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1 Introduction

Airport problems model situations where di¤erent agents interested in a com-

mon project can pro�t from cooperation. In many cases, the distribution of

the gains of cooperation among the agents is analyzed following an axiomatic

approach or coalitional approach, adapting to the model well-known solution

concepts de�ned for coalitional games such as the nucleolus or the Shapley

value.

This paper provides a noncooperative interpretation of two normative so-

lutions in airport problems: the nucleolus and the egalitarian allocation. The

noncooperative understanding of these two normative solutions is grasped by

using a simple noncooperative game1 , in which one of the players performs a

special role. He makes a proposal and the rest of the players in a given order,

accept or reject that proposal sequentially. In case of rejection the con�ict is

solved bilaterally, applying a normative solution concept to a special two-agent

problem. Therefore for any solution de�ned in the class of two-agent problems

a noncooperative game can be formed.

We analyze this mechanism with respect to the nucleolus and the egalitar-

ian allocation. For the nucleolus, we provide a noncooperative game form whose

equilibria yield the nucleolus. For the egalitarian allocation we provide a nonco-

operative game whose Nash outcomes coincide with the elements of a certain set

(the set of core allocations for which the last player receives as payo¤ the payo¤

provided by the egalitarian allocation). Obviously, among those elements we

�nd the egalitarian allocation.

The paper is organized as follows: Section 2 introduces the preliminaries

and the noncooperative game. Section 3 relates the noncooperative game and

the nucleolus and the last section studies the noncooperative game and the

egalitarian allocation.

2 Preliminaries

2.1 The model

Airport cost problems were introduced by Littlechild and Owen [6]. These

authors analyze how to distribute the cost of a landing strip among "agents"

1Dagan, Serrano and Volij [3] introduce similar mechanisms on the context of bankruptcy
problems.
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who use runways of di¤erent lengths. This problem illustrates a class of cost

sharing problems in which agents are ordered according to their needs for a

public project, and if one agent�s need is met then all agents with smaller needs

are also satis�ed. (See Potters and Sudhölter [7] for a detailed study of airport

cost problems and consistent allocation rules.) Formally this problem can be

de�ned as follows.

The tuple (N;�; C) is an airport cost problem if:

a) N is a �nite nonempty set of agents.

b) � is an order relation on N where i � j means that agent j does not

precede agent i.

c) C : N ! R++ is non-decreasing cost function so that i � j implies

C(i) � C(j). It is assumed that C(i) > 0 for all i 2 N .

Hereafter 1; 2; :::; n will denote agents�order in any instance, hence � may

be replaced by �.
In general, an airport cost problem can be interpreted as follows. Each agent

i wants to carry out a project that generates a cost C(i). If i � j then project
j is considered an extension of project i and every agent located earlier than

agent j may be a user of that project. Accordingly the last player�s project is

the one that should be implemented and its cost C(n) distributed among all

agents.

Let (N;�; C) be an airport cost problem then the associated airport cost

game is the TU cooperative cost game (N; c) where

c(S) = max
i2S

C(i).

Notice that the values of the airport cost problem can be derived from the

airport cost game (N; c) because C(i) = c(i). Therefore an airport cost problem

and an airport cost game are frequently identi�ed as being the same.

A distribution among the players is represented by a real valued vector x 2
RN where xi is the payo¤ assigned by x to player i. A distribution of an amount

higher than or equal to C(n) is called a feasible allocation.
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For each coalition of agents S � N we use x(S) to denote
P

i2S xi. A

distribution satisfying x(N) = C(n) is called an e¢ cient allocation. An e¢ cient

allocation satisfying xi � C(i) for all i 2 N is called an imputation and the set

of imputations is denoted by I (N; c). The set of non negative imputations is

denoted by D (N; c) and de�ned as:

D (N; c) =
�
x 2 RN : x(N) = C(n) and 0 � xi � C(i) for all i 2 N

	
.

The set of core allocations for the game (N; c) is de�ned as:

Core (N; c) =

8<:x 2 D (N; c) : X
1�i�j

xi � C(j) for all j 2 N

9=; .
We denote max fa; 0g by a+:

2.2 Solutions for two-person airport cost problems

Given a two-person airport cost problem (fi; jg ; C(i) � C(j)) we de�ne the
standard solution of this problem as:

yi =
C(i)

2

yj = C(j)� yi.

Notice that if agents i and j cooperate they should pay C(j) otherwise each

agent should pay for his own project. Therefore the amount C(i) represents the

savings from cooperation and the standard solution can be interpreted as an

equal division of savings.

The constrained egalitarian solution2 for the two-person airport cost problem

(fi; jg ; C(i) � C(j)) is de�ned as:

yi = min

�
C(i);

C(j)

2

�
yj = C(j)� yi.

This solution gives an equal division of C(j) with the proviso that agent i

will not pay more than the cost of his own project C(i).

2See Dutta and Ray [4] and Arin and Iñarra [1].
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2.3 The noncooperative game

An airport cost problem (N;�; C) is associated with a noncooperative game
denoted by G (N;�; C). This game has n stages where only one player is playing
in each stage. In the �rst one, the last player announces as proposal a non

negative e¢ cient allocation. In the subsequent stages each responder has two

choices: to accept or reject that proposal. If a player accepts the proposal,

he pays and leaves the game. In this case for the next stage the proposal will

coincide with the one at the preceding stage. If a player rejects the proposal

then an airport cost problem for the proposer and the responder is reformulated.

The responder will pay the amount assigned by a normative solution to the this

problem. Once all responders have played and paid, the last player´s payo¤ is

determined.

Formally, the outcome of playing this game when the standard solution is

considered can be described by the following algorithm.

Input: An airport cost problem (N;�; C).
Output: An e¢ cient, non negative allocation x.

1. Stage 1. The proposer, player n, makes an e¢ cient and non negative

proposal x1. (The superscript denotes the stage at which the allocation is

considered as the proposal in force.)

2. Given the allocation xt�1 let t be the stage where the ith responder plays3 .

If player i says yes he receives the payo¤ xt�1i and leaves the game; then

xt = xt�1. If player i says no, a two-person airport cost problem is de�ned:

(fi; ng;�; C 0) where

C 0(n) = xt�1n + xt�1i = C(n)�
P
j<i

xt�1j �
P

n>j>i

xt�1j

C 0(i) = (C(i)�
P
j<i

xt�1j � max
n�1�l�i+1

(
P

l�j>i
xt�1j � (C(l)� C(i)))+)+

Now, xt =

8<: xt�1n + xt�1i � yt for player n
yt for player i
xt�1l if l 6= i; n

3For the sake of simplicity of the model we assume that the responders are ordered accord-
ing to their costs. That is, the �rst responder is the agent n�1 and the i� th responder is the
player n� i. The results do not change if we assume any other order in the set of responders
whenever the proposer is the last player. In this case some proofs would have to be modi�ed
slightly.
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where yt = C 0(i)=2: That is, (yt; yn) is the standard solution of (fi; ng;�; C 0).

1. The game ends when stage n is played. The payo¤ vector xn = x with

coordinates (xj)j2N is the outcome of the game.

The de�nition of C 0(n) and C 0(i) can be explained as follows.

Let players 1; :::; n be placed sequentially on the nodes of a line graph where

the cost of player i is given by the distance from the root to node i and denoted

by C(i).

Assume player i is facing the proposal x, Player n � 1 ((n � 1) 6= i), the

�rst responder, pays xn�1. This amount is represented on the line graph by the

stretch that goes from the node n � 1 towards the root. It may happen that
xn�1 > C(n� 1)� C(n� 2).
Player n� 2 ((n� 2) 6= i) pays the amount xn�2 represented by the stretch

that goes either from his own location n� 2 or from the location determined by

the point C(n� 1)� xn�1. The latter will occur whenever xn�1 > C(n� 1)�
C(n� 2).
If for an agent l it turns out that xl is higher than the cost of the location

at which he starts to pay we assume that the remaining amount is paid starting

from the �rst location for which there is still any cost to pay:

Thus, in general, any player k located before player i pays the amount xk

represented by the stretch that goes either from his own location or from the

point determined by C(k)� max
n�1�l�k+1

(
P

l�j>k
xt�1j � (C(l)� C(k))+).

Accordingly, we have that player n always pro�ts from the payo¤s made by

the remaining players since he is located on the �nal node. However, player

i pro�ts from the payo¤s made by players located before him, but he could

also be pro�ted from payo¤s that will be made by some players behind him

fi+ 1; 1 + 2; :::; kg, k < n, whenever they jointly pay more than C(k) � C(i).
This interpretation of the payments of players i and n explains the construction

of C 0(n) and C 0(i). (C 0(i) � 0 has been assumed.)

3 The nucleolus

The nucleolus (Schmeidler [8]) of an airport cost game (N; c) derived from air-

port cost problem (N;�; C) can be computed using the following formula pro-
vided by Littlechild [5]
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Input: An airport cost problem (N;�; C)
Output: The nucleolus �.

1. Start with stage 1. De�ne �1 = min
1�j<n

C(j)
j+1 . Let j = argminC(j)j+1 and

allocate �i = �
1 for all agents i � j.

2. Consider the stage t where the �rst l agents have been allocated and de�ne

�t = min
l<j�n�1

8>><>>:
C(j)�

X
1�i�l

�i

j�l+1

9>>=>>;.

Let j = argmin

C(j)�
X
1�i�l

�i

j�l+1 and allocate �i = �
t for all l < i � j.

3. The algorithm ends when the �rst n � 1 agents are assigned. The last
agent�s payo¤ is determined by C(n)�

X
1�i�n�1

�i.

Notice that all agents assigned at the same stage have identical payo¤. Here-

after, we can rename4 the nucleolus payo¤s by adding a superscript so that �ji
may be read as the nucleolus of agent i assigned at stage j.

Remark 1 The inequality �ji > �j�1k is a direct consequence of the algorithm

above.

Lemma 2 Let fi; :::;mg be the group of agents assigned at stage t where C(i) �
::: � C(m). Then

jfi; :::;mgj �tk � C(m)� C(i� 1).

Proof. Let h be the last agent assigned at stage t� 1 (t 6= 1): Let j be the last
agent assigned at stage t. And let p be the last agent assigned at stage t + 1.

Therefore
C�(j)

j� + 1
<
C�(p)

p� + 1

where C�(j) = C(j)�
Ph

i=1 �i and

C�(p) = C(p) �
Ph

i=1 �i: Also p
� = p � h and j� = j � h and consequently

p� > j�:

Assume that the lemma is not true. That is,

C�(p)� j� C�(j)j�+1

p� + 1� j� (p� � j�) > C(p)� C(j) = C�(p)� C�(j)

4This notation can help the reading of the proofs.
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Therefore

(C�(p)� j� C�(j)
j� + 1

)(p� � j�) > (C�(p)� C�(j))(p� + 1� j�);

((j� + 1)C�(p)� j�C�(j))(p� � j�) > (C�(p)� C�(j))(p� + 1� j�)(j� + 1):

After some simpli�cations we get

((j� � p�)(j� + 1))C�(p) > (�p� � 1)C�(j)

((p� � j�)(j� + 1))C�(p) < (p� + 1)C�(j)

Since p� � j� � 1
(j� + 1))C�(p) � ((p� � j�)(j� + 1))C�(p) < (p� + 1)C�(j)
And we obtain

(j� + 1))C�(p) < (p� + 1)C�(j)

or equivalently
C�(j)

j� + 1
>
C�(p)

p� + 1
:

Therefore for any two stages t; t+1 we prove that there is no group of agents

that pay more than their marginal contribution.

The proof of the next lemma is almost identical to the proof of the previous

one and therefore omitted.

Lemma 3 Let fi; :::;mg be the group of agents assigned at stage t where C(i) �
::: � C(m). Then for any l 2 fi; :::;m� 1g,X

l<j�m
�j = jfl + 1; :::;mgj �tm > C(m)� C(l).

Lemma 4 Let k be an agent whose nucleolus is determined by player j0s loca-

tion. Then �n � �k = C (n)� C (j)�
Pn�1

i=j+1 �i.

Proof. Assume that every player of the order 1; 2; :::; p has a payo¤ lower than

�k as the nucleolus, while every player of the order p+1; :::; j has exactly �k as

the nucleolus. Then

�k =
C (j)�

Pp
i=1 �i

j � p+ 1 ,

which is equivalent to

C (j) =

pX
i=1

�i + (j � p+ 1)�k =
jX
i=1

�i + �k.
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Therefore

C (j) =

jX
i=1

�i + �k =

jX
i=1

�i + �k +
nX

i=j+1

�i �
nX

i=j+1

�i.

Since the nucleolus is an e¢ cient allocation,
Pj

i=1 �i +
Pn

i=j+1 �i = C(n),

therefore

C (j) = C(n) + �k �
nX

i=j+1

�i = C(n) + �k � �n �
n�1X
i=j+1

�i.

Lemma 5 Let (N;�; C) be an airport cost problem and G (N;�; C) its associ-
ated noncooperative game. If the initial proposal is the nucleolus then the �nal

outcome will be the nucleolus.

Proof. Assume that the lemma is not true.

Let the nucleolus be the initial proposal denoted by � = (�1; :::�k; �k+1; :::; �n)

and let k be the �rst responder that can change this proposal. Assume that agent

k rejects the proposal �. Then

C�(n) = �n + �k = C(n)�
P
j<k

�j �
P

h�j>k
�j �

P
n>j>h

�j

C 0(k) = C(k)�
P
j<k

�j � (
P

h�j>k
�j � (C(h)� C(k)))

where h is the agent that determines the nucleolus for player k. Note that

by lemmas 2 and 3 we have

max
n>l>i

(
P

l�j>i
�j � (C(l)� C(i)))+ =

P
h�j>k

�j � (C(h)� C(k))).

Denote by (yn; yk) the standard solution of this two-agent airport cost prob-

lem then

yn � yk = C 0(n)� C 0(k) =

C(n)� C(k)� (C(h)� C(k))�
P

n>j>h+1

�j = �n � �k.

This last equality results from applying the previous lemma. Therefore

(yn; yk) = (�n; �k) and agent k cannot change the initial proposal by reject-

ing the proposal.

The main result of this section is presented in the following theorem.
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Theorem 6 Let (N;�; C) be an airport cost problem and G (N;�; C) its as-
sociated noncooperative game. Every Nash equilibrium strategy pro�le has the

nucleolus as outcome.

Proof. Assume that there is a Nash outcome (z1; :::; zn) which is not the nu-

cleolus. Let k be the �rst player for whom zk > �k. Player k should be a

responder. The proposer can guarantee for himself the payo¤ provided by the

nucleolus by just proposing it. Therefore if z is a Nash outcome then zn � �n.
Assume that the proposal faced by player k when playing is

x = (x1; x2; :::xk; zk+1; :::; zn�1; xn).

Assume that agent k rejects the proposal x: Therefore we have the problem

(fk; ng;�; C 0) where C�(k) � 0: If C�(k) = 0 it is immediate that after rejecting
x the payo¤ of player k is 0 � �k � zk contradicting that z is a Nash outcome.
Therefore we only focus in the case C�(k) > 0: Then

C�(n) = xn + xk = C(n)�
P
j<k

xj �
P

h�j>k
zj �

P
n>j>h

zj

C�(k) � C(k)�
P
j<k

xj � (
P

h�j>k
zj � (C(h)� C(k)))+

� C(k)�
P
j<k

xj � (
P

h�j>k
zj � (C(h)� C(k))

where h is the agent whose location determines the nucleolus of agent k:

Note that
P

n>j>h

zj �
P

n>j>h

�j <
5C(n � 1) � C(h) and these agents do not

contribute to the reduction of the cost of agent k: Therefore if there are agents

located after agent k that contribute to the reduction of the cost of agent k

those players belong to fk + 1; :::; hg : And it is clear that

max
h�l�k+1

(
P

l�j>k
zt�1j � (C(l)� C(k))) �

P
h�j>k

zt�1j � (C(h)� C(k)):

The standard solution implies that yn � yk = C 0(n)� C 0(k):
Therefore,

C�(n)� C�(k) � C�(n)� C(k)�
P
j<k

xj � (
P

h�j>k
zj � (C(h)� C(k)) �

C(n)� C(k)� (C(h)� C(k))�
P

n>j>h+1

zj :

If
P

h�j>k
zj � C(h)� C(k) the last inequality becomes an equality and oth-

erwise it is strict.
5By applying Lemma 2.
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Finally, we obtain

yn � yk � (C(n)� C(h))�
P

n>j>h

zj

� (C(n)� C(h))�
P

n>j>h

�j = �n � �k:

This last equality results from applying Lemma 4. Since yn � 6zn � �n we
conclude that yk � �k < zk:
Therefore after the optimal answer of agent k the payo¤ is not higher than

the nucleolus.

Remark 7 Given an airport cost problem and its associated noncooperative

game consider the following pro�le of strategies: the nucleolus is o¤ered by the

proposer and the responders respond to any proposal by rejecting it if and only

if after rejection they increase their payo¤. Otherwise they accept. It is imme-

diately apparent that this pro�le is a Nash equilibrium (indeed it is a subgame

perfect equilibrium) and the �nal payo¤ vector is the nucleolus:

The following example shows that the result holds whenever the proposer is

the last player. Otherwise, it is not necessarily true that the only Nash outcome

of the game is the nucleolus.

Example 8 Consider the following airport cost problem (N;�; C) where C =
(C(1); C(2); C(3)) = (8; 16; 24) and its associated noncooperative game where

the proposer is player 1.

The nucleolus of this game is � = (4; 6; 14). Assume that proposal (4; 4; 16)

is made by player 1 and further assume the optimal behavior of the responders

to any proposal. After the optimal response of players 2 and 3 the �nal outcome

will coincide with the initial proposal. That means that the nucleolus is not the

unique Nash outcome of the game. It is not di¢ cult to check that both outcomes

considered are Nash outcomes.

4 The egalitarian allocation

In Subsection 2.3 we have introduced a noncooperative game where the standard

solution for a two person airport cost problem. In this section the con�ict

between the proposer and the responder is solved by applying we modify that

6Given the Nash behavior of the responders the payo¤ of the proposer cannot decrease.
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noncooperative game slightly: The con�ict is solved by applying the egalitarian

allocation to the same two person airport cost problem. Therefore we omit the

formal presentation of the new noncooperative game, which hereafter is denoted

by Ge (N;�; C).
The egalitarian allocation can be computed by applying the following algo-

rithm (see Chun-Hsien [2]):

Input: An airport cost problem (N;�; C).
Output: the egalitarian allocation e.

1. Start with stage 1. De�ne e1 = min
1�j�n

C(j)
j . Let j = arg min

1�j�n
C(j)
j and

allocate ei = e1 for all i � j.

2. Consider stage t where the �rst l players have been allocated and de�ne

et = min
l<j�n

8>><>>:
C(j)�

X
1�i�l

ei

j�l

9>>=>>;.

Let j = arg min
l<j�n

C(j)�
X
1�i�l

ei

j�l and allocate ei = et for all l < i � j.

3. The algorithm ends when the n players are assigned.

The proof of the following lemma is immediate.

Lemma 9 Let (N;�; C) be an airport cost problem and Ge (N;�; C) its asso-
ciated noncooperative game. Let z be a �nal outcome of the game where the

responders have played optimally. Then zi � zn for all i 2 N .

The following lemmas investigate the features of the Nash outcomes.

Lemma 10 Let (N;�; C) be an airport cost problem and Ge (N;�; C) its as-
sociated noncooperative game. Let z be a �nal outcome of the game where the

responders have played optimally. Then
X
1�i�p

zi � C(p) for all p 2 f1; :::; n� 1g.

Proof. Assume that there exists a player p, p 6= n, such that
X
1�i�p

zi > C(p).

Therefore zp > C(p) �
X

1�i�p�1
zi. Let y be the proposal faced by player p.
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Since all the responders play optimally, clearly yi � zi for all i 2 f1; :::; pg and
therefore

C(p)�
X

1�i�p�1
yi � C(p)�

X
1�i�p�1

zi < zp.

If player p rejects proposal y he will receive a payo¤ lower than or equal to

C(p) �
X

1�i�p�1
yi contradicting the fact that z is an outcome derived from the

optimal behavior of the responders.

Lemma 11 Let (N;�; C) be an airport cost problem and Ge (N;�; C) its as-
sociated noncooperative game. Let z be the �nal outcome of the game where the

responders have played optimally. Then zn � en.

Proof. We consider two cases:

a) en =
C(n)
n: . Since zi � zn for all i 2 N it is clear that zn � en.

b) en = C(n)�C(j)
n�j . By Lemma 10 if z is a �nal outcome of the game

where the responders have played optimally then
X
1�i�j

zi � C(j) and thereforeX
j+1�i�n

zi � C(n) � C(j). Notice also that zn � zi for all i 2 N . Combining

the two inequalities zn � en is obtained.

Before presenting the main theorem of this section we introduce some nota-

tion. Let B (N;�; C) be the following set:

B (N;�; C) = fx 2 Core (N; c) : xi � xn for all i 2 Ng .

Lemma 12 Let (N;�; C) be an airport cost problem and Ge (N;�; C) its as-
sociated noncooperative game. Let z 2 B (N;�; C) be an initial proposal. Then
if all responders have played optimally, z will be the �nal outcome of the game.

Proof. Assume that the lemma is not true. Then there exists a responder that

by rejecting optimally proposal z gets a lower payo¤. Let i be the �rst responder

doing this. The following two person airport cost problem results:

C 0(n) = zn + zi = C(n)�
P
j<i

zj �
P

n>j>i

zj

C 0(i) = C(i)�
P
j<i

zj � max
n�1�l�i+1

(
P

l�j>i
zj � (C(l)� C(i)))+

Let (yi; yn) be the egalitarian allocation of this problem. Since yi < zi �
zn+zi
2 we obtain yi = C 0(i) = C(i) �

P
j<i

zj � max
n�1�l�i+1

(
P

l�j>i
zj � (C(l) �

C(i)))+ < zi.

13



There are two cases:

a) max
n�1�l�i+1

(
P

l�j>i
zj � (C(l)� C(i))) � 0.

In this case we have

C(i) �
P
j<i

zj < zi and consequently
P
j�i
zj > C(i). But this contradicts the

fact that z 2 B (N;�; C).
b) max

n�1�l�i+1
(
P

l�j>i
zj�(C(l)�C(i))) > 0. Let h = arg max

n�1�l�i+1
(
P

l�j>i
zj�

(C(l)� C(i))).
In this case we have

C(i)�
P
j<i

zj � (
P

h+1>j>i

zj � (C(h)�C(i))) < zi and consequently
P
j�h

zj >

C(h), which it contradicts z 2 B (N;�; C).

Theorem 13 Let (N;�; C) be an airport cost problem and Ge (N;�; C) its
associated noncooperative game. Then z is a Nash outcome if and only if z 2
B (N;�; C) and zn = en.

Proof. a) Let z 2 B (N;�; C) with zn = en. Assume the following pro�le

of strategies; z is o¤ered by the proposer and the responders respond to any

proposal by rejecting it if and only if after rejection they increase their payo¤.

By Lemma 12 the �nal outcome will be z. And by Lemma 11 the proposer,

given the optimal behavior of the responders, cannot get a payo¤ lower than en.

Therefore the outcome of this pro�le is z which is a Nash outcome (indeed it is

a subgame perfect outcome).

b) Let z be a Nash outcome. Lemmas 10 and 11 imply that z 2 B (N;�; C).
If the initial proposal is the egalitarian allocation, the �nal outcome will be the

egalitarian allocation because e 2 B (N;�; C). Therefore zn = en:
The following example shows that the result holds whenever the proposer is

the last player. Otherwise, it is not necessarily true that the only Nash outcomes

of the game belong to the set B (N;�; C).

Example 14 Consider the following airport cost problem (N;�; C) where C =
(C(1); C(2); C(3)) = (8; 18; 24) and its associated noncooperative game where

the proposer is player 1.

Assume that the proposal (8; 10; 6) is made by player 1 and players 2 and 3

play optimally to any proposal. After the optimal response of players 2 and 3

the �nal outcome will coincide with the initial proposal.

14
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