, initialized as 0.

On the same way that these variables work, there are more variables used to save the
frequency maximum, minimum and average during the different stages of the test. One

56 Execution result formatting and chart generation

for minimum counting, initialized as the time variable on 100000000, another one for
maximum and two variables for average, named as, count and summatory. There will be
four of these variables for the first behaviour, and each size value of the second behaviour
of Zagreus. This is the Figure A.3 code part which reference to their initialization.

23 frec_min_avx = 100000000
24 frec_max_avx = 0
25 frec_count_avx = 0
26 frec_summatory_avx = 0
27

28 frec_min_size8 = 100000000
29 frec_max_size8 = 0
30 frec_count_size8 = 0
31 frec_summatory_size8 = 0
32

33 frec_min_size16 = 100000000
34 frec_max_size16 = 0
35 frec_count_size16 = 0
36 frec_summatory_size16 = 0
37

38 frec_min_size32 = 100000000
39 frec_max_size32 = 0
40 frec_count_size32 = 0
41 frec_summatory_size32 = 0
42

43 frec_min_size64 = 100000000
44 frec_max_size64 = 0
45 frec_count_size64 = 0
46 frec_summatory_size64 = 0

Figure A.3: get_results.py frequency variables initialization

At this point, the Python program will start getting all the data, alternating from getting
execution times and frequency values from each configuration done on the whole test
execution. This is where the hints written after with # makes sense. The raw results will
be read line by line, and each line will be categorized by the string value read after #
character with Pythons startwith() function.

This function returns true if the line it is reading on the moment starts with the same
string that it is passed as parameter. With that, the script is able to different sections of
time and frequency. For example, if it reads #X mode followed with #Y times, where X
is any exec_mode and Y any command_num, it knows that the next lines until reading
#Frequency are referencing to the execution times of X and Y configuration.

However, the section between reading #Frequency and #X mode, where X is any exec_mode,
consist of a single line and references to the frequency obtained as a result of execute the
previous X and Y configuration. In some parts of this information taking, a descriptive
string will be written to so the last result format is clearer. On the next page with Figure

A.1 get_results.py definition and explanation 57

A.4, there are shown the code parts that are equivalent to the execution time and frequency
taking, with the addition of how the variables that we explained before are used.

56 for line in file:
57 if line.startswith("#"):
58 if line.startswith("#1 mode"):
59 mode = 1
60 frec_num+=1
61 res.write("\n\n\n(500M) Min Max Avg (1000M) The Min Max Avg (2000M) Min Max Avg

(5000M) Min Max Avg\n")
62

63 elif line.startswith("#2 mode"):
64 mode = 2
65 res.write("\n")
66

67 elif line.startswith("#3 mode"):
68 mode = 3
69 res.write("\n")
70

71 elif line.startswith("#4 mode"):
72 mode = 4
73 res.write("\n")
74

75 elif line.startswith("#5 mode"):
76 mode = 5
77 res.write("\n")
78

79 else:
80 number = float(line.split("s")[0])
81 if number < minimun:
82 minimun = number
83 if number > maximun:
84 maximun = number
85 sumatory+=number
86 lines+=1

Figure A.4: get_results.py execution time taking

The highlight of this part of the code, is to see how the variables created to generate the
statistics of time taking are used. number variable will save the execution time is reading
at the moment. The minimum variable only saves a new value if the execution time is
reading on the moment is lower than the actual minimum value. The same happens with
maximum, but just if the number is higher than the actual value.

summatory and lines instead, works on a different way. Each of them will be increasing
their value for each time execution line read. These variables will be used to calculate
the average of the execution time, in case that it is using more than one core, and will be
written alongside maximum and minimum using the format described on the below Figure
A.5 code lines:

The frequency taking it is done on another section of the get_result.py code, but just after
the time taking. As it can see on the next Figure A.6, frequency minimum, maximum and

58 Execution result formatting and chart generation

81 res.write("Mode" + str(mode) + "," + str(minimun) + ","
82 + str(maximun) + "," + str("{:.2f},".format(sumatory/lines)))

Figure A.5: get_results.py average calculation and time variables writing

average variables are used on the same way as it does on time taking. It has to be also
mentioned, that this code part repeats for every variable described on Figure A.3.

83 elif line.startswith("CPU"):
84 sumatory = 0
85 lines = 0
86 minimun = 100000000
87 maximun = 0
88

89 if frec_num == 1:
90 frec = float(line.split(":")[1].rstrip(" "))
91 if frec < frec_min_avx:
92 frec_min_avx = frec
93 if frec > frec_max_avx:
94 frec_max_avx = frec
95 frec_count_avx+=1
96 frec_summatory_avx+=frec

Figure A.6: get_results.py execution frequency taking

On this section of the script, the variables for time taking are reset with initialization
values as well, due to they are prepared for reading properly the next configuration times.
As the final step of this part of the Python program, the values of each frequency section
variables will be written using the format that is described on the next Figure A.7 lines,
leaving all prepared to generate charts from, the formatted results.

148 res.write("Frecuency During Test\n")
149 res.write("\nMin frecuency avx: " + str(frec_min_avx)+" Hz")
150 res.write("\nMax frecuency avx: " + str(frec_max_avx)+" Hz")
151 res.write("\nAverage avx: " + str("{:.2f} Hz".format(frec_summatory_avx/frec_count_avx)))

Figure A.7: get_results.py execution frequency taking

A.1.2 Chart generating part

The chart generation will be done using the matplotlib.pyplot [5] Python package. It will
be working along with numpy, another Python package created for making some mathe-
matical functions. In this case, second degree equations were going to be used, which will

A.1 get_results.py definition and explanation 59

create the visual estimations lines for the growth of time and frequency values, plotted on
the charts in addition to their exact values.

A chart will be created for each configuration available and executed on Zagreus bench-
mark, gathering the results obtained from all the amount cores executions of that configu-
ration. So a hundred charts of execution time results will be generated for each benchmark
execution and five charts for the frequency measured on them. Each of the charts will be
made with setting the number of the cores on the X axis and the value want to be plotted
on the Y axis (Frequency or time). The type of results will be printed, referencing to each
of them with one colour.

Red will describe the results of the maximum statistic, and will be plotted as two different
lines. The thinner one will show the exact values of the variable on each core amount
execution and the thicker one the second degree equation created with that exact values.
On the same way, another two lines will be plotted for minimum with green colour and
average with blue colour. An example of a generated chart is given in the next section as
Figure A.10. In addition, the next Figure A.8 shows the values read from the formatted
results and how the equations are calculated.

60 Execution result formatting and chart generation

209 def generate_chart_avx(x, y, z, times, mode, node):
210 name = 'AVX512 ' + str(times) + ' Times - Mode ' + str(mode)
211 minimun = []
212 maximun = []
213 average = []
214 cores = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
215

216 for core in range(1, 21):
217 line_num = 0
218 file = open("res/zagreus_node" + str(node) + "_" + str(core) + "_cores.res", "r")
219 for line in file:
220 if line.startswith("Mode"+ str(mode)):
221 if line_num == 0:
222 minimun.append(float(line.split(",")[x]))
223 maximun.append(float(line.split(",")[y]))
224 average.append(float(line.split(",")[z]))
225 line_num += 1
226 file.close()
227

228 coefficients = np.polyfit(cores, minimun, 2)
229 poly = np.poly1d(coefficients)
230 new_minimun = poly(cores)
231

232 coefficients = np.polyfit(cores, maximun, 2)
233 poly = np.poly1d(coefficients)
234 new_maximun = poly(cores)
235

236 coefficients = np.polyfit(cores, average, 2)
237 poly = np.poly1d(coefficients)
238 new_average = poly(cores)

Figure A.8: get_results.py chart equations creation

As repeated previously in the explanation of how this script works, this is only an example
of how one configuration chart is generated. After calculation of the necessaries and useful
equations, the six lines that make up the chart will be plotted, as well as the title, name of
the axis, grid and other chart configurations shown in Figure A.9.

A.1 get_results.py definition and explanation 61

240 plt.plot(cores, minimun, color='green', linewidth=0.5, label='Row min')
241 plt.plot(cores, new_minimun, color='green', linewidth=2, label='Poly min')
242 plt.plot(cores, maximun, color='red', linewidth=0.5, label='Row max')
243 plt.plot(cores, new_maximun, color='red', linewidth=2, label='Poly max')
244 plt.plot(cores, average, color='blue', linewidth=0.5, label='Row avg')
245 plt.plot(cores, new_average, color='blue', linewidth=2, label='Poly avg')
246

247 plt.title(name, fontsize=14)
248 plt.xlabel('Cores', fontsize=14)
249 plt.ylabel('Tex (seconds)', fontsize=14)
250 plt.grid(True)
251 plt.legend(loc='upper left')
252 plt.xticks(cores,cores)
253 plt.savefig('charts/avx512/avx512_' + str(times) + 'M_mode_' + str(mode) + '.png')
254 plt.close()

Figure A.9: get_results.py chart plotting

Figure A.10: Execution time generated chart example

B. APPENDIX

Energy consumption chart generating additions

Following the result formatting and generating for the new measures, the respective chart
of them will be created. Likewise, the previous chart generation, this new charts will
follow the same structure that it does on frequency Figure A.8 charts. But this time two
different definitions will be done for each new measure, one that plots the different size
performances and the other plotting different execution mode performances. The code for
this is described on the next listings plotted as kW and kJ due to the high numbers are
reached as J and W.

63

64 Energy consumption chart generating additions

965 def generate_chart_power_vnni_mode(node, mode):
966 name = 'Power During Test - VNNI | mode' + str(mode)
967 minimun = []
968 maximun = []
969 average = []
970 cores = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
971

972 for core in range(1, 21):
973 file = open("res/zagreus_node" + str(node) + "_" + str(core) + "_cores.res", "r")
974 for line in file:
975 if line.startswith("Min power mode" + str(mode) + ": "):
976 minimun.append(int(line.split(": ")[1].split(".")[0]))
977 if line.startswith("Max power mode" + str(mode) + ": "):
978 maximun.append(int(line.split(": ")[1].split(".")[0]))
979 if line.startswith("Average power mode" + str(mode) + ": "):
980 average.append(int(line.split(": ")[1].split(".")[0]))
981 file.close()
982

983 coefficients = np.polyfit(cores, minimun, 2)
984 poly = np.poly1d(coefficients)
985 new_minimun = poly(cores)
986

987 coefficients = np.polyfit(cores, maximun, 2)
988 poly = np.poly1d(coefficients)
989 new_maximun = poly(cores)
990

991 coefficients = np.polyfit(cores, average, 2)
992 poly = np.poly1d(coefficients)
993 new_average = poly(cores)
994

995 plt.plot(cores, minimun, color='green', linewidth=0.5, label='Row min')
996 plt.plot(cores, new_minimun, color='green', linewidth=2, label='Poly min')
997 plt.plot(cores, maximun, color='red', linewidth=0.5, label='Row max')
998 plt.plot(cores, new_maximun, color='red', linewidth=2, label='Poly max')
999 plt.plot(cores, average, color='blue', linewidth=0.5, label='Row avg')

1000 plt.plot(cores, new_average, color='blue', linewidth=2, label='Poly avg')
1001

1002 plt.title(name, fontsize=14)
1003 plt.xlabel('Cores', fontsize=14)
1004 plt.ylabel('Power (kW)', fontsize=14)
1005 plt.grid(True)
1006 plt.legend(loc='upper left')
1007 plt.xticks(cores,cores)
1008 plt.savefig('charts/power/power_mode' + str(mode) + '.png')
1009 plt.close()

Figure B.1: Power chart generation code for execution mode comparison

65

873 def generate_chart_ener_vnni(node, size):
874 name = 'Energy During Test - VNNI ' + str(size)
875 minimun = []
876 maximun = []
877 average = []
878 cores = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
879

880 for core in range(1, 21):
881 file = open("res/zagreus_node" + str(node) + "_" + str(core) + "_cores.res", "r")
882 for line in file:
883 if line.startswith("Min energy size" + str(size) + ": "):
884 minimun.append(int(line.split(": ")[1].split(".")[0]))
885 if line.startswith("Max energy size" + str(size) + ": "):
886 maximun.append(int(line.split(": ")[1].split(".")[0]))
887 if line.startswith("Average energy size" + str(size) + ": "):
888 average.append(int(line.split(": ")[1].split(".")[0]))
889 file.close()
890

891 coefficients = np.polyfit(cores, minimun, 2)
892 poly = np.poly1d(coefficients)
893 new_minimun = poly(cores)
894

895 coefficients = np.polyfit(cores, maximun, 2)
896 poly = np.poly1d(coefficients)
897 new_maximun = poly(cores)
898

899 coefficients = np.polyfit(cores, average, 2)
900 poly = np.poly1d(coefficients)
901 new_average = poly(cores)
902

903 plt.plot(cores, minimun, color='green', linewidth=0.5, label='Row min')
904 plt.plot(cores, new_minimun, color='green', linewidth=2, label='Poly min')
905 plt.plot(cores, maximun, color='red', linewidth=0.5, label='Row max')
906 plt.plot(cores, new_maximun, color='red', linewidth=2, label='Poly max')
907 plt.plot(cores, average, color='blue', linewidth=0.5, label='Row avg')
908 plt.plot(cores, new_average, color='blue', linewidth=2, label='Poly avg')
909

910 plt.title(name, fontsize=14)
911 plt.xlabel('Cores', fontsize=14)
912 plt.ylabel('Energy (kJ)', fontsize=14)
913 plt.grid(True)
914 plt.legend(loc='upper left')
915 plt.xticks(cores,cores)
916 plt.savefig('charts/energy/energy_size' + str(size) + '.png')
917 plt.close()

Figure B.2: Energy chart generation code for size comparison

C. APPENDIX

Singularity containers

The implementation of Singularity will be done following the same criteria as in the
RAPL explanation chapter. The project will end testing this technology along with Za-

greus, which allow any program to be executed with a special container. It is supposed
that Singularity technology usage does not low the performance of the CPU, neither the
execution times and energy consumption. This chapter will contain all the steps taken to
implement and use Singularity tool with Zagreus benchmark.

C.1 What is wanted to get

As it was explained and introduced on its own Section 4.4 in the Preliminaries chapter,
this singularity technology is aimed to work with complex and demanding programs,
without decreasing their performance and results. Singularity is based on the use of the
container, as Docker does, offering all the advantage and versatility they provide.

Usually, the usage of the containers comes together with a decrease on the performance
of the program it is being executed on them, and as more demanding the program is, more
will decrease its performance. Singularity developers assure that the container they made
for demanding programs does not have any impact in the execution of the program is
going to be executed on it. Prove that what they offer works in the way they assure, is
what is wanted to do with the execution of the benchmark test using Singularity, taking
out conclusions from comparing the results obtained previously with the results will be
obtained with Singularity implementation and usage.

67

68 Singularity containers

C.2 Creation of RAPL launcher scripts

The only change it is necessary to do on the previous files and functionalities of the
program to implement Singularity, is to change, one more time, the way the Zagreus

benchmark will be executed. As it is done also with RAPL, new scripts will be created to
separate the different ways to execute the benchmark, setting each launcher for each way
of execution. First, two new launchers will be implemented, that will be created along its
respective .sbatch file creation scripts. These two scripts will be called as launcher_sing

and launcher_rapl_sing, created like it is seen on Figures C.1 and C.2:

1 #!/bin/sh
2 for i in {1..20}
3 do
4 ./launcher_sing_info $i $1 > slurm.sbatch
5 sbatch slurm.sbatch
6 done

Figure C.1: launcher_sing script description

1 #!/bin/sh
2 for i in {1..20}
3 do
4 ./launcher_rapl_sing_info $i $1 > slurm.sbatch
5 sbatch slurm.sbatch
6 done

Figure C.2: launcher_rapl_sing script description

The scripts launch Zagreus benchmark with Singularity, one of them using the first ver-
sion of the program without energy measures and the second one with RAPL implemented
too. With that, it is possible to compare the obtained results from two different sources,
making the conclusion of their comparison more reliable.

Singularity containers 69

22 for k in ${dolar}(seq 1 ${dolar}CORE)
23 do
24 priscilla exec ./Zagreus/main 1 ${dolar}i 16 ${dolar}j &
25 done

41 for l in ${dolar}(seq 1 ${dolar}CORE)
42 do
43 priscilla exec ./Zagreus/main 2 ${dolar}i ${dolar}j ${dolar}k &
44 done

Figure C.3: launcher_sing_info script description

22 for k in ${dolar}(seq 1 ${dolar}CORE)
23 do
24 ./Zagreus/rapl_logger.sh priscilla exec ./Zagreus/main 1 ${dolar}i 16 ${dolar}j &
25 done

41 for l in ${dolar}(seq 1 ${dolar}CORE)
42 do
43 ./Zagreus/rapl_logger.sh priscilla exec ./Zagreus/main 2 ${dolar}i ${dolar}j ${dolar}k &
44 done

Figure C.4: launcher_rapl_sing_info script description

As it is plain to see on the figures above, the way of executing any program with Singular-

ity is to call to priscilla exec alias just before the execution command of what it is wanted
to be launched. This alias executes what is wanted to be executed with Singularity inside
the container. After launching on these two different modes, the results will be saved on
a .out file. Like it is done until now with the other .out files, they will be formatted with
the get_result.py Python program, generating a .res and their respective charts. In case of
launching with RAPL too, the charts about the energy and power measures also will be
generated. Due to the .out files will not contain any new information, it is not necessary
to do any changes on the formatting program.

Singularity containers 71

	Contents
	List of Figures
	Abstract
	Introduction
	The aims of the project
	Project management
	Description of the phases and their features
	Management phase
	Development phase
	Documentation of the project

	Estimations
	Deviations

	Preliminaries
	Introduction to the Project Deployment Cluster
	Slurm Workload Manager introduction
	Introduction to RAPL program
	Singularity containers introduction

	Zagreus Benchmark Development
	Zagreus development and explanation
	main.c and globals.h files
	avx512.c and avx512.h files
	avx512_vnni.c and avx512_vnni.h files
	Zagreus makefile

	Zagreus benchmark execution description

	Energy analysis of the executions
	What is wanted to get
	How RAPL works
	Creation of RAPL launcher scripts
	Changes done to Zagreus to implement RAPL

	Analysis of the results
	AVX512 and VNNI comparison
	VNNI instructions comparison
	Size configuration analysis
	Execution modes analysis

	Analysis of the Zagreus execution inside Singularity

	Final conclusion and future work
	Bibliography
	Execution result formatting and chart generation
	get_results.py definition and explanation
	Result taking and formatting code part
	Chart generating part

	Energy consumption chart generating additions
	Singularity containers
	What is wanted to get
	Creation of RAPL launcher scripts

