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A B S T R A C T   

A comparative study of nanofluid (Cu–H2O) and pure fluid (water) is investigated over a moving upright plate 
surrounded by a porous surface. The novelty of the study includes the unsteady laminar MHD natural trans-
mission flow of an incompressible fluid, to get thermal conductivity of nanofluid is more than pure fluid. The 
chemical reaction of this nanofluid with respect to radiation absorption is observed by considering the nano-
particles to attain thermal equilibrium. The present work is validated with the previously published work. The 
upright plate travels with a constant velocity u0, and the temperature and concentration are considered to be 
period harmonically independent with a constant mean at the plate. The most excellent appropriate solution to 
the oscillatory pattern of boundary layer equations for the governing flow is computed utilizing the Perturbation 
Technique. The impacts of factors on velocity, temperature, and concentration are visually depicted and thor-
oughly elucidated. The fluid features in the boundary layer regime are explored visually and qualitatively. This 
enhancement is notably significant for copper nanoparticles.   

1. Introduction 

Nanofluids combine solid nanoparticles and the base fluid, wherein 
the nanoparticle’s principal dimension is less than 100 nm. Choi et al. 
[1], Eastman et al. [2] and Das et al. [3] were the first researches who 
coined the term ‘nanofluid’ for any “liquid that contains a dispersion of 
submicronic solid particles” with a length between 1 and 50 nm. Gupta 
et al. [4] and Jeevanandam et al. [5] summarized that Nanoparticles are 
characterized into several kinds based on their size, shape, physical, and 
chemical characteristics, and classified as polymeric nanoparticles, 
metallic nanoparticles, Carbides, ceramic & lipid-based Nps. These are 
suspended into the base fluids like water, ethanol, EG, and refrigerants. 
Many authors have observed that thermophysical characteristics of 
nanofluids show better results than their base fluids by Sarfraz et al. [6] 

and Tawfik et al. [8] summarized recent developments in the research of 
nanofluids, and stated its importance in industrial processes, perma-
nency evaluation methodologies, constancy improvement procedures, 
thermophysical characteristics of nanofluids, and commercialization of 
products. Harry Williams et al. [9] analyzed magnetic nanoparticles 
involved the cancer treatment and infectious diseases. Magnetic nano-
particles expend added energy than a micro-particulate in resisting 
present magnetic strengths that are likely in cancer treatment (see Ta-
bles 1 and 2). 

Magnetohydrodynamics (MHD) is a study about electrically accom-
panying fluids in magnetic field. It is called magneto-fluid dynamics. 
Plasmas, electrolytes, saltwater, and liquid metals are examples of 
magneto-fluids. Hannes Alfvin pioneered study of Magnetohydrody-
namics, and earned the Nobel Prize in Physics in 1970. The magneto- 
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nanofluid blends the properties of liquids with magnets. The magnetic 
effects cause a rebuilding of absorption and polarize atoms in the liquid 
system, and also the change in temperature transmission. Magnetic 
nanoparticles are applied in the biomedical industry as it has more viscid 
tissue cells than non-malignant particles and the tissues increase the 
blood flow. Mittal et al. [11] have been reviewed theoretical and 
experimental study of magnetohydrodynamics of nanofluids. Ali et al. 
[12] explored the natural convective flow across the angled plate 
entrenched in absorbent medium with MHD effects. Abbas et al. [13] 
explored the thermophoresis diffusion MHD motion of transient nano-
fluid flow moving in a rotating system. They employed copper, titanium 
dioxide, and aluminium oxide nanoparticles in various forms such as 
spherical, cylindrical, and brick (shape factor = 3, 6, 3.7) in their 
investigation. Hussain et al. [14] explored the MHD nanofluid over an 
absorbent medium with radiation. Sobamowo et al. [15] studied the 
MHD free convective nanofluid over dangle plate with a fixed heat in a 
circulating reference. Das et al. [16] analyzed nanofluid flow across a 
moving vp working in MHD, radiation. Ferdows et al. [17] explored the 
nanofluid movement across the plate with suction and thermal pro-
duction. MHD natural convective nanofluid over a moving v.p with two 
magnetic fields related to the nanofluid or plate was described by Pavar 
et al. [18]. Also some other references can be found in Refs. [19,20]. 

The chemical reaction effects are the most important effects in the 
mass transfer area, and it has been applicable in many industries like 
food processing, material production, humidification, freezing of nu-
clear reactors, oxidation, thermal insulation, pollution studies, 
geothermal pool, production of ceramics. Mahanthesh et al. [21] has 
deliberated the thermal transfer of CNTs movement in stretched spin-
ning disk with thermal source, and convective state effects.Many tech-
nical applications, such as polymeric, ceramic, and metallic foams, rely 
on heat transmission in porous media. The thermal process has been 
investigated using the traditional idea of unidirectional transmission of 
conductive materials. Ibrahim et al. [22] investigated rotating fluid with 
significant porosity move along vertical fascia. Numerous researchers 
[23–27] have explored the nanofluid over vertical frame with various 
parameter constraints. Naveed khan et al. [28] investigated the heat and 
mass transfer effect of maxwell fluid over perpendicular plate with 
sloped and isothermal wall temperature and with the boundary condi-
tion based on the maxwell fluid with the carrier fluid is EG. Sravan 
Kumar et al. [29] examined analyzed three different nanoparticles 
inserted in water-based nanofluid flow over a numeric stimulating 

vertical plate with MHD. Anjali Devi et al. [30] have studied the Blasius 
and Sakiadis flow of nanofluids past an inclained plate. Reddy et al. [31] 
analyzed the prominence of radiation on heat and mass transfer nano-
fluid over an inclined vertical plate embedded in an absorptive.The flow 
and thermal behavior of nano (Ni/C2H6O2) and hybrid nanofluids (Ni, 
Al2O3/C2H6O2) transport across an eccentric annulus were theoretically 
addressed by Iskander [33]. Using the Cattaneo–Christov heat flux 
model, Nayak et al. [34] investigated the entropy reduction related to 
the electromagnetic flow of nanofluids containing SWCNT/MWCNT 
suspensions on the surface of a thin needle inserted in a Dar-
cy–Forchheimer environment. Sami et al. [35] researched the bio-
convection occurrence of a pair of stress nanofluid comprising gyrotactic 
microorganisms across a periodic accelerated surface. Iskander [36] 
investigated the heat transmission of Casson and normal liquids over a 
stretched surface by causing cross-diffusion, thermophoresis, the 
Brownian moment, and Joule heating. Sheikholeslami.M.et al. demon-
strated a new method namely CVFEM applied for radiative nanoparticles 
through a permeable medium using Darcy’s Law. Puneet et al. [39] 
analyzed Ethylene glycol-based nanofluid flow over a vertical plate 
induced by buoyancy effects with the presence of quadratic thermal 
radiation. 

Reddy et al. [40] analyzed radiation absorption and chemical reac-
tion effects on MHD free convective flow of a nanofluid through a flat 
plate. Rajesh et al. [41] explored the analytic approach of MHD hybrid 
nanofluid flow over an infinite vertical plate with ramped wall tem-
perature and thermal radiation. Madaki et al. [42] investigated a 
comparative study of an unsteady squeezing nanofluid between two 
lateral plates with the two different kinds of solving premisses, and they 
found the fourth-order R–K method gave the best accuracy more than 
HPM.The examination of these novel flow characteristics separates our 
study from previous studies. Although several studies have been con-
ducted, the flow of a nanofluid in the presence of Cu-nanoparticles, 
magnetic fields, and heat radiation has yet to be examined. As a 
result, the purpose of this scientific contribution is to fill that void. The 
perturbation strategy is used to solve the governing equations. The 
findings presented here may be used for cooling systems, energy gen-
eration, solar systems [44], improving the thermal performance of 
various devices, engineering applications, extrusion processes, and 
many other applications. The current investigation was carried out in 
the presence of magnetic field effects, which play an important role in 
engineering fields such as manufacturing via MHD pumps, nuclear 
plants, laser pulse heating, turbines, material dying, and MHD 
generators. 

Keeping the above-mentioned facts. We performed analytical and 
numerical calculations on natural convective, transient, MHD nanofluid 
flow over infinite movable upright plate in the existence of uniform 
suction, chemical reaction, and nonlinear thermal in the present 
research. Nanofluid is formed by copper solid particles dissolved in 
water as base fluid. A perturbation method is applied to solve the gov-
erning system of associated nonlinear ODEs. For stated values of the 
thermophysical constraints, numerical results of velocity, temperature, 
and concentration fields were produced.Furthermore, graphs and tables 
are used to describe a comparative examination of the velocity and 
temperature profile heat transfer enhancement level caused by the 
suspension of Cu-water nanofluid (φ ∕= 0) and carrier fluid (φ = 0). The 
assessable conclusions are in best concurrence with the mathematical 
solutions, which correspond to the experimental answers. 

2. Physical model and solution of the problem 

We follow the model Transient, incompressible nanofluid over an 
infinite moving upright plate contained inside the permeable medium, 
and the nanofluid flow is moving along the plate direction. Transverse 
magnetic force B0 effects can be enforced upright to the plate and normal 
to the flow direction. Here the flow moving along only in an upward 
direction (y > 0), is graphically presented in Fig. 1. The following are the 

Table 1 
Thermophysical attributes of nanofluids [Hamilton & Crosser model] [45].  

Density ρnf = (1 − φ)ρH2O + φρCu 

Viscosity μnf = μf(1 − φ)− 2.5 

Thermal diffusivity  
& suction 

αnf =
knf

(ρcp)nf
,a2 = − V0 

Thermal expansion  
(Fluid) (ρβ)nf = (1 − φ)(ρβ)H2O + φ(ρβ)Cu 

Heat capacity (ρcp)nf = (1 − φ)(ρcp)H2O + φ(ρcp)Cu 

Thermal expansion (ρβ)∗nf = (1 − φ)(ρβ)∗H2O + φ(ρβ)∗Cu 

(Solid)  
Thermal conductivity 

knf = kH2O
ks + (n − 1)kH2O − (n − 1)φ(kH2O − kCu)

kCu + (n − 1)kH2O + φ(kH2O − kCu)

Table 2 
Thermophysical properties of Water and Copper Oztop [46].  

Physical properties water Cu 

ρ(kg/m3) 997.1 8933 
Cp(J/KgK) 4179 385 
K(W/mK) 0.613 401 
β × 105(1/K) 21 1.67 
β* × 106(m2/h) 298.2 3.05  
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current problem’s assumptions.  

1. In this case, the pressure gradient is ignored.  
2. A radiative heat flow qr is applied to the plate in the normal direction  
3. The base fluid and the nanoparticle floating in it are in thermal 

equilibrium.  
4. In the equations of motion, density is considered to be linearly 

dependent on temperature and buoyancy forces. 

2.1. Flow description  

1. From outset (t′ ≤ 0) the plate and the fluid temperature same as b1∞; 
species concentration of the plate and fluid are same as c1∞.  

2. For (t′ > 0), The plate moves with constant velocity u0 with the non- 
uniform temperatureand the concentration 

b1(y
′

, t′ ) = b1w + (b1w − b1∞)ϵeiwt′ ,

c1(y
′

, t′ ) = c1w + (c1w − c1∞)ϵeiwt′  is  considered.

3. Along the negative direction of the y-axis of the plate a uniform 
suction v0 is present. 

2.2. Governing equations 

The momentum and energy equations in the presence of a magnetic 
field and heat radiation past a moving vertical plate may be stated as 
follows under the aforementioned assumptions (Das and Jana [16]): By 
the flow model-description, the flow equation are described as follows: 

∂a2

∂y′ = 0 (1)  

ρnf

(
∂a1

∂t′
+ a2

∂a1

∂y′

)

= μnf
∂2a1

∂y2 + (ρβ)nf g(b1 − b1∞) + (ρβ)∗nf g(c1 − c1∞)

− σB2
0a1 −

γnf

k∗
a1

(2)  

∂b1

∂y′ = αnf
∂2b1

∂y′2 −
1

(ρcp)nf

∂qr

∂y′ (3)  

∂c1

∂y′ = DB
∂2c1

∂y′2 − K∗
r (c1 − c1∞) (4)  

The following boundary conditions are related with the present math-
ematical model: 

when t′ ≤ 0, 

a1(y
′

, t′ ) = 0,
b1(y

′

, t′ ) = b1∞,

c1(y
′

, t′ ) = c1∞

⎫
⎬

⎭
 at  y′

= 0  

when t′ > 0, 

a1(y
′

, t′ ) = u0,

b1(y
′

, t′ ) = b1w + (b1w − b1∞)ϵeiwt′ ,

c1(y
′

, t′ ) = c1w + (c1w − c1∞)ϵeiwt′ ,

⎫
⎬

⎭
 at  y′

= 0  

when t′ > 0, 

a1(y
′

, t′ ) = 0,
b1(y

′

, t′ ) = b1∞,

c1(y
′

, t′ ) = c1∞

⎫
⎬

⎭
 at  y′

∞→∞.

The Rosseland diffusion approximation Hossain [32] and follows Raptis 
[16] is applied to get the total radiation heat flux qr is the expression, 

qr =
4σ1b3

1∞

3k2

∂b4
1

∂y′ . (5)  

Here σ1 and k2 are the Stefan-Boltzmann constant and the coefficient of 
Rosseland value. The thermal changes inside the flow are necessarily 
lesser.so b4

1 can be a linear function only, 

b4
1 ≈ 4b3

1∞b1 − 3b4
1∞. (6)  

Using (5) and (6) in equation (3), we get 

∂qr

∂y′ = −
16σ1b3

1∞

3k2

∂2b1

∂y′2 . (7) 

Forward moving the governing equations to ODE by the way of the 
dimensionless variables: 

U =
a1

u0
, y =

u0y′

γf
, t =

u2
0t′

γf
,ω =

γf ω
′

u2
0
,

T =
b1 − b1∞

b1w − b1∞
,ψ =

c1 − c1∞

c1w − c1∞
,Nr =

4σ1b
′3
1∞

Kf Ke  

Gr =
βf gγf (b1w − b1∞)

u3
0

,Pr =
γf

αf
,

S =
v0

u0
, Sc =

γf

DB
,Kr =

K∗
r γf

u2
0
,

Gm =
β∗

f gγf (c1w − c1∞)

u3
0

,K =
K ′ ρf u2

0

γ2 ,

M =
σ∗B2

0γf

ρf u2
0
.

These non-dimensional variables are substituted in (2)-(4) and the 
governing equations has become, 

A
[

∂U
∂t

− S
∂U
∂y

]

= E2
∂2U
∂y2 + E3Gr(T) + E4Gm(ψ) −

(

M −
1
K

)

U (8)  

∂T
∂t

− S
∂T
∂y

= E1
1

Pr
∂2T
∂y2 (9) 

Fig. 1. Flow model.  
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∂ψ
∂t

− S
∂ψ
∂y

= E1
1
Sc

∂2ψ
∂y2 − Krψ. (10)  

The following are the non-dimensional boundary conditions: 

t ≤ 0; U = 0, T = 0, ψ = 0 ∀ y ≥ 0,
t > 0; U = 1, T = 1 + εeiωt, ψ = 1 + εeiωt at  y = 0
t > 0; U = 0, T = 0, ψ = 0 as  y→∞

(11)  

when the value of S > 0, it is suction and when S < 0, it is the injection 
parameter. The magnetic parameter is represented by M and the other 
parameters represented are Kr (chemical reaction), Sc (Schmidt num-
ber), Gr (Grashof number), K (permeability), Nr (Thermal radiation). 

3. Perturbation analysis 

The non-linear mathematical equations 8–10 are solved by trans-
forming the unsteady flow overlaid on the mean steady into ODE.Let us 
choose; 

U(y, t) = u0 + εu1eiωt (12)  

T(y, t) = T0 + εT1eiωt (13)  

ψ(y, t) = ψ0 + εψ1eiωt. (14)  

Equations 8–10 are shorted to 

E2u′′
0 + ASu′

0 −

(

M +
1
K

)

u0 = − E3GrT0 − E4Gmψ0 (15)  

E2u′′
1 + ASu′

1 −

(

M +
1
K
+ Aiω

)

u1 = − E3GrT1 − E4Gmψ1 (16)  

E1T ′′
0 + PrST ′

0 = 0 (17)  

E1T ′′
1 + PrST ′

1 − Pr(iω)T1 = 0 (18)  

ψ ′′
0 + SCSψ ′

0 − SCKrψ0 = 0 (19)  

ψ ′′
1 + SCSψ ′

1 − (iω+Kr)ψ1 = 0. (20)  

The boundary conditions of (11) becomes 

u0 = 1, u1 = 0,
T0 = 1, T1 = 1,
ψ0 = 1, ψ1 = 1

⎫
⎬

⎭
 at  y = 0 (21)  

and 

u0 = 0, u1 = 0,
T0 = 0, T1 = 0,
ψ0 = 0, ψ1 = 0

⎫
⎬

⎭
 at  y→∞.

Solving (16)-(23) and using (24), we have 

U(y, t) = [(1 + R1 + R2)e− m4y − R1e− m3y

− R2e− m1y) ] + ε[(1 − R3 − R4)e− m2y

+ R3e− (s3+is4)y + R4e− (s1+is2)y
]
eiωt

(22)  

T(y, t) = e− m3y + εe− (s3+is4)yeiωt (23)  

ψ(y, t) = e− m1y + εe− (s1+is2)yeiωt. (24)  

4. Discussions on the results 

The MHD natural convective nanofluid moving upright plate in the 
existence of uniform suction, radiative, and chemical effects are the crux 
of the present study. The nonlinear flow simulation equations are 

transformed into ODEs, which are evaluated analytically by applying 
perturbation techniques. A parametric analysis was performed and the 
resulting geometric results are presented in a graphical representation to 
understand the problem physically. For several standards of physical 
parameters such as Thermal radiation (Nr), Grashof number (Gr), Gra-
shof mass number (Gm.), Prandtl number (Pr), Schmidt number (Sc), 
Microscopic medium penetration (K), solidparticle volume fraction (φ) 
and suction (S) which are computed the dimensionless velocity U, 
temperature T, and species concentration ψ is deliberated in taskforce. 
The graphical results are represented in Figs. 2–13. The outcomes are 
calculated by assuming parameters as M = 2, ε = 0.05, ω = 0.005, Gr =
2, Gm = 5, Sc = 0.78, t = 1, k = 3, S = 0.3 and Kr = 1. The calculated 
values are convincing. 

4.1. Parameter effects on velocity profiles 

Fig. 2 shows the non-dimensional liquid velocity for different volume 
fraction parameters (φ) of Cu-nanoparticle soluble with water. As φ =
0,0.05,0.1,0.15,0.2 on the Cu-nanoparticles increases, then the non- 
dimensional velocity also tends to increase. A rise in values leads to 
the boundary layer regime thickening. Fig. 3 exposes that nanofluid 
velocity drops when the intensity of (M = 0,1,4,7) increases. The cross- 
sectional magnetic field on a fluid that conducts electricity creates a 
Lorentz Force. This force decreases the fluid movement in the B.L 
regime. The nanofluid has a lower velocity than pure fluid. Fig. 4 ex-
poses the (Nr) on velocity of both pure fluid and nanofluid, as Nr(Nr =
1,2,3,5), increases, then the velocity of both copper nanofluid and base 
fluid also increases. When heat is fascinated, it is evident that the 
buoyancy force develops the flow. The nanofluid has a lower velocity 
than pure fluid. The velocity increase of nanofluid was found to be 
smaller than that of pure fluid. A high (Nr) value indicates better control 
of conduction over absorption radiation, which grows up the boundary 
layer thickness. The non-dimensional velocity reduces with increasing 
(Kr = 0,2,4), as seen in Fig. 5. Fig. 6 depicts the effect of (S) on the U- 
profile for pure and copper-water nanofluid. As the suction parameter S 
(S = 1,2,3,4) increases, the velocity profiles U of both pure and Cu-water 
nanofluid drop. The velocity increase of nanofluid was found to be more 
than that of pure fluid. Fig. 7 depicts superior cooling of the surface, non- 
dimensional velocity increases when the Grashof, and mass Grashof 
values should be increases. It is fact that when (Gr), and (Gm), has to 
increase the mass buoyancy effect. 

4.2. Parameter effects on temperature profiles 

As the thermal boundary layer deepens, the heat flow rises, as seen in 
Fig. 8 by nanoparticle volume fraction φ = 0,0.05,0.1,0.15,0.2 increases. 

Fig. 2. U versus y for Cu − H2O with nanoparticle volume fraction values of φ, 
with instability. 
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Also, the heat dissemination effect of nanofluid is greater than the base 
fluid because Copper is a first-class heat and electric conductor. Fig. 9 
demonstrates the radiation effects in the T-profile for both pure fluid and 
nanofluid. As Nr(Nr = 1,2,3,4) increases then the temperature profile 
grows of Cu-water and pure fluid, the increment of nanofluid is greater 
than the pure fluid. This allows the nanofluid to discharge the heat en-
ergy then the system becomes cool. It is fact when growing the Roseland 
grades in a temperature increase. Fig. 10 illustrates the effect of a suction 

parameter S = 1,2,3,4 temperature profile in pure fluid and nanofluid, if 
suction parameter (S) rises, the temperature profile of both pure fluid 
and nanofluid decreases. Fig. 11 demonstrates the Pr = 0.72,2,3,5 grows 
as the thermal boundary layer thickness decreases. Moreover, it gives as 
nanofluid temperature increment is higher than water. 

Fig. 3. U for Cu–H2O and Pure fluid with various M.  

Fig. 4. U for Cu–H2O and Pure fluid with various Nr.  

Fig. 5. U for Cu–H2O and Pure fluid with various Kr.  

Fig. 6. U for Cu–H2O and Pure fluid with various S.  

Fig. 7. U for Cu–H2O with various Gr and Gm.  

Fig. 8. T for Cu–H2O and Pure fluid with different φ  
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4.3. Parameter effects on concentration profiles 

Fig. 12 exposes the output of the (S) suction parameter concerning 
the concentration profiles of several species. The thickness of the solu-
bility limit layer reduces as the concentration of the suction species rises. 
It is a well-known fact that absorption slows the development of 
boundaries. Fig. 13 displays the influence of Kr and heavier species 
concentration of Cu-water nano fluid. Moreover, the heavier species 

decelerates the concentration graph and it has taken a vital role in the 
mass transfer rate. Fig. 14 illustrates that as Sc grows, so does the con-
centration profile decay. As a result, the solvent boundary layer is 
thicker and inversely proportionate to lower Sc levels. When Kr = 0, the 
coefficient has a higher rate in all the real gases for higher species, and 
Kr = 5 the coefficient decreases. Sc values of 0.22 (hydrogen), 0.30 
(helium), 0.60 (water wapour), 0.78 (amonia) were chosen. This results 
are excellent agreement with the results of veera krishna [41]. 

Fig. 9. T for Cu–H2O and Pure fluid with different Nr.  

Fig. 10. T for Cu–H2O and Pure fluid with different S.  

Fig. 11. T for Cu–H2O and Pure fluid with different Pr.  

Fig. 12. ψ for two cases of Kr = 0, 5 with various Sc.  

Fig. 13. ψ for Cu–H2O with different S.  

Fig. 14. ψ for Cu–H2O with different Kr.  
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5. Conclusion 

The combined impact of thermal radiation and chemical reaction on 
MHD free convective heat and mass transfer effects of the nanofluid 
have been investigated on an infinite moving upright plate. The 
perturbation applied to solve the dimensionless boundary layer equation 
with various thermo-physical properties taken into account, providing 
outstanding results as shown below.  

• As the volume fraction of the solid particle increases, we observe that 
the velocity and increases consequently  

• The interaction of the Gr and Gm links momentum boundary layer 
tension to growth velocity increase.  

• The velocity of the nanofluids under temperature increased as the 
thermal radiation parameter Nr rose.  

• At all cruxes, the increasing suction parameter reduces the velocity, 
temperature, and concentration following nanofluid fluid flow.  

• The Sc and Kr parameter reduces the absorption of the nanofluid flow 
at all regions. 

• The main findings pointed that Cu-water nanofluid is a better ther-
mal conductor when compared with the conventional fluid (water), 
and pointed out when the Kr increases then the solutal boundary 
layer thickness decreases. 
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Nomenclature 

a1 velocity along the x-direction 
a2 y - axis component velocity 
B0 transverse magnetic effects 
b1 fluid temperature 
bw surface temperature 
b∞ ambient temperature 
c1 invariant species concentration 
cw surface species concentration 
c∞ ambient species concentration 
cp specific heat capacitance 
Gr thermal Grashof number 
Gm mass Grashof number 
g gravitational acceleration 
K permeability parameter 
Kr chemical reaction parameter 
Nr thermal radiation 
Pr Prandtl number 
Sc Schmidt number 
S suction parameter 
t′ non-dimensional time 
u0 uniform velocity 
v0 uniform suction 
M magnetic parameter  

Greek symbols 
σ Stefan-Boltzmann constant 
β thermal expansion coefficient 
ρ density 
φ solid particle volume fraction 
ω angular oscilation 
ε emissivity parameter 
μ dynamic viscosity 
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α thermal diffusivity 
γ kinematic viscosity  

Subscripts 
f Carrier fluid 
nf nanofluid 
w wall condition 
∞ free stream level 
s solid particle 

Appendix 
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