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Abstract
The influence of fake news in the perception of reality has become a mainstream topic in

the last years due to the fast propagation of miss-leading information, which has been
enhanced by social media. To contribute to the fight against misinformation, researchers
have proposed to develop automated solutions. The task of automated claim verification

consists in assessing the truthfulness of a claim by finding evidence about its veracity.
Datasets with synthetic claims have been developed to train models that perform this
task. However, naturally-occurring claims are usually semantically more complex than

synthetic claims. In this work, we test if the use of explicit semantic structures can help
with the task of claim verification. We integrate Semantic Role Labels and Open

Information Extraction structures to a BERT model, showing some improvement on the
performance of the task. Additionally, we perform some explainability tests which show

that the semantically-enriched model is better at handling complex cases, such as
sentences in passive form or with multiple propositions.

Erasmus Mundus Language and Communication Technologies



4/72

Erasmus Mundus Language and Communication Technologies



5/72

Contents

1 Introduction 11

2 Background 15
2.1 Fake News in NLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Types of Fake News . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 NLP approaches to Fake News Detection . . . . . . . . . . . . . . . 16

2.2 The Task of Claim Verification . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Document Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Natural Language Inference . . . . . . . . . . . . . . . . . . . . . . 20

2.3 State-of-the-art in Claim Verification . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Language and Knowledge Representation . . . . . . . . . . . . . . . . . . . 24
2.4.1 Semantic Role Labels . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Open Information Extraction . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Resources 29
3.1 FEVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Creation of the Dataset . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Datasets Attribute Comparison . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Evidence Retrieval Module . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 SemBERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Semantic Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Semantic Role Labeling Parser . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Open Information Extraction Parser . . . . . . . . . . . . . . . . . 37

4 Experiments 39
4.1 Baseline: a BERT model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Incorporating SRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Mapping SRL Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Adding an Attention Mechanism . . . . . . . . . . . . . . . . . . . 41

4.3 Incorporating Open Information Extraction . . . . . . . . . . . . . . . . . 42

5 Evaluation 45
5.1 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Explainability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Saliency Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Erasmus Mundus Language and Communication Technologies



6/72

5.3 Generalisation of the models . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusion 57

Erasmus Mundus Language and Communication Technologies



7/72

List of Figures

1 Example of the reasoning needed in FEVER from Zhong et al. (2020) . . . 11
2 Pipeline of Claim Verification . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Modified example of language inference from Cooper et al. (1996) . . . . . 20
4 Example of each semantic representation . . . . . . . . . . . . . . . . . . . 26
5 Example of the representations extracted with OpenIE from Stanovsky et al.

(2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Semantic complexity of the claims in FEVER, HoVer and MultiFC . . . . 31
7 Time references and complexity of the claims in FEVER, HoVer and MultiFC 32
8 Mathematical reasoning in the claims in FEVER, HoVer and MultiFC . . . 33
9 BERT input representation, from Devlin et al. (2019) . . . . . . . . . . . . 35
10 SemBERT architecture from Zhang et al. (2020a) . . . . . . . . . . . . . . 36
11 Architecture of the argument identification and classification model in Shi

and Lin (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12 Architecture of the OpenIE model in Stanovsky et al. (2018) . . . . . . . . 38
13 Architecture of SemBERT for claim verification . . . . . . . . . . . . . . . 41
14 Confusion matrix of the predictions with bert base . . . . . . . . . . . . . 46
15 Confusion matrix of the predictions with sembert tags1 . . . . . . . . . . . 46
16 Saliency Scores of the Telemundo example with BERT and SemBERT. The

above plot shows the entire claim and evidence input, and the plots under
it zoom into the relevant parts, delimited with black frames above. . . . . . 49

17 Saliency Scores of the Easy A example with BERT and SemBERT. The
above plot shows the entire claim and evidence input, and the plots under
it zoom into the relevant parts, delimited with black frames above. . . . . . 50

18 Saliency Scores of the Indian Army example with BERT and SemBERT.
The above plot shows the entire claim and evidence input, and the plots
under it zoom into the relevant parts, delimited with black frames above. . 51

Erasmus Mundus Language and Communication Technologies



8/72

Erasmus Mundus Language and Communication Technologies



9/72

List of Tables

1 Statistics of the FEVER dataset . . . . . . . . . . . . . . . . . . . . . . . . 30
2 Mapping between sets of tags . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Results from all the models in the FEVER dev set . . . . . . . . . . . . . . 45
4 Correct examples in both bert base and sembert tags1 . . . . . . . . . . . 47
5 Examples that are correct for sembert tags1 and not for bert base . . . . . 48
6 Examples that are correct for bert base and not for sembert tags1 . . . . . 48
7 Results on the test set of my best model and previous models . . . . . . . 55

Erasmus Mundus Language and Communication Technologies



10/72

Erasmus Mundus Language and Communication Technologies



11/72

1 Introduction

The spread of fake news can influence the view that people have on reality (Zubiaga
et al., 2018), which is why fact-checkers have been fighting misinformation by assessing
the veracity of factual content. However, the ever faster spread of information requires
for a more automated solution (Zhou and Zafarani, 2020; Oshikawa et al., 2020). Thus,
researchers in Natural Language Processing (NLP) have proposed the task of automated
claim verification: given a claim, a model should be able to look for evidence in order to
infer whether it can be supported, refuted, or the information is just not available (Thorne
et al., 2018). In general, it is considered that the inference part of this task requires
reasoning over sentences with complex semantics (Thorne et al., 2019).

The task of claim verification has been approximated by creating datasets which include
a set of claims and a ground-truth knowledge database. Each claim is given a truth-label
according to the information available in the database. The most common benchmark for
claim verification is FEVER (Thorne et al., 2018), which has 185k claims synthetically
generated from a Wikipedia database. In this task, systems should find the articles where
the information is located and then select the sentences that are relevant, which we call
evidences. Given the right evidences, the inference model should be able to reason whether
the claim can be supported or not.

Let us take, for instance, the claim The Rodney King riots took place in the most
populous county in the USA. In Figure 1, the system has already found two evidences that
contain information regarding this claim: one about the The Rodney King Riots and one
about Los Angeles County. Now, the inference model should be able to understand that
the entity Rodney King riots in the claim is also mentioned in Evidence #1, and that
according to this evidence it happened in the place Los Angeles County. It should then
understand that Los Angeles County is the same entity mentioned in Evidence #2, which
does happen to be the most populous county in the USA. With all the previous information,
the model should conclude that the claim can be supported. This is not a trivial task.

Figure 1: Example of the reasoning needed in FEVER from Zhong et al. (2020)

While the FEVER dataset has been used to develop many models, concerns have been
raised that the FEVER dataset does not account for the complexity of naturally-occurring
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claims. Previous work pointed out that the sentences that human fact-checkers encounter
are usually semantically more complex, and require more temporal and numerical reasoning
(Thorne et al., 2019). This suggests that the next steps towards automated claim verifica-
tion should focus on developing systems that are able to account for semantic complexity,
instead of relying on shallow linguistic cues.

Indeed, recent work on the FEVER dataset has focused on improving the reasoning
process by structuring the evidences as graphs and integrating semantic information (Zhou
et al., 2019; Zhong et al., 2020). Taking those experiments as a starting point, we want
to improve the inference part of a claim verification system so that it can reason better
through semantically-complex sentences. In this work, we propose using explicit semantic
information to train a model that is able to infer whether a claim is truthful or not.

Thus, the main objective of this work is to evaluate the effects of incorporating semantic
knowledge in the inference module of automated claim verification. To this goal, we set
several sub-objectives:

1. To annotate a portion of three claim verification datasets to confirm the semantic
complexity of naturally-occurring claims.

2. To develop a strong baseline for fact-checking based on recent deep learning archi-
tectures and large pre-trained language models.

3. To incorporate different types of semantic information into the baseline.

4. To evaluate the adequacy of the various types of semantic information for automated
fact-checking.

5. To assess the linguistic capabilities of the semantically enriched systems by perform-
ing tests that make the models more explainable.

The semantic information we use in this work is Semantic Role Labels (SRL, Palmer
et al. (2005)) and Open Information Extraction (OpenIE, Etzioni et al. (2008)). In our
experiments, these semantic structures are used as additional input to the BERT contextual
word embeddings (Devlin et al., 2019). We integrate this information using the SemBERT
architecture presented in Zhang et al. (2020a).

Our annotations show that semantic complexity is common in naturally-occurring
claims. The main finding of this work is that semantic information does have a posi-
tive contribution to the task of automated claim verification. We encounter that, when
comparing our semantically enriched model to the baseline, the new model is able to bet-
ter understand sentences with multiple propositions or written in passive form. We also
observe that BERT is already a strong baseline for this task, and that SRL provides more
helpful information than OpenIE. All the code from our experiments is open and can be
found on our Github respoitory.1

1https://github.com/BlancaCalvo/Claim-Verification-FakeNews
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In the following sections we discuss the state-of-the-art of NLP approaches to fake news,
and in particular to claim verification (Section 2), we describe the resources that are used
in this work (Section 3), we explain the experiments that we performed (Section 4), and we
evaluate the results of our best model testing its linguistic capabilities (Section 5). Finally,
we conclude by summarising our observations and pointing at future work (Section 6).
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2 Background

The challenge of automated claim verification involves multiple tasks of Natural Language
Processing (NLP). In this section, we are going to review the existing literature regarding
these different tasks. In the first place, we are going to focus on the concept of fake
news and the NLP-based approaches to deal with this issue (Section 2.1). Next, we are
going to introduce the task of claim verification (Section 2.2). Then, we are going to
highlight the complexities of developing a system for claim verification, present the datasets
that have been created to approximate the task, and the state-of-the-art systems (Section
2.3). Finally, we are going to introduce the current practices in language and knowledge
representation and note some of its limitations, such as the lack of semantic structure and
the issues with explainability (Section 2.4).

2.1 Fake News in NLP

In its broader sense, fake news is defined as a news article or message published through
media that carries false information (Kshetri and Voas, 2017; Zhou and Zafarani, 2020).
Taking this definition, fake news include disinformation (intentionally false information),
misinformation (unintentionally false information) and satire (false information for humor-
ous purposes).

The creation and distribution of false information is not a new phenomena. However,
the raise of online social networks as the main media for information propagation has
changed the nature of this issue (Hermida, 2010). The absence of control systems and
fact-checking in social media has created a prolific environment for the spread of false
information. This information arrives to a large number of users in a short time, thus
greatly influencing the perception of real world events (Zubiaga et al., 2018). Studies have
shown that fake news spread faster in social media than factual news (Vosoughi et al.,
2018).

Evaluating the impact of the massive propagation of fake news has been a major re-
search goal in controversial events, such as the US Presidential elections of 2016 (Allcott
and Gentzkow, 2017; Grinberg et al., 2019), the Brexit referendum (Bastos and Mercea,
2019), or the COVID-19 pandemic (Alam et al., 2021). These studies have shown that fake
news not only disseminate false information, but also promote panic, racism, xenophobia,
fake cures, and mistrust in the authorities (Alam et al., 2021).

Fact-checking platforms have been doing great efforts to prevent the propagation of
fake news, both through gathering professional fact-checkers and by using crowd-sourcing
(Zhou and Zafarani, 2020). However, the current scale of distribution of fake news has
put the focus on finding automated solutions to tackle the issue (Oshikawa et al., 2020).
These approaches have come from Data Mining, Computational Social Science, Cultural
Analytics, and Natural Language Processing (Su et al., 2020). In section 2.1.2, we give an
overview of NLP approaches to fake news detection.
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2.1.1 Types of Fake News

Deceptive news can get a lot of different shapes depending on their authenticity (if the facts
reported are true or not), their intention (if they are created with the purpose of lying,
misleading or entertaining its readers), and whether the information reported is news or
not (Zhou and Zafarani, 2020). As follows, we define the different types of false information
that are usually studied under the broader field of fake news.

• Disinformation. News that are intentionally false and are spread deliberately for
some malicious purpose.

• Misinformation. News that contain unintentionally false information because they
are created or distributed without a proper fact-checking process.

• Satire. News that are intentionally false and are created for humorous purposes.

• Clickbait. Consists in exaggerating information and under-delivering it. This is often
done using controversial headlines that do not always agree with the content of the
news article.

• Rumour. This is an unverified claim, which is made by users on social media platforms
and can potentially spread beyond their private network.

• Biased-reporting. Consists in reporting news using only some of the facts to serve an
agenda.

In the task of claim verification we mainly deal with the first two types of fake news:
disinformation and misinformation.

2.1.2 NLP approaches to Fake News Detection

There are four main approaches that NLP researchers have used to automatically detect
fake news: using style-based features as proxies to fake news (Zhou et al., 2020; Schuster
et al., 2020); building knowledge-based systems to evaluate the factuality of claims (Thorne
et al., 2018; Augenstein et al., 2019); observing common propagation patterns of deceptive
news (Shao et al., 2020; Pastor-Galindo et al., 2020); and using source-based features that
focus on the credibility of the publisher/spreader (Popat et al., 2018).

The great interest of the NLP community on the topic of fake news is evidenced by the
multiple shared tasks proposed in the last years. These tasks have focused on different as-
pects of fake news, such as stance detection and hyperpartisan news detection (Hanselowski
et al., 2018a; Mohammad et al., 2016), detecting fake news spreaders (Rangel et al., 2017,
2018, 2020; Wiegmann et al., 2019), evaluating the check-worthiness of claims (Barron-
Cedeno et al., 2020; Elsayed et al., 2019; Nakov et al., 2018), and assessing the veracity of
claims (Thorne et al., 2018; Barron-Cedeno et al., 2020; Jiang et al., 2020; Wadden et al.,
2020; Elsayed et al., 2019; Nakov et al., 2018). Previous approaches to stance detection,
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detecting fake news spreaders and evaluating check-worthiness will be explained in the
following paragraphs. The task of claim verification will be described in detail in sections
2.2 and 2.3.

Stance Detection

Stance detection consists in identifying attitudes expressed in texts. This task has been
found to be relevant as a component to fact-checking and rumour detection tasks, but also
on its own (Hardalov et al., 2021). Recent datasets for stance detection have approached
this task as a static classification problem: given a text (e.g. news article, tweet, blog
post, etc.) and a topic, the system should be able to classify the text into labels such as
agrees, disagrees, discusses and unrelated (Hanselowski et al., 2018a; Mohammad et al.,
2016). These datasets have been used to develop multiple systems, most of them relying
on lexical features (Riedel et al., 2018; Hanselowski et al., 2018a; Ghanem et al., 2018).
Other datasets have approached stance detection as a dynamic issue, in which the goal is
to predict the stance of a comment in an ongoing discussion (Gorrell et al., 2019). Given a
previous text document, these datasets classify another text document (e.g. other tweets,
post comments, etc.) into labels such as comment, deny, query and support.

Detecting Fake News Spreaders

Exploring how fake news propagate in social media has been a common approach to
tackle disinformation. These approaches include using social media comments to detect
fake news (Shu et al., 2019); identifying coordinated disinformation groups of users in
social media analysing their behavior (Shao et al., 2020); detecting machine-generated
fake news using stylometry (Schuster et al., 2020); or investigating the linguistic aspects of
news content to detect disinformation on its source (Zhou et al., 2020). Baly et al. (2018)
integrated both stance detection and reliability of the source into a claim verification
system, showing the relevance of these features. Atanasov et al. (2019) also combined
stance detection and identification of fake news spreaders, by proposing an approach to
analyze the behavior patterns of the political trolls according to their political leaning.

Evaluating Check-worthiness of Claims

In order to verify the factuality of a piece of news, it is important to first identify
which claims are the most relevant to be fact-checked. This task can consist in ranking
sentences in a text in order to choose those that are more likely to need to be fact-checked
(Hanselowski et al., 2018a; Elsayed et al., 2019). Alternatively, the task can be seen as
a double classification task. First, between factual and non-factual sentences, and then
between check-worthy and not-check-worthy claims (Barron-Cedeno et al., 2020; Nakov
et al., 2018). Recently, the ClaimBuster dataset (Arslan et al., 2020) has been released.
It includes 23k sentences labeled into three categories: non-factual statement, uninportant
factual statement and check-worthy factual statement. This dataset wants to become a
benchmark for check-worthiness detection.
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Figure 2: Pipeline of Claim Verification

2.2 The Task of Claim Verification

Claim verification is the task of assessing the veracity of a statement, given some pieces of
evidence. The pipeline of claim verification (Figure 2) consists of three main sub-tasks:

• Document Retrieval: finding the documents where the information to verify the
given claim might be located.

• Information Extraction: selecting the information inside this document that
might be relevant to the given claim.

• Natural Language Inference: understanding the information contained in the
pieces of evidence in order to support or refute a claim, or conclude that there is not
enough information available.

In the following subsections, we present the state-of-the-art for each of these subtasks.

2.2.1 Document Retrieval

The task of document retrieval has been a relevant issue since the beginning of the World
Wide Web. Search engines were some of the first NLP applications: they started as
searchers of term salience in text frequency, to evolve into PageRank-based systems, and
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to finally introduce semantic information and context to account for the intention of the
person making the query (Fletcher, 2007). In general, document retrieval is approached as
a ranking problem: given a set of documents, the highest ranked ones should be retrieved.

The task of page ranking has been mainly approached with pointwise algorithms: for
each text, it should retrieve a score. However, some models approached the issue in a
pairwise manner: given two documents, it should decide wether A is more relevant than B
(Yates et al., 2021). Up until recently, the most successful architectures for page ranking
were regression tree ensembles (Burges, 2010). However, nowadays the most successful
page ranking systems are based on the Transformer architecture (Vaswani et al., 2017;
Nogueira and Cho, 2020).

In recent applications, document retrieval has been an important part of the ongoing
research in open question answering. Open Q&A consists in looking for the location of
an answer to a question without knowing the document in which the answer might be
located (hypothetically, it could be anywhere in the Web). Wikipedia, the multilingual
open-collaborative online encyclopedia2, has been used as a knowledge database for this
task in the past, together with other knowledge resources (Ahn et al., 2005; Buscaldi and
Rosso, 2006; Ryu et al., 2014).

Chen et al. (2017a) were the first to develop a system relying solely in Wikipedia articles,
what prevented redundancy of sources but also required a much more precise document
retrieval system. The document retrieval part of this system compares Wikipedia articles
and questions using bag-of-word vectors of bigram counts. This method for document
retrieval outperformed the Wikipedia Search API on percentage of questions with the
correct retrieved segment in the SQuAD dataset (Rajpurkar et al., 2016).

2.2.2 Information Extraction

Information extraction consists of finding and understanding pieces of text in order to
structure its content according to the relevant information. The final goal is to organize
information so that it is useful for some purpose. Common goals of information extraction
systems have been keyword extraction, relation extraction and named entity and event
extraction (Jurafsky, 2000).

In the case of claim verification, the goal of information extraction is to retrieve the sen-
tences that contain the evidence to verify the given claim. Thus, the information extraction
module of this task can also be approached as a ranking challenge: for each set of sentences,
the most useful ones should be retrieved. For the ranking task, similar approaches to the
ones described in Section 2.2.1 can be used.

Additionally, document retrieval can also be performed using keyword extraction (Hanselowski
et al., 2018b). The idea is to extract the most important noun phrases of the claim, to then
query the Wikipedia API. In this approach, the tasks of document retrieval and information
extraction are closely related. Keyword extraction has been performed in several different
ways: from TF-IDF computation, to supervised and graph-based models (Firoozeh et al.,

2https://en.wikipedia.org/wiki/Wikipedia
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2020). Danesh et al. (2015) combined some of these approaches to develop an unsupervised
method that ranks ngram candidates with various ranking steps based on traditional statis-
tical features, the position of the first occurrences, and a co-occurrence graph. The task of
information extraction has also benefited from Transformer-based models (Baldini Soares
et al., 2019; Soleimani et al., 2019).

2.2.3 Natural Language Inference

Natural Language Inference (NLI) is the task of recognizing if there exist textual entailment
between one or more premises and a given hypothesis. In this step of claim verification, the
retrieved pieces of evidence should be used to assess the truth-status of the initial claim.
There exist multiple tasks in NLP that require NLI, such as Question Answering (QA),
Natural Language Understanding (NLU), or Summarisation.

MacCartney and Manning (2007) presented a system for inference that used natural
language as input. They moved from formal logic representations (Bos and Markert, 2006)
to capturing common logical inferences by appealing directly to the structure of language.
Angeli and Manning (2014) approached the task as a database completion of common sense
facts, demonstrating certain ability of their system to learn these facts.

Language inference can be framed as a relation extraction task: in order to know if a
sentence is entailed by another sentence, it is necessary to identify the semantic relation
between the verb and the arguments of the premises and hypothesis. For instance, in
Figure 3, it is necessary to know that there is a relation between leading tenor and cheap,
given by comes ; and another relation between Pavarotti and leading tenor given by is, in
order to claim that the hypothesis is false.

• Premise: Neither leading tenor comes cheap.

• Premise: One of the leading tenors is Pavarotti.

• Hypothesis: Pavarotti comes cheap.

Figure 3: Modified example of language inference from Cooper et al. (1996)

For this reason, early approaches used semantic information to approach tasks that
required NLI. He et al. (2015) introduced the possibility of annotating semantic roles as
a question-answering task, showing that predicate-argument structures can be extracted
from natural language questions. In the same direction, Stanovsky et al. (2015) demon-
strated the contribution of semantic structures, such as OpenIE, when performing text
comprehension with a simple unsupervised lexical matching algorithm. We will see more
about this in sections 2.4.1 and 2.4.2.

The creation of more extensive datasets, such as SNLI (Bowman et al., 2015), and
MNLI (Williams et al., 2018), has allowed researchers to develop systems based on neural
networks, which use architectures based on attention (Parikh et al., 2016) and parsers
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(Chen et al., 2017b). Previous research noted that one of the main challenges of NLI is
extracting meaningful representations of the sentences. Phenomena such as coreference,
syntactic ambiguity, quantification, tense, belief and modality should be possible to grasp
by the given representation. It has been observed that very long sentences and sentences
with negation are the most difficult to represent (Williams et al., 2018).

In most NLI tasks, there is a great need for readily available world knowledge, which is
why large pre-trained language models have been so successful. Transformer-based models
have substantially improved the performance of NLI benchmarks. We will see more about
this in section 2.4.

2.3 State-of-the-art in Claim Verification

Ideally, a claim verification system should be able to take sentences from naturally-occurring
texts (e.g. news articles, social media posts or political speeches) and assess their veracity.
However, developing training data for this task has some complexities, such as defining the
ground truth and creating a knowledge database with boundaries, which allows the anno-
tators to know for sure that the ground truth is right. For this reason, there have been
several attempts to approximate the task by creating domain-specific datasets (Scifact,
Wadden et al. (2020)) and synthetic datasets (FEVER and HoVer, Thorne et al. (2018);
Jiang et al. (2020)). These datasets consist of a set of claims annotated with their ground
truth, together with a database of knowledge, in which the truth labels are based (e.g. a
set of scientific abstracts or a set of Wikipedia articles). The labels are usually Supports,
Refutes and NotEnoughInfo.

There exist other datasets that contain naturally-occurring claims, such as the MultiFC
(Augenstein et al., 2019), Liar (Wang, 2017), and other smaller datasets. These are gen-
erally scraped from fact-checking websites, and sometimes include the justification of the
fact-checker for the given label. However, these datasets do not contain a given and fixed
database of evidence. This makes it very difficult to use them to train inference systems,
as the ground truth at the moment of fact-checking can be different from the current one
(facts change), and there is no gold evidence.

2.3.1 Datasets

FEVER (Thorne et al., 2018) is the benchmark dataset for claim verification. It contains
185,455 claims generated from altering sentences extracted from Wikipedia and labelled
as Supports, Refutes or NotEnoughInfo (NEI). It comes with a Wikipedia database of
articles, including those from which the claims were extracted. Additionally, the annotators
recorded the sentences that were used as pieces of evidence to assess the Supports and
Refutes labels.

The task of claim verification requires to build a pipeline which first retrieves the
relevant articles from the database, then extracts the most relevant sentences of those
articles and finally classifies the claim with respect to the retrieved evidence. The results
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are evaluated with two measures: accuracy of classification labels only, and accuracy of
classification labels given a correct evidence retrieval.

Recent research in NLP has been raising concerns on the extend to which systems
exploit unintentional biases and cues that exist on the training dataset (Poliak et al., 2018;
Gururangan et al., 2018), instead of actually understanding language (we further explain
this issue in section 2.4). These concerns have been gaining relevance as models have been
becoming more complex and difficult to interpret. With this in mind, the organizers of
FEVER decided to create FEVER 2.0 (Thorne et al., 2019), a shared task with a setup
of build-it, break-it, fix-it. That means that the participants were expected to submit
a system, then create adversarial attacks to break the submitted systems, and finally
investigate ways to fix the initial systems given the new attacks. In the breaking phase,
participants focused on the shortcomings of the original FEVER dataset, such as the lack
of complex claims that required multi-hop inference and temporal reasoning (Hidey et al.,
2020), or arithmetic and logical reasoning (Kim and Allan, 2019). These attacks proved
to be difficult to solve by the systems of the task.

The HoVer task (Jiang et al., 2020), was built upon one of the perceived shortcomings
of FEVER: multi-hop reasoning. The objective was to create a dataset in which evidence
can be required from up to 4 different Wikipedia articles. The 26,000 claims of HoVer
are, as a consequence, way longer than the claims in FEVER, adding difficulty to both the
retrieval and the inference sub-tasks. Overall, the task is very similar to FEVER. However,
HoVer is a binary classification task between Supported and Not-Supported (combining
Refutes and NEI in this single category).

MultiFC (Augenstein et al., 2019) is a dataset of 34,918 naturally-occurring factual
claims retrieved from 26 fact-checking websites in English. The claims have rich metadata,
such as the name of fact-checker, the date of fact-checking and often also the reasons for the
given label. Additionally, the dataset comes with a set of automatically retrieved evidence
snippets. However, this dataset has several shortcomings, namely:

• The original labels from the 26 fact-checking websites are not mapped, which results
in a dataset with 126 different labels (compared to 3 in FEVER and 2 in HoVer).

• The dataset does not come with a fixed database of knowledge, which makes it
possible that the labels given to claims are no longer true with the current (online)
information (e.g. something that was not known when the label was given can be
known now).

• The retrieved snippets are not manually annotated gold evidence, which makes it
unclear if the labels can be inferred from the given evidence.

For these reasons, MultiFC is not a good dataset to train textual inference. However,
it can be used to observe which attributes are more common in naturally-occurring claims
in order to take them into account when evaluating systems on synthetic datasets such as
FEVER or HoVer.
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Scifact (Wadden et al., 2020) is a dataset of 1,409 scientific claims extracted from
referenced sentences of scientific articles by experts. For this reason, claims in Scifact
are very close to naturally-occurring ones. The dataset includes a corpus of 5,183 article
abstracts, which are the database where the information is stored. Scifact mainly follows
FEVER’s approach. However, the truth-label of a claim is not absolute. Instead, different
abstracts can Support or Refute a single claim, although this does not occur often. This
is a dataset of the science domain, and the task is challenging because the model should
learn scientific terminology and often perform numerical reasoning.

Finally, the UKP Snopes dataset (Hanselowski et al., 2019) is the largest dataset of
naturally-occurring claims with manually annotated evidence. It contains 6,422 claims
and 14,296 documents to retrieve the evidence from. The claims were crawled from fact-
checking websites and the annotators noted both the stance (agrees, refutes and no stance),
and the sentences which served as evidence to the claim. This is a potentially very useful
dataset. However, its size is still far from FEVER and MultiFC.

2.3.2 Systems

Several systems have been developed to deal with the task proposed in FEVER, as it is
the most used dataset for claim verification. These systems focus on dealing with one,
two or three of the sub-tasks: document retrieval, sentence retrieval and natural language
inference.

The baseline of the FEVER task (Thorne et al., 2018) uses an evidence and sentence
retrieval approach based on Chen et al. (2017a) (see section 2.2.1) and the feature extrac-
tion approach proposed by Riedel et al. (2018) in the FakeNewsChallenge (Hanselowski
et al., 2018a). Riedel et al. (2018)’s approach computes term frequency vectors for both
the retrieved evidence and the main claim, as well as the cosine similarity between the
normalised TF-IDF vectors of both. It then structures these features concatenating the
TF-IDF vectors with the cosine similarity values in between. The final feature vector has
size of 10,001, and is fed into a multi-layer perceptron with one hidden layer.

The shared task proposed by the authors of the task in July 2018 had 23 different
participants. The team that achieved the highest performance in evidence recall (85.19)
was Athene UKP TU Darmstadt (Hanselowski et al., 2018b). They used noun phrases
to query the Wikipedia search API. The team that obtained the highest label accuracy,
UNC-NLP (Nie et al., 2019), concatenated the evidence sentences into a single string and
included an additional token-level feature: the sentence similarity score from the sentence
retrieval module. They achieved an accuracy of 68.21 on label accuracy.

After the end of shared task, and given the fast improvement of many NLP tasks due
to the release of Transformer-based language models, such as BERT (Devlin et al., 2019),
new systems have been released for the FEVER task. Soleimani et al. (2019) achieved a
label accuracy of 71.70 using BERT for the inference module and the evidence retrieved
by Hanselowski et al. (2018b), two points higher than Nie et al. (2019).

Later on work has focused on new approaches to feature extraction and structuring,
which allow for interaction and reasoning between different pieces of evidence using graph-
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based representations (Zhou et al., 2019; Zhong et al., 2020).
Zhou et al. (2019) proposed to move from a claim-evidence concatenation system to a

fully-connected evidence graph that allows for information propagation among evidences.
This system starts by encoding the claim and the claim-evidence pairs with BERT (Devlin
et al., 2019), which results in 6 input sentence pairs (given that they use 5 evidence sen-
tences per claim). Each of these pairs is a node of the graph. An attention layer is then
used to propagate the information within the nodes. A second attention layer combines
the previous computations with the representation of the claim. The resulting represen-
tation is used to make the decision about the final output. They call this system GEAR
(Graph-based Evidence Aggregating and Reasoning) and use the evidence retrieved by
Hanselowski et al. (2018b) as input.

Zhong et al. (2020) followed a similar approach, but used semantic information in
order to create the knowledge graph. More specifically, they extract Semantic Roles with
the AllenNLP parser (Gardner et al., 2018; Shi and Lin, 2019), and structure the claim
and the pieces of evidence into tuples of predicates and arguments. They encode these
propositions using XLNet and re-define the relative distance between arguments. They
then use each argument as a node of the graph and propagate and aggregate information
from neighbouring nodes of the graph.

The baseline created by the authors of HoVer uses fine-tuned BERT models for all the
steps of the pipeline (evidence retrieval, sentence retrieval and claim verification) (Jiang
et al., 2020). This system only gets the right label in 67.6% of the development set, and it
drops to just 14.9% if the right retrieved evidence is also required. The only other system
developed for this task focuses on improving the retrieval module (Khattab et al., 2021).
Their system introduces a condensed retrieval architecture that summarises the retrieved
facts and uses them as part of the query to subsequent hops. They also allow different
parts of the same query to match different passages of the evidences. They significantly
improve the retrieval module, consequently improving the accuracy of the labels: they get
73.7% of the labels right in the development set.

Augenstein et al. (2019) developed a multi-task learning system to deal with the task
in MultiFC. They account for the multiple labels by creating embeddings for each of these
labels, and combining those with the evidence-claim embedding. With this approach, the
semantic closeness between labels is learned automatically, which is additional knowledge
to learn the labels of each claim-evidence pair. They also use metadata as additional input,
and they achieve a Macro F1 of labels of 49.2% in the test set.

To sum up, many of the state-of-the-art systems for claim verification use large pre-
trained language models, such as BERT or XLNet, as the backbone of their model. Thus,
in the following section we introduce these models, highlighting some of their limitations,
and present work that have been trying to overcome these drawbacks.

2.4 Language and Knowledge Representation

Significant improvements on downstream NLP tasks have been made with transfer learning.
In transfer learning, neural networks are first trained on a different but related task, with
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the goal of capturing relevant knowledge. Then, the pre-trained language model is fine-
tuned on the target task, with the goal of reusing the knowledge captured in the pre-training
phase to improve performance on the aimed task.

The release of the language model BERT (Devlin et al., 2019) revolutionised the per-
formance of many NLP tasks, specially tasks involving inference (see Section 3.2). After
BERT, many other models that use different amounts of data, parameters or training tasks
have been developed; RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019) are some
of the most successful ones. These two last models (RoBERTa and XLNet), obtained
state-of-the-art results in the MNLI benchmark, both of them achieving an accuracy of
around 90% in the task.

Despite these very promising results, researchers have been raising concerns suggesting
that the success of natural language inference models has been overestimated (Gururangan
et al., 2018; Gupta et al., 2021). Recent work has shown that automated models tend to
look for shortcuts and rely on linguistic cues when being trained for specific NLP tasks.
These cues are present in the training dataset and very often they come from the anno-
tation process. This is specially the case for datasets where humans generated the data
(Poliak et al., 2018), as is the case of SNLI, MNLI and FEVER. Some common annotation
cues that have been observed in NLI tasks are: adding negation for contradictory state-
ments, using generic words for entailed sentences, or adding purpose clauses to neutral
hypothesis. Removing these cues causes a significant accuracy drop for state-of-the-art
systems (Gururangan et al., 2018). In the FEVER dataset, for instance, Schuster et al.
(2019) developed a claim-only model in BERT, which achieved a performance of 61.7%,
way above the 33.3% that would be expected with no evidence, this indicates the existence
of certain linguistic cues in the FEVER dataset.

Ideas on how to deal with this issue have come from proposing new evaluation techniques
that go beyond accuracy: such as creating adversarial examples to break shallow patterns
(Jia and Liang, 2017), or applying attribution techniques to identify the key elements of
the input that contributed to the output (Mudrakarta et al., 2018). Recently, Ribeiro
et al. (2020) introduced CHECKLIST, a set of tests to evaluate the different linguistic
capabilities expected by a model.

Other approaches have proposed incorporating linguistic knowledge into deep language
models in order to make them grasp natural language better, as well as to make them
more explainable. This new direction suggests using information that had been helpful
for NLI models before the arrival of deep learning, in order to guide the self-attention
mechanisms (Zhang et al., 2020b). Zanzotto et al. (2020) designed a system that explicitly
embeds syntax parse trees into sentence embeddings using distributed tree kernels, and
can visualise the decisions made (KERMIT). Zhang et al. (2020a) introduced a modified
BERT architecture, that maps semantic role labels to embeddings in parallel and inte-
grates the text representation with the contextual explicit semantic embedding to obtain
a joint representation. This last system improves the state-of-the-art of NLI tasks, such as
SNLI and SQuAD 2.0 (Rajpurkar et al., 2018). We will expand into the use of semantic
representations in sections 2.4.1 and 2.4.2.

Finally, there have been growing concerns over the lack of explainability of current
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NLP models. Some efforts towards this direction have already been mentioned just above:
like the attribution techniques presented by Mudrakarta et al. (2018), or the syntactic
visualisation of KERMIT (Zanzotto et al., 2020). Other interesting efforts to explain the
behaviour of deep-learning models and NLI models in general will be described in Section
2.4.3.

2.4.1 Semantic Role Labels

Semantic roles (also called thematic labels) represent the different arguments that a predi-
cate might have. These semantic categories are relations between noun phrases and verbs.
An ideal set of roles should be able to concisely label the arguments of any relation.
Nonetheless, the exact set of these relations is an open discussion inside the linguistic
community (Bonial et al., 2011).

Lexical resources such as FrameNet (Baker et al., 1998), VerbNet (Kipper et al., 2000),
and PropBank (Palmer et al., 2005) have been largely used to deal with NLP tasks. Al-
though these three annotation frameworks all have the goal of creating semantic represen-
tations between predicates and its arguments, their focus is different.

• FrameNet: [Mr. Bean]BUY ER bought [the sweater]GOODS [from the second hand
store]SELLER [for 400 pounds]PAYMENT .

• VerbNet: [Mr. Bean]Agent boughtget−13.5.1 [the sweater]Theme [from the second hand
store]Source [for 400 pounds]Asset.

• PropBank: [Mr. Bean]Arg0 [bought]V [the sweater]Arg1 [from the second hand
store]Arg2 [for 400 pounds]Arg3.

Figure 4: Example of each semantic representation

FrameNet is focused on semantic frames: schematic representations of situations involv-
ing various participants, propositions, and other conceptual roles (Fillmore, 1976). This
approach starts by choosing a semantic frame (e.g. commerce) to then look for its par-
ticipants and other elements (e.g. BUYER, SELLER, PAYMENT) through the different
lexical predicates that are common in that frame (e.g. buy, sell, pay).

VerbNet is a hierarchical verb lexicon that groups verbs into classes based on similarities
in their syntactic and semantic properties. In each class, VerbNet includes a group of
member verbs and the semantic roles used in the arguments of the predicate. In the
example in Figure 4, the verb buy is grouped under the hierarchical class get-13.5.1, which
commonly has an Agent (a participant who gets something), a Theme (what is being
gotten) and a Source (from whom/where does it get it).

Finally, PropBank was created as a practical approach to semantic representation. Its
goal is to create a shallow but broad representation that covers every instance of every verb
in a corpus to allow representative statistics to be calculated. For this reason, the PropBank
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framework has been the most broadly used in NLP. PropBank defines semantic roles on
a verb-by-verb basis: individual verb’s semantic arguments are numbered, beginning with
zero. In the example in Figure 4, the Agent in VerbNet becomes Arg0 in PropBank, and
the Theme becomes Arg1.

PropBank was designed to be used in automated tasks. For this reason, multiple mod-
els have made use of this representation for tasks such as Question Answering and Text
Comprehension (Shen and Lapata, 2007; Khashabi et al., 2018; Zhang et al., 2020b). With
the popularization of deep learning architectures, and specially of contextual word embed-
dings, semantic representations based on sets of labels seem to have lost some relevance.
However, recent work has proved their usefulness as additional information to Transform-
ers (Zhang et al., 2020a). Zhong et al. (2020) used SRL tuples to structure information
graphs for automated claim verification.

2.4.2 Open Information Extraction

Open Information Extraction (OpenIE) was first introduced as an extraction paradigm to
tackle an unbounded number of relations (Etzioni et al., 2008). Systems based on Ope-
nIE extract relational tuples from text by identifying relation phrases and the arguments
associated to these relations (Mausam et al., 2012). Stanovsky et al. (2015) were the first
to propose this task as an intermediate structure for other semantic tasks, similar to what
was already being done with other linguistic information, such as semantic roles, syntac-
tic dependencies or lexical representations. They demonstrated that for the tasks of text
comprehension, word similarity and word analogy, OpenIE structures can be more useful
than the sentence representation structures mentioned above.

• PropBank: [John]Arg0 [refused]V [to visit a Vegas casino]Arg1.
[John]Arg0 refused to [visit]V [a Vegas casino]Arg1.

• OpenIE: [John]A [refused to visit]V [a Vegas casino]A.

Figure 5: Example of the representations extracted with OpenIE from Stanovsky
et al. (2015).

In the example in Figure 5, the semantic role labels extracted with the PropBank
framework identify two different propositions because there are two different verbs. The
first one extracts the tuple (John, refused, to visit a Vegas casino), and the second one the
tuple (John, visit, a Vegas casino). This representation could mislead a textual inference
model, as the first and the second extracted propositions seem to contradict each other.
In OpenIE, instead, the model identifies the multi-word predicate refused to visit. The
resulting representation (John, refused to visit, a Vegas casino) seems intuitively more
useful for a task of language inference.
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2.4.3 Explainability

With the appearance of large language models, performance in complex NLP tasks, such
as language understanding, has been improving, to the point of overcoming human perfor-
mance in many datasets. However, recent work has found that models often use linguistic
cues embedded in datasets and other strategies to perform its predictions (Poliak et al.,
2018; Gururangan et al., 2018). For this reason, as NLP models become more complex and
data-hungry, it becomes more important to not just get the performance of a model, but
also to understand how does it get to these conclusions. In the case of claim verification,
it is crucial to know where did the model get the information to decide the truth-label of
the claim (Atanasova et al., 2020b).

To overcome these drawbacks, it has become a regular practise to try to train NLI
models using just the claim or just the evidence as input (Poliak et al., 2018). This is a
way to test the linguistic cues embedded in the dataset. If it is possible to train a model
using just the claims, it means that there are enough clues in the claims itself to guess the
label, and consequently the dataset should be rethought.

Explainability methods for NLP models have been proposed in three directions: perturbation-
based explanations, gradient-based explanations, and generation of text serving as an ex-
planation (Atanasova et al., 2020a). The first approach consists in generating adversarial
attacks to the model, which modify current input instances to identify the capacities that
the model has and the ones that it does not (Jia and Liang, 2017; Mudrakarta et al., 2018;
Ribeiro et al., 2020). This can also consist in replacing tokens with zeros and measuring
the change in output (Zeiler and Fergus, 2014). A second approach has come from extract-
ing saliency scores, which indicate which elements of the input had more influence in the
final output. These saliency scores can then be compared to human annotations of salient
input regions, to asses if the rationales of the model agree with human ones (Atanasova
et al., 2020a; DeYoung et al., 2020). These scores can also be compared to assess confi-
dence or consistency. Similarly, other approaches have consisted in looking at the layers
of deep-learning models to try to understand what does each of these layers learn (Vig,
2019; Zanzotto et al., 2020). Regarding explainability of claim verification, Atanasova et al.
(2020b) went further and focused on generating automated justifications for verdicts on
claims. For this purpose, they created a multi-task model that generates the explanations
and predicts the veracity of the claims at the same time. In this direction, other work
has focused on generating explanations of why a piece of news is detected as fake in social
media (Lu and Li, 2020; Shu et al., 2019).

We have concluded this background review by emphasizing the field’s shifting focus
towards more explainable models in NLP, specially in critical topics such as fake news. In
the following section, we present the resources used in our experiments.
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3 Resources

In this section we introduce all the resources that were used in this work. First, we present
the FEVER dataset in more detail, observe its attributes and describe evidence retrieval
module for our experiments. Then, we describe the pre-trained model that we use for
transfer learning (BERT), the architecture we use in our experiments (SemBERT), and
the parsers we use to extract the semantic information.

3.1 FEVER

In our experiments we used the FEVER dataset (Thorne et al., 2018). This is a synthetic
dataset, therefore its generation process potentially conditions our results and conclusions.
In the following paragraphs, we introduce how it was created and then point at some of
its drawbacks. We also do an attribute comparison to other claim verification datasets.

3.1.1 Creation of the Dataset

The FEVER dataset has been a benchmark for claim verification since it was released
in 2018. The dataset consists of 185,445 generated claims with its truth label and the
evidence for that label. The first construction phase of this dataset consisted in generating
the claims. To this goal, the authors took the June 2017 Wikipedia dump, processed
it with Stanford CoreNLP (Manning et al., 2014), sampled the introductory sections of
approximately 50,000 popular pages, and indexed the resulting sentences. The claims were
then generated by annotators following this procedure:

1. The annotators were given one sentence at random and had to generate some claims,
each containing a single piece of information, focusing on the entity that its original
Wikipedia page was about.

2. To allow for some (controlled) increase of the complexity of the claims (an avoid
mere paraphrases), the annotators were allowed to use information coming from the
first sentence of the Wikipedia entries of all the hyper-linked terms in the original
sentence.

3. The annotators were then asked to generate mutations of the claims, altering them
in ways that may or may not change their truth label. The types of mutations were:
paraphrasing, negation, substitution of entity/relation, and making the claim more
general or specific.

4. The annotators were asked to avoid trivial negations, such as sentences using not.

The second phase to build the dataset consisted in labeling the claims as Supports,
Refutes or NotEnoughInfo (NEI). The annotation interface displayed all sentences of the
introductory section of the article that the claim came from and of the articles of every
hyper-linked entity. When labelling as Supports or Refutes, the annotators had to record
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Supports Refutes NEI
Training 80,035 29,775 35,639

Development 3,333 3,333 3,333
Test 3,333 3,333 3,333

Reserved 6,666 6,666 6,666

Table 1: Statistics of the FEVER dataset

which pieces of evidence were needed to be certain about the given label. Adding other
Wikipedia entries was also allowed. But the annotators were advised not to spend more
than 2-3 minutes per claim.

The annotators team consisted of 50 people, 25 of which were involved in the first
phase. They were native US English speakers. The Fleiss k score of both finding the
evidence and giving the claim a label was 0.684. The final dataset has four partitions:
training, development, test and a reserved set for the shared task (Thorne et al., 2018).
The statistics can be seen in Table 1.

3.1.2 Datasets Attribute Comparison

As stated in Sections 2.3 and 2.4, growing concerns have noted that the results of deep
learning models are often biased by the dataset that is used for training them (Poliak et al.,
2018; Gururangan et al., 2018). For this reason, we found it necessary to get to know the
attributes of our dataset and compare them in more detail to other claim verification
datasets that have been introduced in Section 2.3.1.

Synthetic datasets are useful given the difficulties to create a structured database with
all the knowledge needed to verify naturally-occurring claims. However, Thorne and Vla-
chos (2019) already pointed out that FEVER misses some of the complexity that naturally-
occurring claims have. Some types of reasoning that are commonly needed in naturally-
occurring claims but rarely appear in FEVER are:

• Claims that require multi-hop document/sentence retrieval.

• Claims that contain rich semantics in long and complex sentences, which also often
imply multi-hop reasoning.

• Claims that require temporal reasoning.

• Claims that require mathematical reasoning.

These drawbacks have been noted by previous work, however we did not find any empir-
ical study showing how often these phenomena appear in FEVER compared to naturally-
occurring claims. For this reason, we decided to perform exploratory annotations of a
random sample of 300 claims from FEVER, HoVer and MultiFC (100 claims per dataset),
which currently are the largest existing datasets for claim verification.
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We annotated semantic complexity, relevance of time reasoning, time complexity, and
mathematical reasoning. In the following paragraphs, we will describe the annotation
guidelines for each of these issues and note the observations we extracted from this process.

Semantic Complexity

As a proxy for semantic complexity, we decided to annotate the number of verbs (or
predicates) per claim excluding gerunds and auxiliaries. As can be observed in Figure 6,
while claims in FEVER are almost always simple (contain one single verb), that is not the
case in the other two datasets. HoVer is synthetically created to have claims that require
multi-hop, so there are a lot of complex claims. MultiFC follows a Benford distribution,
which is seen as more natural, in which the number of claims decreases when complexity
increases.

Guidelines of the annotation are:

1. The claim just has one verb.

2. The claim has two verbs.

3. The claim has three verbs.

4. The claim has more than three verbs.

Figure 6: Semantic complexity of the claims in FEVER, HoVer and MultiFC

Temporal Reasoning

Annotating time was challenging, as we wanted to know if there was a need of reasoning
through time in order to verify the claim, and also the complexity of that reasoning. For
this reason we performed two different annotations: time reasoning and time complexity.

In Figure 7, we observe that claims that can be verified without knowing the date in
which the claim was stated do not exist in naturally-occurring claims (at least not in our

Erasmus Mundus Language and Communication Technologies



32/72

Guidelines for time reasoning:

0. Time is NOT relevant to the claim.

1. Implicitly, time of the claim is relevant.

2. The claim explicitly mentions time
which is relevant to the claim, but the
date itself is not included (e.g. yester-
day, last week).

3. The claim explicitly mentions time
which is relevant to the claim.

Guidelines for time complexity:

0. No time reference.

1. One date is relevant.

2. Two or more dates are relevant.

3. There is a range of time that is rele-
vant.

4. The claim compares facts of different
dates.

Figure 7: Time references and complexity of the claims in FEVER, HoVer and MultiFC

random sample), while they are a big part of the FEVER dataset. In HoVer, it seems like
the extra complexity comes with additional explicit time references and comparison be-
tween different dates. We also observe that comparing facts for different dates is something
common in naturally-occurring claims, but it never happens in the synthetic datasets.
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Mathematical Reasoning

We annotated the complexity of mathematical reasoning in a similar fashion to time com-
plexity. In Figure 8, it can be observed that math reasoning is more common in naturally-
occurring claims than in synthetic ones. Mathematical reasoning has been a subject of
research in multiple work (Dua et al., 2019; Andor et al., 2019), but none of it has focused
in the task of claim verification. Kim and Allan (2019) tried to account for these com-
plexities in the FEVER2.0 shared task, but the instances they created failed to meet the
guidelines of the shared task and were not included.

Guidelines of the annotation are:

0. No maths needed.

1. One operation needed.

2. Two operations needed.

3. More than two operations needed.

Figure 8: Mathematical reasoning in the claims in FEVER, HoVer and MultiFC

3.1.3 Evidence Retrieval Module

Given that this research project focuses on the natural language inference module of claim
verification, we do not perform evidence retrieval, and instead we use the evidences re-
trieved by the system that had the highest evidence recall in the FEVER shared task.

We have used the top 5 evidences extracted by Hanselowski et al. (2018b) and have
used the scripts from Zhou et al. (2019) to put the data in the right format for BERT. From
these scripts, we have removed the part where they concatenated named entities to the
end of each evidence, as it was found not to be useful and it made the evidences too long
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for an efficient computation. Here we can see an example of each of the values contained
for each instance in the input:

• ID: 0

• Label: NOTENOUGHINFO

• Claim: Colin Kaepernick became a starting quarterback during the 49ers 63rd season
in the National Football League.

• Evidence 1: He remained the team ’s starting quarterback for the rest of the season
and went on to lead the 49ers to their first Super Bowl appearance since 1994 , losing
to the Baltimore Ravens .

• Evidence 2: Kaepernick began his professional career as a backup to Alex Smith ,
but became the 49ers ’ starter in the middle of the 2012 season after Smith suffered
a concussion .

• Evidence 3: During the 2013 season , his first full season as a starter , Kaepernick
helped the 49ers reach the NFC Championship , losing to the Seattle Seahawks .

• Evidence 4: In the following seasons , Kaepernick lost and won back his starting job
, with the 49ers missing the playoffs for three years consecutively .

• Evidence 5: Colin Rand Kaepernick -LRB- -LSB- ‘ kæprnk -RSB- ; born November
3 , 1987 -RRB- is an American football quarterback who is currently a free agent .

3.2 BERT

Our experiments are based on Bidirectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019) and variants of this model. These models have a high
performance in the topic studied in this work, namely, natural language inference for fact-
checking. The Transformer architecture (Vaswani et al., 2017) consists of several layers
of multi-headed self-attention with feed-forward layers and skip connections. As previ-
ous architectures, they have an encoder-decoder structure. Unlike RNNs, that maintain a
recurrent state and process an input sequentially, Transformers can compute all features
of a vector in parallel. This allows Transformers to be trained significantly faster than
architectures based on recurrent or convolutional layers.

BERT is trained with two different objectives: Masked LM (MLM) and Next Sentence
Prediction (NSP). MLM consists in replacing 15% of the tokens in a text with [MASK]
and letting the model attempt to predict the original value of the masked words; this task
computes the word embeddings. NSP consists in pairing two sentences with the special
token [SEP ] and trying to predict if the second sentence is the subsequent sentence in
the original document. A [CLS] token is inserted at the beginning of the first sentence
to account for the joint representation of the pair of sentences. Together with the token
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Figure 9: BERT input representation, from Devlin et al. (2019)

contextualized embeddings, the input also contains a sentence embedding indicating which
token corresponds to which sentence, and a positional embedding. In Figure 9, an example
of the BERT input representation can be observed: the tokens are given as input, and a
token embedding, a segment embedding and a positional embedding are used to represent
each single token.

Language models trained with Transformer architectures can be used either to extract
text representations – using its contextualized word embeddings as features; or as a system
– by adding a fine-tuning layer on top of the pre-trained model. In our experiments, we
use BERT as a system.

3.3 SemBERT

BERT is designed to be given plain natural text as input. However, recent work suggests
that it could benefit from additional linguistic knowledge. Zhang et al. (2020a) proposed an
architecture that is able to encode both natural text and semantic information: SemBERT.
We are going to use this architecture for our experiments with SRL and OpenIE.

As a first step, SemBERT encodes text in the same way that BERT does: tokenizing the
text into sub-tokens and computing contextualized embeddings for each of these sub-tokens.
In parallel, SemBERT takes the semantic representation that it is given, which should have
one tag per word (SRL in the original paper), and computes tag embeddings. Given that
a single sentence can have several predicates, and consequently several argument-predicate
structures (propositions), the authors allow for up to three different representation vectors.
In order to combine the BERT sub-token representation with the semantic representations
(which is computed by word), they need to be aligned. A convolutional neural network
does this by merging back the sub-tokens to obtain a BERT word-level representation.
Additionally, a linear layer aggregates the three semantic representation vectors (for the
three propositions per sentence allowed) into one final semantic embedding. Then, the
BERT word representation and the final semantic representation are concatenated, in the
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Figure 10: SemBERT architecture from Zhang et al. (2020a)

step that is referred as semantics integration in Figure 10.
According to the authors, SemBERT outperforms BERT in NLI tasks increasing the

final accuracy between 1 and 3 percentage points (Zhang et al., 2020a).

3.4 Semantic Parsers

This project aims to integrate semantic information to perform inference for claim verifi-
cation. The hypothesis is that this information might facilitate the reasoning in complex
semantic structures. We extract two kinds of semantic structures: Semantic Role Labels
(SRL) and OpenIE. We use SRL because previous work has shown that it can be useful
for the task of claim verification (Zhong et al., 2020), and OpenIE because other work has
shown that it is a very intuitive structure for the task of text comprehension (Stanovsky
et al., 2015), which is directly related to claim verification. The parsers that we used to
extract both of these structures are presented in the following sections.

3.4.1 Semantic Role Labeling Parser

Semantic Role Labeling consists in extracting the predicate-argument structures of each
sentence (see Section 2.4.1). Therefore, the automatic extraction of semantic role labels

Erasmus Mundus Language and Communication Technologies



37/72

implies four subtasks: predicate detection, predicate sense disambiguation, argument iden-
tification and argument classification. PropBank-based approaches usually represent ar-
guments as spans – they look for the beginning and end of the argument and annotate the
whole chunk.

Shi and Lin (2019) developed a BERT-based model to extract PropBank SRL, where the
predicate is already identified. Their model performs predicate sense disambiguation using
BERT for sequence labeling. To identify and classify arguments, they encode the input as
sentence [SEP] predicate(verb), to allow the predicate to interact with the whole sentence.
This model had a In Figure 11, the architecture of the model is shown. AllenNLP (Gardner
et al., 2018), a semantic NLP platform, incorporated this model in its library, and we used
it in this project to extract the SRL.3 The output of this model is a dicitonary in which
every identified predicate is a verb entry, and comes with a list of tags that correspond to
each word in the sentence, having the tag O for words outside the proposition. The tags
follow the BIO4 tagging scheme (Ramshaw and Marcus, 1995) and the PropBank set of
arguments. The output of the example on Figure 4 would look like:

{
d e s c r i p t i o n : [ARG0: Mr . Bean ] [V: bought ]

[ARG1: the sweater ] [ARG2: from the second hand s t o r e ]
[ARG3: f o r 400 pounds ] . ,

tags : [B−ARG0, I−ARG0, B−V,B−ARG1, I−ARG1,B−ARG2,
I−ARG2, I−ARG2, I−ARG2, I−ARG2,B−ARG3, I−ARG3,
I−ARG3,O] ,

verb : bought ,
words : [Mr . , Bean , bought , the , sweater , from ,

the , second , hand , s to re , fo r , 400 , pounds , . ]
}

3.4.2 Open Information Extraction Parser

To extract OpenIE tuples we also use the parser provided in the AllenNLP platform,
which comes from the model designed by Stanovsky et al. (2018).5 Similar to the SRL
task described above, they frame OpenIE as a sequence labelling task and use the BIO
tagging scheme. The output of this model is tuples of predicates and arguments which are
tagged as P for predicates and as Ai for arguments, where i is the natural order of the
arguments. Additionally, multi-word predicates are allowed, and a single predicate can be
in more than a tuple in certain syntactic constructions (e.g. apposition, co-ordination or
coreference).

Stanovsky et al. (2018) developed a bi-LSTM system to perform OIE labelling which
takes as input a word with respect to a predicate representation, which consists of a word

3A demo of this model can be found in https://demo.allennlp.org/semantic-role-labeling
4Beginning, Inside, Outside
5A demo of this model can be found in https://demo.allennlp.org/open-information-extraction
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Figure 11: Architecture of the argument identification and classification model in Shi and
Lin (2019)

representation (orange circle in Figure 12) concatenated with a predicate representation
(yellow circle in Figure 12). Both of these representations are the word embedding of the
corresponding token plus the word embedding of the part-of-speech of the token.

Figure 12: Architecture of the OpenIE model in Stanovsky et al. (2018)
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4 Experiments

Following the success of pre-trained Transformer-based language models and taking as a
reference the state-of-the-art systems for claim verification, we have decided to investigate
if the integration of semantic knowledge to the inference module can improve the task of
claim verification.

To this goal, we perform several experiments that will be described in the following
sections. First, we use the base BERT model (Devlin et al., 2019) to perform the infer-
ence (Section 4.1). Then, we leverage the SemBERT architecture (Zhang et al., 2020a)
to incorporate the Semantic Role Labels (Section 4.2). Finally, we apply the same Sem-
BERT architecture to add linguistic knowledge extracted in the form of Open Information
Extraction (Etzioni et al., 2008) triples (Section 4.3).

4.1 Baseline: a BERT model

The sequence classification model from BERT takes two sequence inputs separated by
the special token [SEP]. The first sequence of our input is always the text of the claim
(previously encoded into token ids). We tried two different ways to structure the evidences
(the part after the [SEP] token).

In the first experiment, an input for each evidence was created, encoding the sentence
like claim text [SEP] evidence text. This resulted in 5 (possibly) different predicted labels,
one per each claim-evidence pair. For this reason, a voting system which picked the label
that occurred most frequently was implemented at the end of the training pipeline. The
results from this first implementation were unsatisfactory, most likely because not all ev-
idences contained actual information to get to the right label. Let’s recall that these are
automatically extracted evidences from Hanselowski et al. (2018b), which means they are
not all necessarily relevant.

An alternative way to structure the data consisted in concatenating all the evidences in
a single string. The input to the BERT model looked like claim text [SEP] evidence text.
evidence text. evidence text. evidence text. evidence text. The concatenated evidence was
considered a better structure for our input, given that the label was extracted by taking
into account every evidence available. The concatenated structure resulted in a long input,
so we set the maximum sequence length to 250 tokens. We used the BERT tokenizer to
encode the input. For training, we gave the model 4 epochs with a batch size of 20, we
used the AdamW optimizer (Loshchilov and Hutter, 2019) and a linear scheduler, which
linearly increases during the warmup period until it reaches the learning rate set to 2e-5
and then decreases linearly. These hyper-parameters were selected based on the results
obtained by Zhang et al. (2020a).

The model described above will be called from now on bert base, and is the baseline for
our experiments. This is a strong baseline that has a 73.82 label accuracy. Next sections
will evaluate if adding semantic information to this baseline can improve the results.
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4.2 Incorporating SRL

Previous work had shown some improvement in NLI tasks when incorporating Semantic
Role Labels (SRL) to Transformer architectures (Zhong et al., 2020; Zhang et al., 2020a)
(explained in Sections 2.4 and 2.3). We decided to bring these findings to the task of claim
verification by using the SemBERT architecture (see Section 3.3).

On first instance, we trained a model with all the semantic roles (from now on we will
call them tags) retrieved by the AllenNLP parser. This resulted in a tags-vocabulary of size
22 (including the special tokens [SEP], [CLS] and [PAD]), so the encoding layer contained
22 contextualized embeddings of length 10 (see the tags in Table 2).

In this case, the structure of the input was also the claim followed by [SEP] and the
concatenation of all the retrieved evidences. We kept the maximum sequence length to 250.
The original paper of SemBERT is tested in SNLI, which encodes pairs of sentences. For
this reason, they conclude that allowing for a maximum of 3 predicate-argument structures
is enough. In our case, given that we usually have around 6 sentences (1 claim and 5
evidences), we allow for the system to have up to 12 predicate-argument structures.

The architecture of this model is presented in Figure 13. Just like in the BERT model,
the input of the top part of the diagram is the concatenation of the claim and the evidences,
which is encoded with BERT (sub-)word embeddings. These sub-words (the tokenised
units that BERT produces) are then reconstructed to become full word representations by
using a convolutional layer. The lower part of the diagram shows the SRL part. For each
proposition in the original input (up to 12 propositions), the semantic tags are given as
input and encoded using tag embeddings. Then, a linear layer reduces the dimensionality
of these 12 representation to 1. The result of the upper and lower part of the diagram
are then concatenated, and are used to obtain the final decision (see Section 3.3 for more
details).

The results of the base SemBERT experiment improved the performance of our baseline
by reaching a 75.05 label accuracy.

4.2.1 Mapping SRL Tags

Given that the set of tags was quite large, it was considered that the sparsity of the
SRL data could be preventing the model from learning patterns. We decided to make
additional experiments reducing the set of tags by doing two different mappings. One
mapping reduced the amount of tags by removing the positional part of the tags, which
was given in BIO notation (e.g. I- B-), and reducing the amount of modifier arguments to
just temporal, location or other modifiers, leaving a total of 13 tags. We call this mapping
tags1, and the correspondence with the tags of the first model can be seen in Figure 2. The
second tag set came from using the mapping of the DREAM system (Zhong et al., 2020),
which additionally reduces all the ARG tags to a single argument tag, leaving a total of 8
tags. The correspondence can be seen in Table 2.

These new models slightly improved the performance of the previous ones. The sem-
bert tags1 model obtained a 75.37 label accuracy, while the sembert DREAM model ob-
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Figure 13: Architecture of SemBERT for claim verification

tained an accuracy of 75.12. Even if the difference in performance was not big, all the
subsequent experiments are done using tags1 mapping, as a smaller set of tags also helps
in understanding the model.

4.2.2 Adding an Attention Mechanism

The given SemBERT model uses a linear layer to squeeze all the 12 predicates into one.
That is needed to delete the multiple predicates dimension and be able to concatenate
the representation coming from the SRL to the one produced by BERT (see Section 3.3).
We hypothesized that this linear layer could be replaced by an attention mechanism that
allowed evidences to reason between them, inspired in the self-attention mechanism from
the GEAR system (Zhou et al., 2019), described in Section 2.3.

This self-attention mechanism concatenates the vectors of each predicate in pairs, to
then compute self-attention between them and use that information to reshape the 12
representations into one using a linear layer. We used the tags1 mapping and call the
model sembert tags1 att.
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All Tags Tags1 Tags DREAM Tags

O O O
B-V V verb
I-V V verb

B-ARG0 ARG0 argument
I-ARG0 ARG0 argument
B-ARG1 ARG1 argument
I-ARG1 ARG1 argument
B-ARG2 ARG2 argument
I-ARG2 ARG2 argument
B-ARG4 ARG4 argument
I-ARG4 ARG4 argument

B-ARGM-TMP TMP temporal
I-ARGM-TMP TMP temporal
B-ARGM-LOC LOC location
I-ARGM-LOC LOC location
B-ARGM-CAU ARGM argument
I-ARGM-CAU ARGM argument
B-ARGM-PRP ARGM argument
I-ARGM-PRP ARGM argument

Table 2: Mapping between sets of tags

Contrary to what we had hypothesized, the new self-attention mechanism did not lead
to an improvement of the model, but it did not decrease much either (75.15 label accuracy).
Given that this model was more complex than the previous ones, we decided to stick to
the sembert tags1 model as our best model so far.

4.3 Incorporating Open Information Extraction

SRL is the most widespread semantic parsing, but not the only one. Open Information Ex-
traction (OpenIE) was designed to extract unknown relations from millions of documents.
Its first implementations were framed as a task of hand-crafted pattern-matching, which
later evolved into the creation of automated systems (Etzioni et al., 2008). Stanovsky et al.
(2015) were the first to propose using these representations as an intermediate structure
for other tasks. In this work, they found that OpenIE could potentially be effective for
the task of text comprehension. This finding motivated us to develop a SemBERT system
that uses OpenIE instead of SRL as an underlying structure.

For this experiment we have used the AllenNLP OpenIE parser, which is the imple-
mentation of Stanovsky et al. (2018). After parsing, we have kept the tags argument, verb
and O – O meaning that the word is not part of the predicate. This system is trained in
the exact same way as the one described in Section 4.2.
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The obtained results were better than the base BERT baseline, but they did not improve
the performance of the SemBERT model with SRL tags. The label accuacy was 74.34,
indicating that the simpler tags of OpenIE (just 3) did help the model, but missed some
information contained in SRL.
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5 Evaluation

Having presented our experiments, in this section we report our results. We first report
the accuracy of all our models, and then focus on comparing examples of our baseline and
our best model (Section 5.1). Then, we perform some explainability tests to evaluate the
capabilities of these models (Section 5.2). Finally, we report the results of our best model
on the test set and compare it to previous work (Section 5.3).

5.1 Model Comparison

In our experiments we tried several variations of the SemBERT model, by using different
sets of semantic tags and adding different reasoning mechanisms. In Table 3, we put
together the accuracy of the predictions of all these models, which have already been
reported in Section 4. We observe that all the SemBERT experiments have a better
performance than the BERT baseline. This difference is of 1 to 2 percentage points.

Accuracy
bert base (baseline) 73.82
sembert base 75.06
sembert tags1 75.37
sembert dream 75.12
sembert attention tags1 74.92
sembert openie 74.34

Table 3: Results from all the models in the FEVER dev set

Our best model is the SemBERT model with the SRL set tags1. The confusion matrices
in Figures 14 and 15 show that the improvement does not come from a clear refinement
of one single class. Instead, we see that many instances that had been wrongly classified
as Supports in BERT are now correctly classified as NEI, and many instances predicted
as NEI by BERT are now correctly refuted by SemBERT. This happens the other way
around too: BERT classifies as NEI a lot of instances that had wrongly been classified by
SemBERT as Refutes, and classifies as Supports instances that SemBERT had wrongly
classified as NEI. In general we observe that, while BERT is biased towards predicting
Supports, SemBERT is more inclined to predicting Refutes, and both systems get easily
confused with the class NEI.

The general trends shown in the confusion matrices indicate that the improvement of
SemBERT over BERT is not unidirectional. However, it does not show which inference
capabilities each of these models have so we will qualitatively analyze some examples of
the outputs of these models.

In Table 4, we can see examples that both models got correctly. The first example
of this table claims that Aristotle had spent time in the city of Athens. Given two clear
evidence sentences that place this person in this city, both systems output Supports. In the
second example, the answer is also very straightforward, as the claim says Telemundo is an
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Figure 14: Confusion matrix of the predictions with bert base

Figure 15: Confusion matrix of the predictions with sembert tags1

English-language channel and the first evidence sentence already claims that it actually is
in Spanish-language. Finally, the last example is more complicated because, even though
the system retrieved many evidence pieces that speak about the style of the Paris’s album,
none of them mention anything related to German. Both systems output NEI rightly.

In Table 5, we see a couple of examples that SemBERT correctly refuted, but BERT
decided to label as Supports. In the first example, the claim states that Bert V. Royal
had directed the film Easy A. Looking at the first evidence, it is possible to see that
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Label Instance

SUPPORTS

Claim: Aristotle spent time in Athens.
Evidence: At seventeen or eighteen years of age , he joined Plato ’s
Academy in Athens and remained there until the age
of thirty-seven c. 347 BC.
Evidence: Shortly after Plato died , Aristotle left Athens and , at the
request of Philip II of Macedon , tutored Alexander the Great
beginning in 343 BC .

REFUTES

Claim: Telemundo is a English-language television network.
Evidence: Telemundo is an American Spanish-language terrestrial
television network owned by Comcast through the NBCUniversal
division NBCUniversal Telemundo Enterprises .
Evidence: It is the second largest provider of Spanish content
nationwide behind American competitor Univision , with programming
syndicated worldwide to more than 100 countries in over 35 languages .

NEI

Claim: Paris (Paris Hilton album) incorporates elements of German.
Evidence: It also incorporates elements of other genres , such as
reggae , soul and pop rock , in its production .
Evidence: Musically , Paris is a pop and R&B album that is
influenced by hip hop .
Evidence: The self-titled album , Paris , was released worldwide on
August 22 , 2006 .
Evidence: Paris is the debut studio album by American media
personality , actress and singer Paris Hilton .

Table 4: Correct examples in both bert base and sembert tags1

the BERT model probably got confused because the first evidence does include both the
predicate directed by and the name of Bert V. Royal. However, if we take into account
the semantic structure of the sentence, we realise that the name and the predicate do not
belong to the same proposition, and instead the name Bert V. Royal is an argument of the
predicate written by. This is an interesting example where the semantic structure added in
SemBERT seems to have an influence. The second example of this table is also a semantic
complication given by the expression the first.

When reviewing the instances that BERT had correctly labeled as Supports and Sem-
BERT had refuted, we observe that many of these claims required certain numerical rea-
soning. In the first example in Table 6 the system had to reason that more than 70% has
to be true if more than 80% is true. In the second example, the claim states that the series
took place in the 1970s, and both evidences claim that the series was in fact set in 1979.
This hypothesis will be further investigated later, as we do not find any reason why BERT
would be better at mathematical reasoning.

From the qualitative review of the instances which had been labelled right and wrong
by BERT and SemBERT we have observed that SemBERT seems to have certain ability
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Label Instance

REFUTES

Claim: Easy A is directed by Bert V. Royal.
Evidence: Easy A -LRB- stylized as easy A -RRB- is a 2010 American
teen comedy film directed by Will Gluck , written by Bert V. Royal
and starring Emma Stone , Stanley Tucci , Patricia Clarkson ,
Thomas Haden Church , Dan Byrd , Amanda Bynes , Penn Badgley ,
Cam Gigandet , Lisa Kudrow and Aly Michalka .
Evidence: Bert V. Royal , Jr. -LRB- born October 14 , 1977 -RRB- is
an American screenwriter , playwright , and former casting director .

REFUTES

Claim: Marco Polo was not a European.
Evidence: Marco Polo was not the first European to reach China
-LRB- see Europeans in Medieval China -RRB- , but he was the first to
leave a detailed chronicle of his experience .

Table 5: Examples that are correct for sembert tags1 and not for bert base

Label Instance

SUPPORTS

Claim: The Indian Army comprises more than 70% of the country’s
active defense personnel.
Evidence: It is an all-volunteer force and comprises more than 80 %
of the country ’s active defence personnel .

SUPPORTS

Claim: Season 2 of Fargo takes place in the 1970s.
Evidence: A prequel to the events in its first season ,
season two of Fargo takes place in the Midwestern
United States in March 1979 .
Evidence: The second season , set in 1979 and starring Kirsten Dunst ,
Patrick Wilson , Jesse Plemons , Jean Smart , and Ted Danson ,
was met with even greater acclaim .

Table 6: Examples that are correct for bert base and not for sembert tags1

to understand semantically complex sentences, while BERT is better at numerical rea-
soning. However, it is difficult to confirm these observations without looking deeper into
the decision making process of the systems. For this reason, we have performed a set of
explainability tests.

5.2 Explainability Tests

The explainability tests that we perform in this project are gradient-based tests (saliency
scores) and adversarial attacks. We will use the same examples presented above.
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5.2.1 Saliency Scores

Extracting the saliency of each of the tokens given as input is not a trivial task for deep-
learning models. Simonyan et al. (2014) proposed to compute them as the gradient of the
output with respect to each input. Later improvements to this technique proposed to then
multiply these gradients to the input (InputX-Gradient), or to overwrite the gradients of
the ReLU functions in order to prevent negative gradients from being propagated (Guided
Backpropagation) (Kindermans et al., 2016; Springenberg et al., 2015).

We will use the saliency scores proposed above to get a better grasp of where the model
focuses in order to make its inference decisions. For an interpretable output we want to
have one saliency value for each token. Given that the last layer that we can compute
the gradients for is the embedding layer, we will get one gradient for each value in the
embedding of each token. In order to aggregate these values and get one single value per
token we will use the L2 norm (Atanasova et al., 2020a).

Figure 16: Saliency Scores of the Telemundo example with BERT and SemBERT. The
above plot shows the entire claim and evidence input, and the plots under it zoom into the
relevant parts, delimited with black frames above.

In Figure 16, the visualisation of the saliency scores for one of the examples is shown.
We compute each of the measures presented above (Saliency, InputxGradient and Guided
Backpropagation) two times, in order to account for variability, and aggregate the results
for each token using L2 norm. The three metrics have been normalised. It can be seen that
the tokens found to be more salient are English in the claim, and Spanish in the evidence,
which matches with what a human would focus on while verifying this claim. Additionally,
it can also be seen that both the BERT and SemBERT model agree with these rationales.
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Figure 17: Saliency Scores of the Easy A example with BERT and SemBERT. The above
plot shows the entire claim and evidence input, and the plots under it zoom into the
relevant parts, delimited with black frames above.

The first example of Table 5 is interesting, as it looks as if SemBERT is taking advantage
of the given semantic structure to correctly predict Refutes. Let’s recall this example is
wrongly labelled as Supports by BERT. In Figure 17 we can see that the saliency scores
in the BERT model rely on the tokens directed and bert in the claim, and directed, written
and bert in the evidence part. The SemBERT model seems to not have any salient token
in the claim, and only the words written and starring seem to be slightly relevant in the
evidence. It is not clear from this plot where does the output come from in SemBERT.
However, it has to be taken into account that the SemBERT model also has the semantic
structure as additional input, which is not shown in this plot. We could hypothesize that
some of the focus of the model is in the semantic part of the input, but this can not be
concluded from the displayed saliency scores.

Finally, to observe if the numbers are better dealt by BERT than by SemBERT, we
show the first example of Table 6 in Figure 18. In this visualisation it becomes clear
that the decision taken by the BERT model relies on the numbers 70 and 80. SemBERT,
instead, seems to be trying to verify some other information, as it puts the relevance in the
tokens defense in the claim, and volunteer and again defense in the evidence. This remark
seems to reinforce the observation that BERT might be better in numerical reasoning than
SemBERT, which we pointed in the previous section.
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Figure 18: Saliency Scores of the Indian Army example with BERT and SemBERT. The
above plot shows the entire claim and evidence input, and the plots under it zoom into the
relevant parts, delimited with black frames above.

5.2.2 Adversarial Attacks

Another explainability technique that has been proposed in previous work is changing the
input in order to assess the influence that it has over the output. This has been done both
by removing input tokens systematically (Zeiler and Fergus, 2014), and by altering the
input instances to generate adversarial attacks which can show what the model actually
understands (Ribeiro et al., 2018; Ebrahimi et al., 2018). In this section, we are going to
create some manual adversarial attacks in order to test the capabilities of our models.

Ribeiro et al. (2020) designed a CheckList to be used for testing NLP models looking
at the different desired capabilities using adversarial attacks. These can be either label-
preserving modifications (e.g. I like apples versus I still like apples), or label-changing tests
(e.g. I like apples versus I don’t like apples). Following their approach, we are manually
going to generate instances to test capabilities such as vocabulary+POS, NER, negation,
semantic structure and logic.

We start by testing basic capabilities for the instances both models got right. A first
check should ensure that the given labels are not random by creating attacks which change
the original label. We modify the claims in Table 4 to:

• Telemundo is a Spanish-language television network. ← Supports

• Telemundo is an American television network. ← Supports

• Aristotle never spent time in Athens. ← Refutes

• Paris (Paris Hilton Album) incorporates elements of soul. ← Supports

• We add German into the list of elements that the Paris album incorporates in the
first evidence. ← Supports
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In these tests, both models change the labels as expected with no errors. We also per-
form some tests which should preserve the initial labels, such as: Telemundo is a Chinese-
language television network, or adding the word German as the nationality of Paris Hilton
in the third evidence. These changes seem to be dealt correctly by both models. These
first tests show certain capacities of the model to deal with changes in vocabulary+POS
(e.g. removing -language or using German as a nationality), NER (e.g. changing English
to Spanish and Chinese), and negation (e.g. with the word never in the Aristotle example).

We then want to test more complex behaviour that was not dealt the same way by both
models. Using the first example in Table 5 (the one about Easy A), we want to investigate
if SemBERT is in fact dealing correctly with the complex semantic structure.

The original instance is:

• Claim: Easy A is directed by Bert V. Royal

• Evidence 1: Easy A -LRB- stylized as easy A -RRB- is a 2010 American teen
comedy film directed by Will Gluck , written by Bert V. Royal and starring Emma
Stone , Stanley Tucci , Patricia Clarkson , Thomas Haden Church , Dan Byrd ,
Amanda Bynes , Penn Badgley , Cam Gigandet , Lisa Kudrow and Aly Michalka .

• Evidence 2: Bert V. Royal , Jr. -LRB- born October 14 , 1977 -RRB- is an
American screenwriter , playwright , and former casting director .

SemBERT correctly labeled this instance as Refutes, but BERT labeled it as Supports.
We start by checking that the Refutes label of SemBERT is not random by changing the
claim to Easy A is written by Bert V. Royal. SemBERT passes this test and outputs
Supports. Following the tests for semantic structure in Ribeiro et al. (2020)’s CheckList,
we modify evidence 1 by changing the order of the propositions, swapping them to active
form, and creating symmetric relations. The new versions of the evidence are:

1. Order change: Easy A -LRB- stylized as easy A -RRB- is a 2010 American teen
comedy film written by Bert V. Royal, directed by Will Gluck , and starring
Emma Stone , Stanley Tucci , Patricia Clarkson , Thomas Haden Church , Dan Byrd
, Amanda Bynes , Penn Badgley , Cam Gigandet , Lisa Kudrow and Aly Michalka.
← Refutes

2. Order change: Easy A -LRB- stylized as easy A -RRB- is a 2010 American teen
comedy film written by Bert V. Royal , starring Emma Stone , Stanley Tucci , Patri-
cia Clarkson , Thomas Haden Church , Dan Byrd , Amanda Bynes , Penn Badgley
, Cam Gigandet , Lisa Kudrow and Aly Michalka , and directed by Will Gluck.
← Refutes

3. Symmetric relation: Easy A -LRB- stylized as easy A -RRB- is a 2010 American
teen comedy film directed by Will Gluck and Bert V. Royal and starring Emma
Stone , Stanley Tucci , Patricia Clarkson , Thomas Haden Church , Dan Byrd ,
Amanda Bynes , Penn Badgley , Cam Gigandet , Lisa Kudrow and Aly Michalka.
← Supports
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4. Remove the written by proposition: Easy A -LRB- stylized as easy A -RRB- is
a 2010 American teen comedy film directed by Will Gluck , and starring Emma Stone
, Stanley Tucci , Patricia Clarkson , Thomas Haden Church , Dan Byrd , Amanda
Bynes , Penn Badgley , Cam Gigandet , Lisa Kudrow and Aly Michalka. ← Refutes

5. Active form: Easy A -LRB- stylized as easy A -RRB- is a 2010 American teen
comedy film. Will Gluck directed the film , and Bert V. Royal wrote it. ←
Refutes

With all the variations of evidence 1 presented above, SemBERT always outputs the
right label, while BERT just outputs the right label in the last piece of evidence, which
contains the same information but in active form. These tests suggest that SemBERT does
have capabilities regarding semantic structure that are missing in BERT. However, more
systematic tests should be performed in this direction.

It has to be noted that, when we remove the proposition directed by Will Gluck from
evidence 1 the label should become NotEnoughInfo. Both models fail at this prediction
and instead output Refutes, again showing that NEI is the most difficult class.

Continuing with these experiments, we try to investigate the reason for the failure of
BERT in the sentence Marco Polo was not a European. What we find by making changes
to both the claim and the evidences, is that, for both models, whenever there is the word
not in the claim, the model outputs Refutes, and whenever we remove the not the label
becomes Supports. It is true that BERT labelled the original instance as Supports, but
that seems to be the exception and not the norm. Based on this observation, we decide to
try adding the word not to the other claims we have just investigated, finding that both
Telemundo is not a English-language television network and Easy A is not directed by Bert
V. Royal are wrongly labelled as Refutes for both models. What we find here is a clear
bias towards Refutes whenever there is the word not in the claim. It seems like this is an
issue coming from the creation of the dataset. It has to be noted that the guidelines of
FEVER specifically required to try to avoid trivial negations with not (see Section 3.1).
However, this guideline does not seem to have prevented it from happening.

Finally, we want to review the capabilities of the model to deal with numerical reasoning
and logic. Before we hypothesised that BERT might be better at this task based on the
examples from Table 6. Going back to these examples, we created several adversarial
attacks that should prove if the numerical reasoning is actually happening. The first
example required the model to reason that if it is true that the army comprises more than
80% of the active defense personnel, it should also be true that the army comprises 70% of
the active defense personnel. We try to create examples changing these numbers, spelling
the numbers or changing the comparative more than to less than. The attacks are:

1. Change the number: The Indian Army comprises more than 60 % of the country’s
active defense personnel. ← Supports

2. Change the number: The Indian Army comprises more than 20 % of the country’s
active defense personnel. ← Supports
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3. Change the number: The Indian Army comprises more than 90 % of the country’s
active defense personnel. ← Refutes

4. Change the numbers: Exchange 70 and 80 in the claim and the evidence.← Refutes

5. Remove more than : The Indian Army comprises 70 % of the country’s active
defense personnel. ← Refutes

6. Use less than : The Indian Army comprises less than 70 % of the country’s active
defense personnel. ← Refutes

7. Spell numbers: The Indian Army comprises more than seventy percent of the coun-
try’s active defense personnel. (also in the evidence we write eighty) ← Supports

What we observe from these alternative instances is that, in general, BERT and Sem-
BERT output very similar results. When changing the numbers, SemBERT gets the first
example right and BERT gets it wrong, then they both get examples 2 and 3 wrong, and
both get right example 4. These are inconclusive observations, which shows that there is
not a clear numerical reasoning behind the models. In examples 5 and 6, both models
get the labels right, showing that the model does get comparative clauses. Finally, spelled
numbers seem to also be dealt with rightly.

We do a test trial with the example Season 2 of Fargo takes place in the 1970s. The
alternative instances are:

1. Change the numbers: Changing the year in the evidences to 1982. ← Refutes

2. Change the subject: Season 1 of Fargo takes place in the 1970s. ← Refutes

3. Un-spell the numbers: In the evidences we change second season to Season 2. ←
Supports

4. Spell the numbers: Season 2 of Fargo takes place in the seventies. ← Supports

The results of these attacks to the numerical reasoning are also inconclusive. SemBERT
gets right the first instance, they both get wrong the second one, and BERT gets right the
last two examples. From these observations, we again conclude that numerical reasoning
is not handed well by any of the models, and this should be an issue to focus on future
work.

5.3 Generalisation of the models

While explainability tests are important to assess the relation between the system’s reason-
ing and human judgement, the end goal of a NLP system should be to be able to perform
well on unseen data. For this reason, many datasets include a blind test set which should
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Evidence F1 Label accuracy Fever Score

UKP-Athene 36.97 65.46 61.58
GEAR 36.87 71.60 67.10

DREAM 39.45 76.85 70.60

bert base (baseline) 36.87 70.86 65.52
sembert tags1 36.87 72.18 67.16

Table 7: Results on the test set of my best model and previous models

only be used for final evaluation. In the case of FEVER, the models can be evaluated in
the test set in their leaderboard in Codalab.6

The evaluations in the test set can be seen in Table 7. In the unseen data, the SemBERT
model still outperforms the BERT baseline by 1.3 percentage points in label accuracy. Both
models drop around 3 percentage points with respect to the development set. Addition-
ally, we also report the results on the test set of previous work such as UKP-Athene
(Hanselowski et al., 2018b), GEAR (Zhou et al., 2019), and DREAM (Zhong et al., 2020).
For our model, we used the evidences extracted by UKP-Athene, and some pre-processing
scripts from GEAR, which explains why all three models have (almost) the same F1 for
evidence retrieval. Our model outperforms both of these models in the inference module.
We got inspired by the work in DREAM to integrate semantic information for reasoning.
However, instead of using a graph-based approach, we used the SemBERT architecture
to incorporate the semantic information. As observed, DREAM performs better than our
model, suggesting that graph-based architectures might be a better representation for se-
mantic information. Even though the Codalab leaderboard has better-scoring submissions
than DREAM, this is the highest-scoring published system so far.

6https://competitions.codalab.org/competitions/18814
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6 Conclusion

In this work we have investigated if semantic information could facilitate the reasoning
process when inferring the truth label of a claim given some pieces of evidence. To this
goal, we have used two different semantic parsers and the architecture of the pre-trained
model SemBERT (Zhang et al., 2020a). For our experiments, we have used the FEVER
dataset (Thorne et al., 2018), which requires building a model that, given some pieces of
evidence, can output if a claim is supported, refuted, or the evidence does not give enough
information.

We have performed several experiments on top of the SemBERT architecture, such
as training models with different kinds of semantic information, different sets of semantic
tags, and with an additional attention mechanism to represent the semantic information.
In terms of label accuracy, all our experiments have outperformed the baseline, which was
a BERT model with no additional semantic information. Our best model uses Semantic
Role Labels and a set of 13 different tags, with no additional attention mechanism. This
model achieves a label accuracy of 75.37 on the development set and 72.18 on the test set,
outperforming the baseline by 1.5 and 1.3 percentage points respectively.

To better understand the contribution of the semantic information, we have performed
some explainability tests with our best model. These have shown that the SRL knowledge
might be contributing to guiding the model in semantically complex sentences that include
several propositions or passive forms. Additionally, we have also found that, as have been
pointed before, FEVER contains some linguistic cues that give both true and false hints
to the model, such as the word not.

Our contributions in this work have been (1) performing annotations to understand the
attributes of the FEVER dataset, (2) building a competitive system to deal with claim
verification, (3) testing the impact of semantic information for NLI, and (4) performing
explainability tests to understand the contributions of the additional semantic information.
All the code used for this project is available in the Github repository.7

As highlighted during the annotation process, FEVER is a synthetic dataset which does
not include as many semantically complex sentences as naturally-occurring claims. Future
work should focus on investigating if the semantic capabilities acquired by integrating
semantic knowledge contribute to claim verification in naturally-occurring claims. The
lack of claims that require temporal and mathematical reasoning is another issue that
differentiates FEVER from datasets with naturally-occurring claims. Future work should
also deal with these issues in order to make it possible to use NLP systems for claim
verification in real-world scenarios, such as fact-checking of news and public claims in
general.

To keep moving towards systems that can contribute to the work of fact-checkers, future
research on claim verification should take two directions. On the one hand, there is a need
to develop large datasets that are more similar to naturally-occurring claims and contain
less linguistic cues. On the other hand, NLI models for claim verification should output

7https://github.com/BlancaCalvo/Claim-Verification-FakeNews
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more explanatory justifications to their conclusions, which would make these systems more
trust-worthy.

In this work, we have not dealt with the task of evidence retrieval. In FEVER, this
task is limited by the static Wikipedia database that comes with the dataset. However,
in real-world scenarios defining the boundaries of what is trust-worthy information is a
challenge that goes beyond research in NLP and reaches the fields of journalism, politics
and even philosophy. The non-static nature of what is a true fact is an additional challenge
to evidence retrieval.
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