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1 Preliminaries

1.1 Introduction

Natural numbers: N = {1 2 3 }

Integer numbers: Z = N∪{0−1−2−3 } = {0 1−1 2−2 3−3 }

Rational numbers: Q =
©
all fractions of the form


, where  ∈ Z and  ∈ Nª

Sum of rational numbers: 

+ 


= +


(warning: 6= +

+
)

Product of rational numbers: (

)( 


) = 



Division of rational numbers: (

) : ( 


) =






= 


Order in Q: 

 


⇔   

Powers of rational numbers: a rational number  multiplied by itself 

times ( ∈ N) is written as . If    ∈ Q,   ∈ Z and   ∈ N we

have:

i) If   0 then  =  ⇔  = 
1
 = 
√
,

ii) (−) 6= − (example: (−3)2 6= −32),
iii) 


 := (

1
 ),

iv) 

 


 = 

(

)+(



)
= 

+
 (example: 3

2
33

−3
4 = 3

2
3
− 3
4 = 3

−1
12 =

1

(3)
1
12
),

v) (

 )


 = 

(

)(


)
= 


 ,

vi)  = () and

vii) (+ ) 6=  + .
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But powers of rational numbers do not always are rational numbers! For

instance, 2
1
2 =
√
2 is not a rational number. The rational numbers are not

enough to express the exact measure of all magnitudes (another example:

the quotient between the length of a circumference and its radius is not a

rational number).

1.2 Real numbers

The real numbers R are required to express the exact measure of all

magnitudes. The real numbers are the result of adding the irrational numbers

to the rational numbers. The rational numbers may be defined as the set of

decimal numbers with a finite number of decimals or with infinite decimals

such that beyond a certain digit a finite sequence of digits repeats itself

forever. The numbers with infinite decimals and such that there is not a

finite sequence of digits that repeats itself forever beyond a certain digit are

the irrational numbers.

Remark: there is no such thing like the number “next to” or “preceding

to” any rational number! There are irrational numbers between any two

consecutive rational numbers.

We have: N ⊂ Z ⊂ Q ⊂ R.

In the “real line” every point represents a real number.

1.3 Absolute value and distance between real numbers

The absolute value of  ∈ R is || :=
½

, if   0

−, if   0

Properties of the absolute value:
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i) For all  ∈ R, || ≥ 0.
ii) For all  ∈ R, || = |−|.
iii) For all   ∈ R, || = ||  ||
iv) For all   ∈ R, |+ | ≤ || + || (|+ | = || + || ⇔  and 

are both positive or both negative)

The distance between two real numbers,   ∈ R, denoted ( ), is

defined by ( ) := |− |.
Examples: (1 6) = |1− 6| = 5, (6 1) = |6− 1| = 5, (−1 6) =

|−1− 6| = 7, (−1−6) = |−1− (−6)| = 5 and (6−1) = |6− (−1)| = 7.

1.4 Intervals

For any   ∈ R, the following subsets of R are called intervals:

• Bounded intervals:
◦ [ ] := { ∈ R :  ≤  ≤ } (closed interval)
◦ ( ) or ] [ := { ∈ R :     } (open interval)
◦ [ ) or [ [ := { ∈ R :  ≤   }
◦ ( ] or ] ] := { ∈ R :    ≤ }

• Unbounded intervals:
◦ [∞) or [∞[ := { ∈ R :  ≤ }
◦ (−∞ ] or ]−∞ ] := { ∈ R :  ≤ }
◦ (∞) or ]∞[ := { ∈ R :   }
◦ (−∞ ) or ]−∞ [ := { ∈ R :   }

5



1.5 Bounded and unbounded sets

A point/number  ∈ R is a lower (upper) bound of a subset  ⊂  if

 ≥  for all  ∈  ( ≤  for all  ∈ ).

When a subset has a lower (upper) bound  any other number smaller

(greater) than  is also a lower (upper) bound.

A set of real numbers  ∈ R is said to be bounded below (above) if there

is a lower (upper) bound of .

A set of real numbers  ∈ R is said to be bounded when it is both bounded
bellow and bounded above.

The maximum (minimum) of a set  ∈ R is a number  such that:

i)  ∈  and ii)  ≥  ( ≤ ) for all  ∈  (we write max = 

(min = )).

Remark: Not all bounded above (below) set has a maximum (minimum);

e.g., min [ ) = , but @max [ ).

1.6 Neighbourhoods

A neighbourhood of a point/number  ∈ R of radious   0 is given by:

() = { ∈ R : |− |  }

In words: () is the set of points/numbers at a distance smaller than

 from .

Note that () = (−  + ) or ]−  + [ (open interval)
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1.7 The Plane R2

The plane: R2 = {( ) :   ∈ R}. Any point ( ) may be placed in
the plane. Any two-variable equation (i.e., the set of points ( ) that satisfy

it) can also be interpreted graphically over the plane.

Main curves in the plane 2:

• Straight line: given two real numbers  and ,  =  + , where

 ∈ R, yields the straight line that crosses the -axis at (0 ) and has slope
.

- Example:  = 05+2 (i.e., the set {( ) ∈ R2 :  = 05+ 2}) yields
the straight line that crosses the -axis at (0 2) and has slope 05.

• Circle: given three real numbers ,  and , ( − )2 + ( − )2 = 2

yields a circle of radius  whose center is at ( ).

• Parabola: given three real numbers ,  and ,  = 2+ +  yields

a parabola whose axis is paralell to the -axis and  = 2 +  +  yields a

parabola whose axis is paralell to the -axis.

1.8 Implications

Consider that  and  are two properties, conditions, equations or

propositions.

 ⇒  means that if  occurs then  is satisfied. In this case  is a

sufficient condition for  and  is a necessary condition for  . Hence, 

may occur only if  is satisfied.
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 ⇔  means that if  is true then  is true and viceversa ( and 

are equivalent)

• Examples:
i)  =

√
9⇐  = 3

ii) 2  4⇒   2

iii) (2 + 4) = 0⇔  = 0

iv) 2  0⇐   0

1.9 Mathematical proofs

To prove that  ⇒  two methods can be used. In the direct method we

assume  and try to prove . In the indirect method we proceed by absurd

reduction: we assume that  does not occur and try to prove that in that

case  is not satisfied.

• Example: Prove that 2 − 3 + 7  0 ⇒   0 ( : 2 − 3 + 7  0

and  :   0)

Direct proof: 2 − 3+ 7  0⇔ 3  2 + 7⇒ 3  0⇔   0

Indirect proof: If  ≤ 0 ⇔ 3 ≤ 0 ⇔ −3 ≥ 0 =⇒ 2 − 3 + 7 ≥ 0

(hence: no ⇒ no  )

The method of mathematical induction is also used in some proofs.

Consider that we want to prove that  () is satisfied for all  ∈  . We

proceed in the following way:

i) prove  (1)

ii) assume that  () is satisfied for  ∈ 

iii) prove that  ( + 1) is satisfied

• Example of mathematical induction: Prove that  () := 1 + 3 +
5 + + (2− 1) = 2

i) for  = 1 it is 1 = 12 = 1

ii) assume that 1 + 3 + 5 + + (2 − 1) = 2
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iii) for +1: 1+3+5+ +(2−1)+(2(+1)−1) = 2+(2(+1)−1) =
2 + 2 + 1 = ( + 1)2

• Another example: prove by mathematical induction that P

=1  =
(+1)

2
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2 Algebra

2.1 The vector space 

The - dimensional vector space is:

 = {(1  ) : where all  are real numbers}

The elements of  are called points or vectors and may be represented by

x = (1  ). The 
 component of x is , with  = 1  .

If  = 2 or  = 3 then  allows a graphic interpretation.

Point 0 = (0  0)∈ with all components equal to 0 is fixed as the

origin. Vector x ∈  has associated an arrow that goes from 0 to x.

A set in  is closed if and only if it includes its frontier. A set in  is

bounded if it is bounded for each of its  components. It is defined that a

closed and bounded set in  is a compact set.

2.2 Sum of vectors and product of a vector by a scalar

The sum of two vectors x = (1  ) and y = (1  ) is:

x+ y : = (1 + 1 2 + 2   + )

The following properties of the sum of vectors are immediate:

x+ y = y+ x

(x+ y) + z = x+ (y + z)

x+ 0 = x

The product by a scalar  (where  ∈  ,i.e.,  is a real number) of a

vector x = (1  ) is:

x : = (1  )
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The following properties of the product of a vector by a scalar are

immediate:
1x = x

(x+ y) = λx+ y

(+ )x = x+ x

()x = (x)

0x = 0

Below −x is written to mean (−)x = (−1 −).

The sum of vectors and the product of a vector by a scalar have a clear

interpretation. The sum of vectors x+y corresponds to the vector represented

by the diagonal of the parallelogram with sides x and y. Moreover, x if

  0 (  0) is a vector in the straight line through 0 and x, at a distance

from 0 equal to -times the distance from x to 0 in the same (opposite)

direction as x.

2.3 Product of vectors. Orthogonality.

The scalar or inner product of two vectors x = (1  ) and

y = (1  ) is:

xy : = 11 + 22 + + 

The following properties of the inner product of vectors are immediate:

xy = yx

x(y+ z) = xy+ xz

(x)y = λ(xy)

Two vectors x and y in  are orthogonal if xy = 0. When xy = 0

in 2 or in 3 vectors x and y are perpendicular.

This gives us another way of specifying a straight line or a plane. If a and

s are vectors in 2, the straight line that crosses point a and is orthogonal

to s is the set of points x that satisfy the equation:

s(x− a) = 0
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or, equivalently, sx = sa. If a and s are vectors in 3 those equations would

give the equation of a plane crossing a and orthogonal to s.

Example 1: The equation of the plane that crosses point a = (3 1−1)
and is orthogonal to s = (1 2 3) is given by sx = sa, that is:

(1 2 3)(1 2 3) = (1 2 3)(3 1−1)

or, equivalently, 1+22+33 = 2. Note that the coefficients in this equation

of the plane are the components of the vector orthogonal to that plane (the

same happens for a straight line in 2).

2.4 Norm and distance between two points

The norm of a vector x ∈ , denoted by kxk, is the number:

kxk :=
p
(1)2 + (2)2 + + ()2

This number represents the distance from point x to the origin or the length

of vector x.

The distance between two points x ∈  and y ∈  is given by:

(xy) := kx− yk =
p
(1 − 1)2 + (2 − 2)2 + + ( − )2

A neighbourhood of a point x ∈  of radious   0 is given by:

(x) = {y ∈  : (xy)  }

2.5 Linearly dependent/independent vectors. Basis.

Any vector that can be obtained combining sum and product by scalars

of other vectors is called a “linear combination”of the initial ones. The

following definition can be stated: A vector x ∈  is a linear combination
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of  vectors a1a2 a ∈  if there are real numbers 1 2   ∈ 

such that:

x = 1a1 + 2a2 + + a

Vectors a1 a2 a ∈  are said to be linearly dependent

(independent) if one (none) of them is a linear combination of the others.

The following formulation of this notion is equivalent: Vectors a1 a2 a ∈
 are linearly independent if:

1a1 + 2a2 + + a = 0 only if 1=2= = =0

Hence, vectors a1a2  a ∈  are linearly dependent when 1a1+2a2+

+ a = 0 for some coefficients  not all of them 0.

A basis in  is a set of  vectors linearly independent and such that

any other vector is dependent on them. In other terms, a basis is a set of

vectors such that: (i) any other vector is a linear combination of them and (ii)

none of them is a linear combination of the others. Hence: (i) starting from

that set of vectors any vector is reachable by combining product by scalars

and sum, but (ii) this is not possible any longer if one vector is eliminated

from the set (for instance, the one eliminated is not reachable from the other

vectors in the basis).

Example 2: Vectors (1 0) and (0 1) form a basis of 2; but there are

infinite many other basis. For instance, (1 1) and (−1 1) form another basis.

We will later see how to know whether a set of vectors in  form a basis

or not.

2.6 Matrices
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An  x  matrix A is a set of real numbers (the elements or entries)

arranged in a rectangle of  rows and  columns, that is:

A =

⎛⎜⎜⎜⎝
11 12  1
21 22  2
...

...
. . .

...

1 2  

⎞⎟⎟⎟⎠
The set of all matrices of dimension  x  is denoted (). For

matrix A above the notation A = () =12
=12

is also used, or just A = ()

when the dimension is clear from the context. When  =  the matrix is

said to be a square matrix. A square matrix is symmetric if and only if

 = , whenever  6= .

The main diagonal of a square matrix consists of the elements ,

 = 1 2  . A square matrix is a diagonal matrix if  = 0, whenever

 6= , and the  x  identity square matrix, denoted I, is the diagonal

matrix such that  = 1,  = 1 2  , that is:

I =

⎛⎜⎜⎜⎝
1 0  0

0 1  0
...
...
. . .

...

0 0  1

⎞⎟⎟⎟⎠
The following operations are defined with matrices:

- The sum or addition of two matrices AB ∈() is the matrix:

A+B = () + () := ( + )

- The product of a matrix by a scalar (i.e., a real number)  is the

matrix:

A = () := ()

Example 3: 3

µ
1 0 −2
2 3 0

¶
− 2

µ −2 4 2

5 0 1

¶
=

µ
7 −8 −10
−4 9 −2

¶
.

- The product of two matrices A ∈ () and B ∈ ( ),

denoted AB (the dot “”is often omitted, just writing AB) is the  x 

matrix:

AB = ()() := ()
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where  = 11+22+ +. That is to say,  is the element that

results from multiplying row  of A and column  of B:

¡
1 2 · · · 

¢
⎛⎜⎜⎜⎝

1
2
...



⎞⎟⎟⎟⎠
Note that for the product to make sense the number of columns of the first

matrix has to coincide with the number of rows of the second.

Example 4:

µ
1 0 −2
2 3 0

¶⎛⎝ 1 0 −1 2

2 1 0 −2
−1 −2 4 3

⎞⎠ =

µ
3 4 −9 −4
8 3 −2 −2

¶
.

The following properties are easy to check:

- Assuming that all matrices are of the same dimension  x , for the

addition of matrices we have:

(i) A+B = B+A

(ii) (A+B) +C = A+ (B+C)

(iii) A+O = A (where O denotes the    0-matrix whose entries are

all 0).

- Assuming that all matrices are of the same dimension  x , for the

product by a scalar we have:

(i) (A+B) = A+ B

(ii) (+ )A = A+ A

(iii) (A) = ()A

- Assuming that all matrices are of the required dimension for the product

to make sense, we have:

(i) (AB)C = A(BC)

(ii) A(B+C) = AB+AC

(iii) (A+B)C = AC+BC

(iv) AI = IA = A
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- Note that in general AB 6= BA, as the following example shows:
Example 5: Let A =

µ
2 1

1 0

¶
and B =

µ
3 0

2 1

¶
. Note that:

AB =

µ
2 1

1 0

¶µ
3 0

2 1

¶
=

µ
8 1

3 0

¶
BA =

µ
3 0

2 1

¶µ
2 1

1 0

¶
=

µ
6 3

5 2

¶

- Note that AB = O ; A = O or B = O, as the following example

shows:

Example 6: Let A =

µ
1 2

1 2

¶
and B =

µ −2 0

1 0

¶
. It follows that:

AB =

µ
1 2

1 2

¶µ −2 0

1 0

¶
=

µ
0 0

0 0

¶

The transpose of an  x  matrix A = () =12
=12

is the  x 

matrix A = () =12
=12

. That is to say, A is the result of taking the first

row of A as the first column of A , the second row as the second column,

etc. As properties of the transpose we have:

(i) (A ) = A

(ii) (AB) = B A (note the change of order!)

(iii) (A+B) = A +B

(iv) (A) = A

(v)  is symmetric ⇔ A = A

2.7 Determinants. Minors and cofactors.

In this section we deal with square matrices. The determinant of the

matrix A =

µ
11 12
21 22

¶
is denoted by:

|A| =
¯̄̄̄
11 12
21 22

¯̄̄̄
:= 1122 − 2112
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The following are properties of the determinants of 2 x 2 matrices

that are very easy to check. Let A be a 2 x 2 matrix:

- (i) If A0 is the result of multiplying a row or a column of A by a real

number  we have |A0| =  |A|. For instance:¯̄̄̄
3(2) −2
3(4) 1

¯̄̄̄
= 30 = 3

¯̄̄̄
2 −2
4 1

¯̄̄̄
- (ii) If A0 is the result of adding an arbitrary row-vector (or an arbitrary

column-vector) to a row (or a column) of A we have:

|A0| = |A|+ |A00|

where A00 is the matrix that results by replacing that row (or column) by the

one added. For instance:¯̄̄̄
2 + 6 −2
4 + 5 1

¯̄̄̄
=

¯̄̄̄
2 −2
4 1

¯̄̄̄
+

¯̄̄̄
6 −2
5 1

¯̄̄̄
- (iii) If A0 is the result of interchanging the two rows or the two columns

of A we have:

|A0| = (−1) |A| .
For instance: ¯̄̄̄

2 −2
4 1

¯̄̄̄
= −

¯̄̄̄ −2 2

1 4

¯̄̄̄
- (iv) From the definition it obviously follows:¯̄̄̄

1 0

0 1

¯̄̄̄
= 1

These four simple properties may be extended to  x  matrices and they

characterize univocally the determinant each matrix.

From the four properties (i) to (iv) (see above) other basic properties of

determinants can be derived, among which we underline the following:

- (v) If an  x  matrix has two rows or two columns identical (or

proportional) its determinant is 0 (this follows from property (iii)). Hence,

by considering also (i) and (ii) it follows that if a multiple of one row (of one

column) is added to a different row (to a different column) of A then the

determinant of the matrix obtained is equal to |A|.
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- (vi) The determinant of the product of two square  x  matrices A

and  is the product of their determinants:

|AB| = |A| |B| .
- (vii) The determinant of an  x  matrix  and that of its transpose

coincide: ¯̄
A
¯̄
= |A|

From conditions (i), (ii) and (v) it is obtained:

Proposition 1: If the determinant of a matrix is different from 0 (equal

to 0) then the column vectors of that matrix are independent (dependent) and

the same follows for the row vectors.

Remark 1: As a consequence of Proposition 1 a set of  vectors is a

basis of  if and only if the determinant of the matrix that has those vectors

as columns (or as rows) is different from 0.

Let A be a square  x  matrix:

A =

⎛⎜⎜⎜⎝
11 12  1
21 22  2
...

...
. . .

...

1 2  

⎞⎟⎟⎟⎠
The minor |A| is the determinant of the ( − 1) x ( − 1) matrix that
results by eliminating row  and column  in A. The cofactor  is the

number:

 := (−1)+ || .
The following definition is useful for some analyses:

Definition: The leading principal minors of a square  x 

matrix A = () =12
=12

are |11|,
¯̄̄̄
11 12
21 22

¯̄̄̄
,

¯̄̄̄
¯̄ 11 12 13
21 22 23
31 32 33

¯̄̄̄
¯̄,..., and¯̄̄̄

¯̄̄̄
¯
11 12  1
21 22  2
...

...
. . .

...

1 2  

¯̄̄̄
¯̄̄̄
¯.
1

1The determinant of a submatrix of order  x  of a square  x  matrix  obtained
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2.8 Rank of a matrix

Let A be an  x  matrix. A minor of order  (1 ≤  ≤ ) of A is

the determinant of an  x  square matrix obtained from A by deleting any

−  rows and any −  columns.

The rank of a matrix A ((A)) is the maximal number of linearly

independent columns inA. It coincides with the maximal number of linearly

independent rows in A. The following result is obtained:

Proposition 2: Let A be an  x  matrix, the rank of A is the highest

order of a non null minor.

2.9 Systems of linear equations

A system of  linear equations with  variables or unknowns, 

( = 1  ), is a system of the form:⎧⎪⎪⎨⎪⎪⎩
111 + 122 + + 1 = 1
211 + 222 + + 2 = 2



11 + 22 + +  = 

(1)

where the  (the coefficients) and  (the right-hand sides) are given real

numbers. A solution of the system is any point or vector (1 2  )

that satisfies all the equations. In some cases there is no solution. If there is

no solution then the system is said to be inconsistent. When at least

a solution does exist the system is said to be consistent. In this case,

when there is a unique solution the system is said to be determinate and

otherwise (i.e., when there are infinite solutions) the system is said to

be indeterminate.

by eliminating −  rows and −  columns is called a principal minor of order  of  if

the labels of the rows and columns eliminated coincide (for instance, if  = 5 and  = 3

rows 2 and 4 and columns 2 and 4 are eliminated to obtain the 3 x 3 submatrix). If   

there are several principal minors of order  of matrix .
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A linear system (1) is said to be homogeneous if all right hand sides

are 0, that is,  = 0 for all  = 1 . In an homogeneous system, there

always exists at least one solution: 1 = 2 =  =  = 0, called the trivial

solution. Therefore consistency is guaranteed in that system.

In a system as (1) the matrix of coeficients is the matrix:

A =

⎛⎜⎜⎜⎝
11 12  1
21 22  2
...

...
. . .

...

1 2  

⎞⎟⎟⎟⎠
and we call the augmented matrix to the matrix that results by adding a

column consisting of the right hand sides of the equations (that we separate

with a line):

(A |b) =

⎛⎜⎜⎜⎝
11 12  1
21 22  2
...

...
. . .

...

1 2  

¯̄̄̄
¯̄̄̄
¯
1
2
...



⎞⎟⎟⎟⎠ 

where b denotes the  x 1 column-vector of the right-hand sides:

b =

⎛⎜⎜⎜⎝
1
2
...



⎞⎟⎟⎟⎠
If similarly we denote by x the  x 1 column-vector

x =

⎛⎜⎜⎜⎝
1
2
...



⎞⎟⎟⎟⎠ 

using the product of matrices introduced in Section 2.6 the system (1) can

be written in the following form:⎛⎜⎜⎜⎝
11 12  1
21 22  2
...

...
. . .

...

1 2  

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
2
...



⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
2
...



⎞⎟⎟⎟⎠  (2)
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that is, Ax = b. Alternatively the system can be expressed in this way:

1

⎛⎜⎜⎜⎝
11
21
...

1

⎞⎟⎟⎟⎠+ 2

⎛⎜⎜⎜⎝
12
22
...

2

⎞⎟⎟⎟⎠+ + 

⎛⎜⎜⎜⎝
1
2
...



⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
2
...



⎞⎟⎟⎟⎠ (3)

that is, if a denotes the  column-vector in A,

1a1 + 2a2 + + a = b (4)

Evidently, (1), (2) and (3) or (4) are equivalent forms of expressing the same

system.

Remark 2: The equivalent expressions (3) and (4) provide another

interpretation of a linear system: Saying that system (1) is consistent is

equivalent to saying that vector b is a linear combination of a1, a2,..., a.

2.10 Solutions of systems of linear equations

There are three possible situations when facing the resolution of a system

of linear equations with  unknowns:

- Case 1: (A) = (A |b) = . Then the system is consistent and

determinate: there exists a unique solution.

- Case 2: (A) = (A |b)  . Then the system is consistent

and indeterminate: there exist infinite solutions and there are − (A)

degrees of freedom.

- Case 3: (A)  (A |b). Then the system is inconsistent : no

solution exists.

In the particular case of linear homogeneous systems (i.e., when b = 0)

we have:

- Case H1: (A) = . Then there only exists the trivial solution

x = 0.

- Case H2: (A)  . Then there exist infinite solutions and there

are − (A) degrees of freedom.
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In case H1 column-vectors a1a2  a, are linearly independent, while

those vectors are linearly dependent in case H2.

The following result is obtained:

Proposition 3: For a  x  square matrix:

A =

⎛⎜⎜⎜⎝
11 12  1
21 22  2
...

...
. . .

...

1 2  

⎞⎟⎟⎟⎠
(A) =  is a necessary and sufficient condition for each of the following

situations:

(i) The system Ax = b has a unique solution whatever the right-hand

sides column b.

(ii) The column vectors of A, a1a2  a, form a basis of  (i.e., they

are linearly independent and any other vector is a linear combination of

them).

(iii) |A| 6= 0.

2.11 Inverse matrix

The inverse of a square  x  matrix A is a matrix, denoted by A−1

(when it exists!), such that A−1A = AA−1 = I. Matrix A
−1 may be

obtained as follows:

A−1 =

⎛⎜⎜⎜⎝
11
||

21
||  1

||
12
||

22
||  2

||
...

...
. . .

...
1
||

2
||  

||

⎞⎟⎟⎟⎠
where  is the -cofactor. Thus  has an inverse matrix when |A| 6= 0

(hence, according to Proposition 3,  has an inverse matrix if and only if

(A) = ).

The inverse of A can be obtained in three steps: i) Obtain the transpose

A , ii) replace each entry inA by the corresponding cofactor, and iii) divide

all entries by |A|.
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The calculation of the inverse provides a different way of solving a linear

system of  equations with  unknowns when the system is consistent and

determinate, since:

Ax = b⇒ A−1Ax = A−1b⇒ A−1Ax = x = A−1b

The following are properties relatives to the inverse and how it interacts

with other operations:

(i) (A−1)−1 = A

(ii) (AB)−1 = B−1A−1 (note the change of order!)

(iii) (A )−1 = (A−1)

(iv) (A)−1 = A−1

, for any  ∈ 

(v) if A is symmetric then A−1 is also symmetric

2.12 Definiteness of matrices

An  x  matrix A is:

(i) negative semidefinite if  ≤ 0 for all  ∈  and there is ̃ ∈ 

such that ̃ 6= 0 and ̃̃ = 0,

(ii) negative definite if   0 for all  ∈  and  6= 0,
(iii) positive semidefinite if  ≥ 0 for all  ∈  and there is ̃ ∈ 

such that ̃ 6= 0 and ̃̃ = 0, and

(iv) positive definite if   0 for all  ∈  and  6= 0.
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3 Real-valued functions of a single variable

3.1 Real-valued functions of one real variable

Definition: A magnitude or variable  is said to be a function of

another  if to each value of  corresponds a single value of .

When  is a function of  we write  = () and say that “ maps  into

()”.

In Chapters 3, 4 and 5 we deal with functions where both variables 

and  take real numerical values, i.e.,   ∈ R. These functions are called
“real-valued functions of one real variable”.

When  ⊂ R is the set of possible values of  we write  :  → R,

to express that  ∈  ⊂ R and  = () ∈ R. The set  is called the

“domain” of  .

If  ⊂  then () = {() :  ∈ }. The set () is called the

“ image” of  by  . In particular, () is called the “range” of  .

Given a real-valued function  = () or  :  → R, the “graph” of

the function  is the subset of R2:

 () :=
©
( ) ∈ R2 :  ∈   = ()

ª
= {( ()) :  ∈ }

(hence, the graph of a function can be represented graphically by the

corresponding set of points in the plane).

• Examples:

i) Find the domain and range of  = () = 1
+4
.

Domain: As the function is not defined for  = −4 it follows that
 = { ∈ R :  6= −4}
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Range: Since  = 1
+4
⇔  + 4 = 1


it follows that  can never be 0.

Hence, () = { ∈ R :  6= 0}.

ii) Find the domain and range of  = () =
√
3+ 9.

Domain: As the function is not defined for 3 + 9  0 and as 3 + 9 

0⇔   −3, it follows that  = { ∈ R :  ≥ −3}
Range: As  =

√
3+ 9 and  ≥ −3 it follows that () = { ∈ R}

3.2 Basic functions

• Linear functions: A linear function is one of the form  =  + 

( 6= 0). Their graphs are straight lines.

• Quadratic functions: A quadratic function is one of the form

 = 2 + +  ( 6= 0). Their graphs are parabolas.

• Polynomials: A polynomial of degree  is a function of the form

 = () = 
 + −1−1 + −2−2 +  + 2

2 + 1
1 + 0 ( 6= 0).

The following results hold for polynomials:

- Result 1: The polynomial () has the factor ( − ) if and only if

() = 0.

Hence, a polynomial of degree  has at most  different factors of the

form (− ), with  = 1 2  .

- Result 2: A polynomial of degree  is defined by the numerical value

of () for some particular  and  different factors  of the form (− ).

- Result 3: A polynomial of degree  is defined by +1 points ( ())

in 2 that are crossed by the graph of ().

• Rational functions: A rational function is a function  = () where

() is a quotient of polynomials. Example:  = 32−5+1
3−4 .
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• Power functions: A power function is one of the form  =  where

  ∈ R are given. When  ∈  ,  can take any real value, otherwise   0

is required.

• Exponential functions: An exponential function is a function of the
form  =  where  ∈ R is given.

• Logarithmic functions: A logarithmic function is a function of the
form  =  log , with   0, where  ∈ R is given.

• Trigonometric functions: The trigonometric functions are  = sin,
 = cos and  =  = sin

cos
.

3.3 Continuity

• The basic idea (roughly speaking): A function  = () is said to be

continuous if as  varies in a continuous way (i.e., without brusque leaps)

() varies also in a continuous way, or if “its graph is not broken”.

• Definition: A function () is continuous at a point 0 if for

all neighbourhood  of (0) there is a neighbourhood  of 0 such that

() ⊂  .

Hence (roughly speaking again): a function is continuous at a point 0

if “it maps points close to 0 (i.e., in the vicinity of 0) into points close to

(0) (i.e., in the vicinity of (0))”. The notion of neighbourhood, i.e., any

interval of the form (0) = (0−  0+ ), captures the idea of “vicinity”.

•A function may be continuous at a point but not at another. A function
is said to be continuous on a set when it is continuous at any point in

that set. A function is said to be continuous when it is continuous on its

domain.

• Most of functions we will be dealing with are continuous because:
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- i) linear and quadratic functions, polynomials, rational functions (where

the denominator is 6= 0), power functions, exponential functions, logarithmic
functions and trigonometric functions are continuous in their domains,

- ii) the sum, substraction, product and quotient (where the denominator

is 6= 0) of continuous functions are continuous,
- iii) the power of a continuous functions are continuous: if  is

continuous then (()) is continuous, and

- iv) the composition of continuous functions is a continuous function

(Definition: If  = () and  = () are two functions such that the range

of  is contained in the domain of , then we can define the composition of

 and , denoted by  ◦  as () = ( ◦ )() := (())).

Combining i)-iv) the continuity of many functions may be checked.

• The inverse of a continuous function may not be a function (if  = ()

the inverse of  , denoted −1, is  = −1(), but −1 may not be a function

even if  is continuous→ Example in class).

• Two nice properties of a continuous function are the following:
Bolzano’s Theorem: If a function  = () is continuous on an interval

[ ] and () and () have different sign, then there is at least one point 

(    ) where () = 0.

Intermediate value’s Theorem: If a function  = () is continuous

on an interval [ ] then for each number  (strictly) between () and ()

there exist at least one point  (    ) where () = .

3.4 Concave and convex functions

• Remember that a set  in R is convex if and only if for any   ∈ 

and for every scalar  ∈ [0 1] it is true that +(1−) ∈ . Then we have:

Definition: Let  be a real-valued function defined on a convex set  in

. The function  is called a:
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i) concave function if, for all   ∈  and 0 ≤  ≤ 1,

 [+ (1− )] ≥ () + (1− )()

ii) strictly concave function if, for all   ∈  and 0    1,

 [+ (1− )]  () + (1− )()

iii) convex function if, for all   ∈  and 0 ≤  ≤ 1,

 [+ (1− )] ≤ () + (1− )()

iv) strictly convex function if, for all   ∈  and 0    1,

 [+ (1− )]  () + (1− )()

3.5 Appendix: Limit and continuity

• In general, we have the following:
Definition: We say that the limit of a function () at a point

0 (or when “ tends to 0”) is , and write lim→0 () = , if for

all neighbourhood  of  there is a neighbourhood  of 0 such that

(− {0}) ⊂ .

This allows for an alternative definition of continuity:

Definition: A function () is continuous at a point 0 of its

domain if: i) there exists lim→0 (), and ii) lim→0 () = (0).

• If lim→0 () = 1 and lim→0 () = 2 then:

i) lim→0(() + ()) = 1 + 2,

ii) lim→0(()()) = 12, and

iii) lim→0(
()

()
) = 1

2
.
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4 Differential calculus with one variable

4.1 The derivative: definition and meaning

Given a function  = (), the rate (or speed) of change of  with respect

to  is given by the derivative, namely:

Definition: The derivative of a function  = () (or “the derivative

of  with respect to ”) at a point 0 is the value of the limit (if it exists!):

 0(0) =



(0) := lim

→0
(0 + )− (0)



When this limit does exist we say that () is derivable at 0; and when

a function is derivable at any point within a certain region  we say that it

is derivable on .

Given a function  = () derivable at a point 0:

•  0(0) represents the rate of change of  with respect to  at 0.

Therefore the derivative informs about the impact on () of changes in

. If  0(0)  0 a slight increase of  entails a slight increase of  = (),

and a slight decrease of  entails a slight decrease of  = (). If  0(0)  0 a

slight increase of  entails a slight decrease of  = (), and a slight decrease

of  entails a slight increase of  = ()The magnitude of  0(0) tells about

the magnitud of that impact.

• The derivability of  = () at 0 means that the graph of  is smooth

enough as to have a tangent at (0 (0)).

•  0(0) is the slope of the tangent to the the graph of  at (0 (0)).

4.2 The derivative: calculation

The calculation of derivatives is based on two elements: (i) A “table of

derivatives” consisting of well-known derivatives, and (ii) The rules to derive

a sum, a product or a quotient of functions.
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Table of derivatives (I):



 = −1.


ln = 1


,



 = ,



 =  ln ,



sin = cos,



cos = − sin.

Rules to derive the sum, product and quotient of functions:

Proposition 1: If () and () are derivable functions, then ()+(),

()() and ()() (whenever () 6= 0) are also derivable and:


(() + ()) =  0() + 0()



(()()) =  0()() + 0()()



(
()

()
) =

 0()()−0()()
(())2

The chain rule and a new Table of derivatives:

Proposition 2 (“Chain rule”): The composition  of two derivable

functions,  and , is also derivable and we have:

()


= ( ◦ )0() = 


((()) = 0(()) 0()

Table of derivatives (II): By combining Table I of derivatives and the

chain rule the following table of derivatives can be obtained:



() = ()−1 0(),



(ln ()) =

 0()
()

,



(()) =  0()(),



(()) =  0()() ln ,



(sin ()) =  0() cos (),



(cos ()) = − 0() sin ().
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Logarithmic derivation:

The problem: How to derive  () = ()()? (e.g.  () = (2− 2)2)
• First, take logarithms: ln () = ln(()()) = () ln ()

• Second, derive both sides:
 0()
 ()

= 0() ln () + ()
 0()
()

• Therefore:

 0() =  ()

∙
0() ln () + ()

 0()
()

¸
= ()()

∙
0() ln () + ()

 0()
()

¸

4.3 Differentiability and continuity

Proposition 3: If  is derivable (differentiable) at 0 then  is

continuous at 0.

Result: A continuous function may not be derivable.

Example: The function () = |− 3|+ 1 is continuous at  = 3 but it
is not derivable at that point. The derivative does not exist at  = 3 because

the function has a kink at that point (the graph is not smooth and there is

not a tangent at that point).

Continuity is a necessary condition for differentiability but continuity is

not a sufficient condition for differentiability. We have: () is derivable at

0 ⇒ () is continuous at 0. However, () is continuous at 0 ; () is

derivable at 0.
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4.4 Mean-value Theorem

Let  be a differentiable function in [ ]. If    there exists  such

that      and:

 0() =
()− ()

− 

4.5 Linear approximation of a function

As we saw: The derivability of () at 0 means that the graph of  is

smooth enough as to have a tangent at (0 (0)).

• Question: which is the equation of that straight line?
• Answer:  = + , where  and  can easily be determined based on

two facts:

- As the slope of the straight line is given by , it must be  =  0(0)

- Given that  =  0(0) +  crosses point (0 (0)), it must be

(0) = 0
0(0) + , i.e.,  = (0)− 0

0(0)

• Thus, the straight line tangent to the graph of 0 at (0 (0)) is:

 =  0(0)+ (0)− 0
0(0) = (0) + (− 0)

0(0)

• (0) + ( − 0)
0(0) is called the linear or first order

approximation of () at 0 because for values of  close to 0 we have:

() ≈ (0) + (− 0)
0(0)

• The approximation is made at 0 and, hence, the function and the
derivative are evaluated at 0 in the approximation −→ we look for a straight

line that goes through (0 (0)) and that has the same slope as the function

 at that point.
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4.6 Second derivative and second order approximation

of a function

Second derivative

• When a function  = () is derivable at any point, the function

derivative  0() itself may be derivable. In this case we denote:

( 0())


by
2

2
or by  00()

and that function is called the second derivative of ().

• Interpretation: The second derivative at a point  00() informs about
the impact on the first derivative  0() of changes in . If  00()  0 a slight

increase of  entails a slight increase of  0(), and a slight decrease of 

entails a slight decrease of  0(). If  00()  0 a slight increase of  entails a

slight decrease of  0(), and a slight decrease of  entails a slight increase of

 0().

Remark 1: The sign of  00() can be interpreted in graphical terms and

related to the convexity or concavity of ()’s graph. It may be shown

that  concave (strictly concave) in a convex set  if and only if  00() ≤ 0
( 00()  0) for all  ∈  and that  convex (strictly convex) in a convex set

 if and only if  00() ≥ 0 ( 00()  0) for all  ∈ .

Second order approximation of a function

• When () has second derivative at 0 a better approximation of the

function than the linear one (for values of  close to 0) is possible using a

quadratic function of the form  = 2 +  + , where ,  and  can be

easily determined by three conditions:

20 + 0 +  = (0)

20 +  =  0(0)
2 =  00(0)

Hence, it is obtained that:

 =
 00(0)
2

 =  0(0)− 0
00(0)

 = (0)− 0
0(0) + 20

 00(0)
2
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and  = 2 + +  = (0) + (− 0)
0(0) + (− 0)

2 
00(0)
2
.

• The expression (0) + ( − 0)
0(0) + ( − 0)

2 
00(0)
2

is called the

second order approximation of () at 0 because for values of  close

to 0 we have:

() ≈ (0) + (− 0)
0(0) + (− 0)

2
00(0)
2

4.7 Higher order derivatives and higher order approx-

imations of a function

Higher order derivatives

• The -order derivative of () is denoted by () and we have:

() =
(−1())


.

Higher order approximation of a function:

- Taylor’s formula

If  is  + 1 times differentiable (derivable: it has derivatives until the

order + 1) in an interval including 0 and  then:

() = (0)+
 0(0)
1!

(−0)+ 00(0)
2!

(−0)2++(0)

!
(−0)+ +1()

(+ 1)!
(−0)+1

where  is some number between 0 and .

Taylor’s formula is used to approximate () at  = 0 using the following

polynomial of degree :

(0) +
 0(0)
1!

(− 0) +
 00(0)
2!

(− 0)
2 + +

(0)

!
(− 0)



The order of the approximation is . The term
+1()

(+1)!
( − 0)

+1 is called

the remainder or error if we use an approximation of order  for () at

 = 0. That error term may be used to obtain a bound of the error of the

approximation (the highest value that the remainder may attain).
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-McLaurin’s formula

For 0 = 0 the McLaurin’s formula is obtained from the Taylor’s formula:

() = (0) +
 0(0)
1!

+
 00(0)
2!

2 + +
(0)

!
 +

+1()

(+ 1)!
+1

where  is a number between 0 and 

4.8 Global maximum and global minimum. Weier-

strass’ theorem.

Definition: If  = (), where  ∈  ⊂  (i.e., given  :  −→ ):

• () has a global minimum on  at 0 ∈  if the value of () at

0, i.e. (0), is smaller or equal than at any other point of , and we write:

(0) = min
∈

() (minimum value of () on )

• () has a global maximum on  at 0 ∈  if the value of () at

0, i.e. (0), is greater or equal than at any other point of , and we write:

(0) = max
∈

() (maximum value of () on )

• In both cases we say that () has a global extreme on  at 0.

• Remark 2: Not always a function  = () has a global maximum or

a global minimum on a set . For instance, 1 has a global minimum, but

not a global maximum on (0 1].

• The following important theorem establishes sufficient conditions for

() and  that ensure the existence of both global maximum and global

minimum:

Weierstrass’ Theorem: If  = () is continuous on a closed and

bounded interval [ ] (i.e.,  : [ ] −→  is continuous), then () has

at least a global minimum and at least a global a maximum on [ ].
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4.9 Local maximum and local minimum. Conditions

for a local extreme.

Definition: If  = (), where  ∈  ⊂  (i.e., given  :  −→ ):

• () has a local minimum on  at 0 ∈  if there is a neighbourhood

 of 0 such that the value of () at 0 , i.e. (0), is smaller or equal

than at any point  ∈  such that  6= 0

• () has a local maximum on  at 0 ∈  if there is a neighbourhood

 of 0 such that the value of () at 0 , i.e. (0), is greater or equal

than at any point  ∈  such that  6= 0.

• In both cases we say that () has a local extreme on  at 0.

First-order condition for a local extreme:

• An interior point of a set  is a point in that set for which there is a

neighbourhood contained in set  (examples: i) all points in (1 3) are interior

points of [1 3], but 1 and 3 and are not interior points of that set and ii) the

set
©
1

:  ∈ 

ª ⊂  has no interior points).

Theorem: If  = () is derivable at an interior point 0 of a set

, and has a local extreme at 0, then necessarily  0(0) = 0.

• Equation  0(0) = 0 is referred to as “first-order condition” or

“necessary condition” for an interior point to be a local extreme.

Second-order conditions for a local extreme:

• The first-order condition is in fact a necessary condition for an interior
point to be a local extreme of a derivable function, but it is not sufficient,

i.e., it may well be the case that the first-order condition holds but there is

no local extreme.

• The following result establishes sufficient conditions for a local extreme
for a function with first and second derivatives:
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Theorem: If  = () is twice derivable on  and if at an interior

point x0 of  it is:

 0(0) = 0 and  00(0)  0 (resp. 
00(0)  0) (1)

then f(x) has a local minimum (resp. maximum) at x0.

• Equations (1) are referred to as “second-order conditions” or “sufficient
conditions” for an interior point to be a local extreme.
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5 Integral calculus with one variable

5.1 Indefinite integrals

R
() =  () +  for any real number , where  0() = ().

Properties:

i)
R
(() + ()) =

R
()+

R
().

ii)
R
() = 

R
().

Some important integrals:

i)
R
() 0() = (())+1

+1
+  (if  6= −1) (⇒ R

 = +1

+1
+ ).

ii)
R

 0()
()

 = ln(()) +  (⇒ R
1

 = ln() + ).

iii)
R
() 0() = () +  (⇒ R

 = 


+ ).

iv)
R
() 0() = ()

ln()
+  (⇒ R

 = 

ln()
+ ).

5.2 Integration by parts

Since
(()())


= (()())0 =  0()() + ()0() it follows that:R

()0() =
R
(()())0− R  0()()

= ()()− R  0()().
Example:

R
 ln()
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Considering that () = ln() and 0() =  it follows that  0() = 1


and () = 2

2
. Hence:Z

 ln() = ln()
2

2
−
Z

2

2

1


 = ln()

2

2
− 2

4
+ 

5.3 Integration by substitution or change of variable

R
(())0() =

R
() if  = () as then  = 0().

Example:
R
1+ln()




 = 1 + ln()⇒  = 1

R

1+ln()


 =

R
 = 2

2
+  = 1

2
(1 + ln())2 + .

5.4 Definite integrals

Consider that  is bounded in [ ] (a real valued function  of one

variable is bounded in [ ] if there exists  ∈  such that − ≤ () ≤ 

for all  ∈ [ ])

Proposition 1: If  is continuous in [ ] or if it is discontinuous only

in a finite number of points in [ ] then  is (Riemann) integrable in [ ].

Remark 1: remember from Section 4.3 that  can be continuous and

not derivable.

Barrow’s rule: If  is continuous then:Z 



() =  ()−  ()where  () +  =

Z
()
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Example:
R 3
1
3
10
 (solution: 6

5
).

If  ≥ 0 then
R 

() is equal to the area between the curve that

represents  and the horizontal axis.

If  ≤ 0 then R 

() is a negative number.

Properties of definite integrals:

i)
R 

() = − R 


().

ii)
R 

() = 0.

iii)
R 

() = 

R 

().

iv)
R 

(() + ()) =

R 

()+

R 

().

v)
R 

() =

R 

()+

R 

() for any  such that     .

Theorem of the integral mean value: If  is continuous in [ ] and

   there exists  such that      and:

() =
1

− 

Z 



()

Proposition 2: If  is continuous (Riemann integrable) in [ ] then

() =
R 

() and () =

R 

() are derivable (continuous) for all

 ∈ ( ). Moreover, 0() = 0() = () for all  ∈ ( ).
Remark 2: Note that a stronger result is obtained ( and  derivable,

rather than only continuous) when the assumption on  is stronger (

continuous, rather than only Riemann integrable).

Integration by parts in the definite integral:Z 



()0() = ()()− ()()−
Z 



 0()()
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Derivative with respect to another variable in the definite

integral:


(
R ()
()

()) = (())0()− (())0()

→  : 

(
R 3

−

2

) = −−2

and:




(

Z ()

()

( )) = (() )0()− (() )0() +
Z ()

()

( )


.

5.5 Introduction to differential equations

 = () with : time ( ≥ 0)

Examples:

i) 

=  where  constant

⇒  = ⇒ R
 =

R
⇒ () = + 

ii) 

=  where  constant

⇒ 

=  ⇒ R



=
R
 ⇒ ln() =  + ln() = ln() ⇒ () =

, with   0 as the logarithm is not defined for negative numbers

→ if (0) = 0 then (0) = (0) =  = 0 and () = 0


iii) 

= ( − ) where  and  are constants

⇒ −(−
−) =  ⇒ − R −

− =
R
 ⇒ − ln( − ) =  + ln  ⇒

ln( 1
−) = ln(

)⇒ 1
− =  ⇒ () =  − 1


, with    and   0 as

the logarithm is not defined for negative numbers.
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6 Real-valued functions of several variables

6.1 Introduction

Real-valued function of  variables: (x) = (1 2 3  ),

 :  ⊂  → .

Level set of value  for function  :  = {x ∈  : (x) = }.

6.2 Continuity

Continuity of (x) at point x0 = (10 20  0) ∈ R: analogous

definition to the case of one variable (properties of continuity also analogous)

→ but it is necessary to consider a neighborhood of (x0) and an open ball

around x0 −→ an open ball (a neighbourhood) around x0.

Limit of (x) at point x0 ∈ R: existence requires to consider all

trajectories that approach x0 → otherwise the relationship between limit

and continuity as in the case of one variable. Properties of limits analogous

to the case of one variable.

6.3 Partial derivatives. Gradient. Hessian matrix.

Definition: Partial derivative of (x) at x0 with respect to :




(x0) = lim

→0
(10 20  0 +   0)− (10 20  0  0)



Example:

(1 2) = 12 and x0 = (10 20) = (1 3)
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(12)

1
= 2 and

(12)

2
= 1

at x0:


1
= 3 and 

2
= 1

Definition: Gradient of (x) at x0 is: O := ( 
1

 

2
  


) ∈ R,

with all partial derivatives evaluated at x0.

Example: In what points of function (1 2) = 4
2
1 + 22 − 412 is its

gradient 0, that is, O(1 2) = (0 0)? −→ Both partial derivatives become

0 when 2 = 21.

Second order partial derivatives: 

( 

) = 2



Definition: Hessian matrix: second order derivatives matrix:

() =

⎛⎜⎜⎜⎜⎝
2

21

2

12
 2

1
2

21

2

22
 2

2
...

...
. . .

...
2

1

2

2
 2

2

⎞⎟⎟⎟⎟⎠
Example: The Hessian matrix for function (1 2) = 4

2
1+ 22− 412

is:

() =

µ
8 −4
−4 2

¶
Remark 1: The Hessian matrix in this example does not depend on 1

and 2. However, in general, the second order partial derivatives and, hence,

the Hessian matrix may depend on the levels of .

Proposition: If the second derivatives are continuous functions then
2


= 2


(the Hessian matrix is symmetric).

6.4 Differentiability. Total differential.

Intuition for differentiability:  differentiable at x0 ∈  if it is

“smooth” at an open ball centered at x0 for all trajectories on  through

that point.
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Propositions:

i)  differentiable at x0 ⇒  continuous at x0.

ii)  differentiable at x0 ⇒ the partial derivatives of  with respect to

each component of x exist at x = x0 (



(x0) exists for all  = 1 2  ).

The contrary is not true.

iii) 


(x0) exists and is continuous in an open ball centered at x0 for all

 = 1 2  ⇒  differentiable at x0.

Definition: The total differential of (x) at x0 is:  =
P

=1



,

with all partial derivatives evaluated at x0. The total differential captures

the impact on  of infinitesimal simultaneous variations in some or all

components of x.

6.5 The chain rule

Case i) If z = ( ) with  = () and  = () then:




=








+









Example:

 = 2 with  =
√
 and  = ln() (solution: 


= 2

2
√

+ 2
√
)

Case ii) If  = ( ) with  = ( ) and  = ( ) then:



= 




+ 








= 




+ 







Example:

 = 2+22 with  = −2 and  =  (solution: 

= 2−22+42

and 

= 42− 4+ 43 → the derivatives for particular values of  and 

may be obtained).
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6.6 Concavity and convexity of real-valued functions

of several variables

Definition: Let  be a real-valued function defined on a convex set  in

. The function  is called a:

i) concave function if, for all xy ∈  and 0 ≤  ≤ 1,

 [x+ (1− )y] ≥ (x) + (1− )(y)

ii) strictly concave function if, for all xy ∈ , with x 6= y, and
0    1, [x+ (1− )y]  (x) + (1− )(y)

iii) convex function if, for all xy ∈  and 0 ≤  ≤ 1,

 [x+ (1− )y] ≤ (x) + (1− )(y)

iv) strictly convex function if, for all xy ∈ , with x 6= y, and
0    1,

 [x+ (1− )y]  (x) + (1− )(y)

Theorem: Let (x) be twice continuously differentiable real-valued

function on an open convex set  in . Then:

i) The function  is convex on  if and only if for all x ∈  all

leading principal minors of the Hessian matrix are greater or equal than 0,

ii) The function  is strictly convex on  if and only if for all x ∈ 

all leading principal minors of the Hessian matrix are positive,

iii) The function  is concave on  if and only if for all x ∈ 

leading principal minors of the Hessian matrix alternate in sign in the

following way: leading principal minor of order 1 is ≤ 0, leading principal
minor of order 2 is ≥ 0, leading principal minor of order 3 is ≤ 0,...., and

iv) The function  is strictly concave on  if and only if for all

x ∈  leading principal minors of the Hessian matrix alternate in sign

starting with the negative sign (leading principal minor of order 1 is negative,

leading principal minor of order 2 is positive, leading principal minor of order

3 is negative,...) .

Example: Check the convexity/concavity of the function (1 2) =

(1−2)3+212+22 on the convex set  = {(1 2) : 1  3} −→ Solution:
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Since 

1
= 3(1 − 2)2 + 22 and 

2
= 21 + 22 it follows that:

() =

µ
6(1 − 2) 2

2 2

¶


Hence, leading principal minor (l.p.m.) of order 1 is 6(1 − 2) and l.p.m. of
order 2 is 12(1− 2)− 4 = 121− 28 = 4(31− 7). When 1  3 both l.p.m.
are positive. Therefore,  is strictly convex.

Remark 2: Log concavity of  (log() is concave) is a weaker requirement

than concavity of  .

6.7 Approximations of a function of several variables

The -order approximation of a real valued function of several variables

at a point may be obtained as in Sections 4.5, 4.6 and 4.7. For instance the

second-order approximation of a real valued function of several variables at

x0 is:

(x) = (x0)+

X
=1

(x)



¯̄̄̄
x=x0

(−0)+ 1
2!

X
=1

"
X

=1

2(x)



¯̄̄̄
x=x0

( − 0)

#
(−0)

6.8 Homogeneous functions. Euler’s theorem

Definition:  is homogeneous of degree  if (1 2  ) =

(1 2  ) for all  ∈  and   0.

Examples:

i) (1 2) = 3
2
1 + 212 + 22 is homogeneous of degree 2

ii) (1 2) =
1+2
31−2 is homogeneous of degree 0.
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iii) () = 1− is homogeneous of degree 1.

Proposition: If  is homogeneous of degree  then 


is homogeneous

of degree  − 1 for all  = 1 2 .
Proof:

(1 2    ) = (1 2    )

⇒ 
(12)


= 

(12)



⇒ (12)


= −1 (12)



Euler’s theorem: If  differentiable and xax ∈  then:

 is homogeneous of degree  in 

⇔
1



1
+ 2



2
+ + 




= (1 2  )

6.9 Multiple integrals

Double integrals over domains in 2:
R 


hR 

(1 2)2

i
1 (1 takes

values between  and  and 2 takes values between  and , where

    ∈ ).

If (1 2) ≥ 0 for all 1 and 2 such that  ≤ 1 ≤  and  ≤ 2 ≤ 

then
R 


hR 

(1 2)2

i
1 is equal to the volume below the surface that

represents  and above the square in 2 of points (1 2) such that  ≤ 1 ≤
 and  ≤ 2 ≤ .

If 1 takes values between  and  and 2 takes values between  and ,

where     ∈  then:Z 



∙Z 



(1 2)2

¸
1 =

Z 



∙Z 



(1 2)1

¸
2

The result obtained when the integral on 2 is considered first is the same

as the result obtained when the integral on 1 is considered first.
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However, the integral on 2 has to be considered first in
R 


hR (1)
(1)

(1 2)2

i
1,

where (1)  (1) for  ≤ 1 ≤ . That integral is the volume in R3 un-

der the function (1 2) and above the area delimited by the functions

2 = (1) and 2 = (1) for  ≤ 1 ≤  in the plane defined by the 1-axis

and the 2-axis.

6.10 Appendix: Theorem of the implicit function and

implicit differentiation

Theorem of the Implicit Function: Let  be a continuous real

valued function defined on  ⊂  such that  has continuous partial

derivatives in an open ball of centre x0 ∈ . If (x0) =  and



(x0) 6= 0, for 1 ≤  ≤ , then there exists (1 2   −1 +1)

and an open ball of 0 such that (10 20   (−1)0 (+1)0  0) = 0,

(1 2  −1 (1 2   −1 +1) +1  ) =  for any x in

that open ball and  is derivable with continuous derivatives in that ball.

Implicit function´s rule: Consider that (1 2     ) =  and

there exists a function  = (1 2   −1 +1) defined implicitly. If

we derive with respect to  both sides of (1 2     ) =  it follows

that:




=




+








= 0⇒ 


= −









((1))

(the partial derivatives of  with respect to each variable can be obtained

without knowing the function !; it is enough to know that  exists)

Example:

Consider that 1 − 22 − 33 + (3)2 = −2. The function (1 2 3) =

1 − 22 − 33 + (3)2 is continuous and its partial derivatives ( 1
= 1,



2
= −2 and 

3
= −3 + 23) are also continuous. Then there exists 3 as

an implicit function of 1 and 2, that function is derivable with continuous

48



derivatives in a ball of any point (1 2 3) in which 1−22−33+(3)2 =
−2 and the partial derivatives of 3 with respect to 1 and with respect to 2
for the points in that ball may be obtained from (1): 3

1
= − 1

−3+23 =
1

3−23
and 3

2
= − −2

−3+23 =
−2

3−23 .

3
1

and 3
2

may also be obtained by writing 3 = (1 2) and

by differentiating directly the function  with respect to 1 and to 2,

respectively:

1− 33
1
+ 23

3
1

= 0⇒ 3
1

= 1
3−23 ()

−2− 33
2
+ 23

3
2

= 0⇒ 3
2

= −2
3−23 ()

To obtain 23
21

we differentiate equation () with respect to 1: −32321
+

2(3
1
)2 + 2 

23
21

= 0⇒ 23
21

=
2(

3
1

)2

3−23 =
2( 1
3−23 )

2

3−23 = 2
(3−23)3 .

To obtain 23
12

we differentiate equation () with respect to 2 (or

equation () with respect to 1) −3 23
12

+ 23
1

3
2

+ 2 23
12

= 0 ⇒
23

12
=

2
3
1

3
2

3−23 =
2 1
3−23

−2
3−23

3−23 = −4
(3−23)3 .

To obtain 23
22

we differentiate equation () with respect to 2: −32322
+

2(3
2
)2 + 2 

23
22

= 0⇒ 23
22

=
2(

3
2

)2

3−23 =
2( −2
3−23 )

2

3−23 = 8
(3−23)3 .
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7 Functions of  in 

Consider a function  of  into : (1 2  ) = (1 2  ).

Denote by  the function such that  = (1 2  ) for  = 1 2 .

7.1 The Jacobian matrix and the Jacobian determi-

nant

The Jacobian matrix of  is:

() =

⎛⎝ 1
1

1
2

 1


   

1


2

 


⎞⎠
When  =  the Jacobian determinant of  is:

|()| =
¯̄̄̄
¯̄

1
1

1
2

 1


   

1


2

 


¯̄̄̄
¯̄

7.2 Composition of functions

Composition of functions:

Example: Let (1 2) = (21 + 22 2 1) and (1 2 3) = (21 +

3 42 + 3).

i) Obtain the composite map  : 2 → 2

()(1 2) = ((1 2)) = (21 + 22 2 1) = (2(21 + 22) +

1 42 + 1)

ii) Calculate the Jacobian determinant of  at point (1 1)

|()| =
¯̄̄̄
41 + 1 42
1 4

¯̄̄̄

|()|(11) =
¯̄̄̄
5 4

1 4

¯̄̄̄
= 16
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