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Abstract 

An economic expert working group (STECF/SGBRE-07-05) was convened in 
2007 for evaluating the potential economic consequences of a Long-Term 
Management Plan for the northern hake. Analyzing all the scenarios proposed by 
biological assessment, they found that keeping the F in the status quo level was the 
best policy in terms of net present values for both yield and profits. This result is 
counter intuitive because it may indicate that effort costs do no affect the economic 
reference points. However, it is well accepted that the inclusion of costs affects 
negatively the economic reference points. In this paper, applying a dynamic age-
structured model to the northern hake, we show that the optimal fishing mortality 
that maximizes the net present value of profits is lower than Fmax. . 
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Introduction 
Economists have participated as consultants from fisheries management 

decisions for a long time (Wilen, 1999). However, biological and economical 
assessments are conduced independently. This means that the conclusions from the 
different models used by each discipline must be assembled by fishery agencies in 
order to reach their objectives. And this may become an unattainable aim when the 
analysis is based on different assumptions. 

The use of unrelated methods of analysis in each area may lead to unexpected 
situations. For instance, an Expert Working Group (STECF/SGBRE-07-03) was 
convened in Lisbon from June 18th to June 22nd, 2007, for evaluating the potential 
biological consequences of a long-term management plan for the northern stock of 
hake. The working group found that current fishing mortality rate was close to 
Fpa=0.25. It also concluded that Fmax =0.17 is a good proxy for the target reference 
point Fmsy. The working group studied the impact of reducing the current fishing 
mortality rate, Fpa, to Fmax assuming different convergence speed scenarios. Based 
on this analysis, STECF/SGBRE-07-03 concluded that maintaining Fpa as opposed 
to reducing F to Fmax, would lead to increase in the short run the risk of returning to 
an unsafe situation (SEC(2007)). 

In order to carry out bio-economic impact assessments for the long run stock 
management plan STECF also recommended scheduling an additional meeting, 
involving both biologists and economists. Therefore, a second Expert Working 
Group (STECF/SGBRE-07-05) was then convened in Brussels from 3-6 December 
2007 for analyzing the socioeconomic impact of the scenarios proposed at the 
Lisbon meeting. The indicators chosen for evaluating this impact were the net 
present values of: landings (in value), crew share, gross cash flow, profits and gross 
added value. These indicators were calculated using the Economic Interpretation of 
ACFM Advice Model (EIAA, Annex 2 SEC(2004) 1710, Hoff and Frost (2008)). 

Tables 1 and 2 show the results obtained by the expert group for all the 
economic indicators associated to the French and Spanish fleets, respectively,  
using a 5% discount rate and considering the period 2008-2016. Regardless the 
economic indicator used, the status quo was the scenario best ranked among all 
scenarios analyzed. Therefore the economic analysis concluded, contrary to 
Lisbon’s proposal, that fishing mortality should be kept close to the status quo Fpa 
instead of reducing fishing mortality up to Fmax.  

Moreover, a close inspection of Tables 1 and 2 show that all the scenarios 
analyzed are equally ranked regardless of the economic indicator used, which is a 
counter intuitive result. It is well know that, in general, F associated to maximum 
profits is lower than F associated to maximum yield (Gordon (1954), Clark and 
Munro (1975), Christiansen (2010), Grafton et al. (2010)).  Furthermore, this 
statement has been tested in empirical studies (Grafton, Kompas and Hilborn 
(2009), Dichmont et al. (2010) and Kompas et al. (2010)). Consequently, it is 
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expected that when profits are considered, a scenario with F lower than Fmsy be 
ranked higher than the scenario associated to Fmsy. 

In this paper, using a dynamic age-structured model, we show that the scenarios 
proposed by the biologists for the northern hake may be ranked in different manner 
depending on the economic indicator used. In order to do this, firstly, we solve for 
the optimal long run fishing mortality and the fishing mortalities trajectories that 
maximize net present values of the different indicators, using a generic basic age-
structured model with constant recruitment, and specifying cost as a linear function 
of fishing mortality (see Gröguer et al. (2007), Kulmala, Laukkanen and 
Michielsens (2008), Tahvonen (2008, 2009) and Da Rocha, Cerviño and Gutiérrez 
(2010)).  

Secondly, the economic indicators for the optimal trajectories are recalculated 
assuming a linear cost function on F. Our numerical simulations are quite intuitive 
from the theoretical point of view. Under reasonable prices by age, running costs 
per day, and discount rates, if net present values of profits are maximized, the 
scenarios associated with a long run fishing mortality lower than Fmax will always 
be preferred, like in Grafton et al. (2009), Kompas et al. (2010) and Dichmont et al. 
(2010). 

 

Dynamic management problem 

An alternative to fisheries' economic assessment based on preselected fishing 
mortality trajectories is the optimal fishing mortality trajectory that maximizes the 
net present value of the fisheries economic indicator, taking into account the 
dynamics described by the standard age structured model.  

In order to value the future we consider a given discount factor, 

10   Discount is frequently introduced in fisheries economics using the 

discount rate, r, instead of discount factor,  (Grafton et al. (2006). The former 
uses are applied in continuous time frameworks while the latter is more commonly 
used in discrete set up. The inverse relationship between both terms is given by 

  11  r  .  

Formally, let us assume that the fish stock is broken into A cohorts. The net 
present value of the a fishery economic indicator can be expressed as  
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where apr , a
tY  and C(Ft) are respectively the price and yield at age ath and the 

total cost function which depends positively on fishing mortality.  

The maximization problem consist of solving the objective function (1) taking 

into account the stock dynamics which are given by a
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total annual mortality rate affecting the numbers N of age group a during year t.  
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The total mortality rate is decomposed into fishing mortality F and natural mortality 

m, which is assumed constant across ages. Formally, aa
t

aa
t mFpz  , where ap  

represents the selectivity parameters for age a. We also assume that recruitment 
follows an Ockham rule and that the yield is determined by Baranov's equation 
(1918). Furthermore, we restrict the solution to satisfy the precautionary restriction 
given by tBSSB pat  . 

Notice that the objective function can be interpreted in several ways. For 

instance, if apr  is constant and the marginal cost is zero, the objective function 

represents the discounted yield in weight. When the marginal cost is zero and apr  

is not equal to one, the objective function coincides with the discounted yield in 

value. When apr  is not constant and total cost equals the cost of fuel plus other 

running costs, the objective function is equal to the discounted value added. Finally, 
if the total cost includes also labor cost, then the objective function is the 
discounted profits of the fishery. 

We show in Appendix 1 that the optimal management strategy that maximizes 
the net present value (1) for a given initial condition, is the fishing mortality 

trajectory  1, ,...t tF F F   that satisfies the following set of first order conditions 

(foc), t  
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where,  t
a Fy  is the yield per recruit in period t when the fishing mortality is tF  

and  a
t  can be interpreted as the survival function that shows the probability of a 

recruit born in period t-(a-1) to reach age a>1, for a given F path 
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The fishing mortality trajectory that maximizes the net present value of yield 

per recruit is the balance, for any , between the following two effects: i) the 
instantaneous effect on profits in period t of changes in the fishing mortality, when 
the age distribution population is constant across time and, ii) the future effect on 
yield, due to changes in future age distribution population induced by the changes 
in the tF . Note that the discount factor,  , affects to the net present value of future 

effects. Considering the extreme case of 1  is equivalent to weight changes in 

the future as if they occur at the current period. By the contrary, considering 0  

implies not to care about the future.  
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We also show in Appendix 1 that when Ft=Ft+1, the equation system (2) 
collapses to a steady state solution that defines the long term reference point that 
maximizes, for a given  , the net present value along the optimal fishing mortality 

trajectory. Notice that when apr  is constant, the marginal cost is zero and =1, the 

steady state solution is equal to Fmax. By the contrary, when 0  the steady state 

solution coincides to the immediate maximum economic yield ( IMEYF ), defined by 

Lleonart and Merino (2009). 

In some frameworks, the optimal solution is not necessary a steady state but 
consists of pulse fishing (see Tahvonen, 2009).  

 

Recalculating Economic Indicators 

Four scenarios are solved for the optimal management problem: assuming i) 

marginal cost is zero and 1apr ; ii) marginal cost is zero and apr  is not equal to 

one; iii)  total cost is equal to the cost of fuel and other running costs and apr  is 

not equal to one; and, iv)  total cost includes also the labor cost and apr  is not 

equal to one. It should be noted that the optimal trajectories have also been 
calculated under the restriction that mortality rate does not change more than a 15% 
per year. 

In order to find the optimal trajectories, the model is calibrated for the northern 
hake. Appendix 2 shows in detail how the calibration has been prepared using data 
set reported for the working groups STECF/SGBRE-07-03 and SGBRE-07-05 and 
daily sales of the Spanish 300 fleet. 

We assume that there exists uncertainty about the initial age distribution and 
recruitment process. In particular, log normal distributions are used to describe the 
initial conditions of the population distribution.  So for each scenario 20,000 
simulations are run. 

Table 3 reports the net present value of the economic indicators calculated for 
the four scenarios using a discount factor of 0.95 and the age structured model and 
economic calibration described in Appendix 2. Each row shows information of net 
present value of yield in weight, yield in value, value added and profits, 
respectively. For any of them, the mean and the coefficient of variation (cv) 
associated to the 20,000 simulations run are displayed. Bold indicates the best 
economic indicator for each scenario. Notice that different economic indicators 
select different values of F. In particular, the optimal F is much lower when profits 
rather than yield (in weight or value) is used as the benchmark economic indicator.  

It is worth highlighting that the economic indicators calculated represent the 
present value of the fishery for the whole future. Although the stationary fishery 
rate is reached in eight to ten periods, however, for each scenario, the value of the 
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objective function (1) is calculated for the optimal trajectory taking into account 
infinity periods.   

 

Discussion 

Most fishery agencies base their advice about long-term plans on biological and 
economic analysis. However, in many occasions the analysis is done in steps: 
biological criteria determine the desired scenarios and subsequently economic 
criteria are applied to assess the impact of the proposed scenarios. This two-step 
procedure may lead to contradictory results. For instance, the latest advice for the 
Northern Stock of Hake long management plan consisted, in the first place, in 
proposing nine scenarios based on Fmax as a good approximation of Fmsy. However, 
posterior economic analysis of these nine scenarios proved that the F=0.25>Fmax is 
always preferred “under the economic point of view” to any of the alternative 
scenarios proposed. 

Obviously, one of the causes of this undesired result was that the economic 
assessment did not consider the criteria used when designing the scenarios. When 
designing the long term management plan, the fishery was in a high risk situation. 
All the biological models unanimously concluded that if the fishing effort was not 
reduced, in a short period of time SSB would very likely fail bellow Bpa. In this 
sense, the economic analysis should have been done considering the restrictions 
necessary for recovering the stock (Da Rocha, Cerviño and Gutiérrez (2010)). In 
other words, the status quo scenario should have not been included among the set of 
scenarios to be evaluated for the economic assessment as it did not satisfy the 
precautionary criteria.  

Nevertheless, a more important question is why the status quo scenario was 
selected by the economic assessment. Recently, Grafton et al. (2007), Kompas et 
al. (2010) and Dichmont et al. (2010) proved that, under the stock effect 
assumption, optimal fishing mortality rates (biomass) are much lower (higher) 
when profits rather than yield are used as the benchmark economic indicator. 
Similarly, we show that when a cost function that depends linearly on fishing 
mortality is introduced, the fishing mortality associated to maximization of 
discounted profits, Fmey, is lower than Fmax .  

Why does our analysis rank scenarios like Grafton et al. (2007), Kompas et al. 
(2010) and Dichmont et al. (2010) and the EIAA analysis did not? Our intuition is 
that the EIAA model calculated all the economic indicators as if they were 

monotonic transformations of landings because: a) apr  was constant across ages, 

and b) it underestimated differences in effort cost between scenarios.  

From the information that appears in the report from STECF/SGBRE-07-05 it is 
not possible to reproduce the cost indicators computed by EIAA model. Because of 
that we calculate the implicit costs used by the EIAA model computing 
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Table 4 shows in the first and the second row, these implicit costs used by the 
EIAA model. The third and the fourth rows represent the same variables but 
indexed taken the status quo situation as 100. 

We can observe that differences in effort cost between scenarios are much 
smaller than the differences in fishing mortality between scenarios. According to 
the EIAA model calculations, reductions over 15% in fishing mortality (from FSQ to 
1,20*Fmax) imply reductions in the effort cost lesser than 1% for the French fleet 
segments and lesser than 2.5% for the Spanish ones. Therefore, the effort cost is 
quite constant which is equivalent to assuming a marginal cost close to zero. 

Which will be the selected scenario when ranking according to the net present 
value of yield in weight? Figure 1 shows the fishing mortality associated to the 
optimal long term reference points that maximize net present value of yield in 
weight for different discount factors using the age structured model from Table 5. 

Notice that when yield in weight is the reference economic indicator 1apr  and 

0)F(C t . So the foc associated to the maximization problem, equation (2), can be 

expressed as  
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The black line in Figure 1 represents how yield changes as F increases, 
whenever the cohort sizes are constant; that is, it sows the value of the left hand 
side of equation (4) for each F. Notice that this does not depend on the discount 
factor. This means that in a dynamic problem, this effect is instantaneous. It 
decreases because as F increases its relative weight increases less than 
proportionally (this is due by Baranov's assumption).  

The grey lines in Figure 1 represent for  =1, =0.95 and  =0.90, how future 
yield varies as F increases due to the changes in the future cohort sizes; that is, it 
sows the value of the right hand side of equation (4) for each F. Notice that this 
effect has a bell shape. When the fishing rate is low, a marginal increase in F raise 
the future size cohorts due, for instance, to cannibalism. However, when the fishing 
rate is high, a marginal increase in F reduces future cohort size. Moreover, the 
empirical simulations show that when the discount factor decreases the bell shape 
shifts upwards.    

In Figure 1, the optimal stationary fishing rate is determined by the intersection 
between the black line (left hand side of equation (4)) and the correspondent grey 
line (right hand side of equation (4)). So graphically, it is clear that the lower the 
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discount factor is the higher the optimal F is.  Nevertheless, it can be analytically 
proved that the optimal F that maximizes the net present value of yield in weight 

when future is discounted, <1, is always greater than Fmax. For instance, in our 

case when  =1, the optimal F is equal to Fmax=0.17. However, when  =0.95 and 

 =0.90 the optimal F are 0.21 and 0.26 respectively. 

Therefore, if our intuition is correct and the EIAA model economic indicators 
are monotonic transformations of net present value of yield in weight, the scenarios 
with F higher than Fmax will be always preferred to those with F lower than Fmax. 
This would imply that long term management plans designed to reach Fmax will 
always be rejected. 
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Appendix 1: Charactering first order condition of the fishery maximization problem. 
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survival function that is given by the expression (3) in the main text.  
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Note that tF  appears only in three sums; in particular those multiplied by t , 1t  
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Therefore, the first order condition (foc) of the maximization problem is given by  
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Using the survival function definition, a
t , this foc can be expressed as 
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In a more compact way 

      








































 2

1

3

1

1
3

1 a

a

j

ja
jtjt

jajajta

t

ta
t

a t

t
a

at .NFyprp
F

FC
N

F

Fy
pr   

 

A generalization of this example for any A  implies 
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the above expression can be written as 
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Appendix 2: Calibration of the economic model 

We use the Age Structured model reported in Table 5. The data set reported for 
the working groups (STECF/SGBRE-07-03 and SGBRE-07-05) do not include any 
information about prices. Since the Spanish fleet accounts for the main part of the 
hake landings with 59% of the total in 2006 (ICES(2007)), we have decided to use 
2007 daily sales of the Spanish 300 fleet. These data are also shown in Table 5. 
Taking into account these prices and the catches generated by the model, 54,889 
MT with a fishing mortality rate of Fsq=0.25, we calculate a value of yield equal to 
322.36 million of Euros. This means that the average price of hake is 5.87 Euros 
per kilo. 

For calibrating the cost function, we assume C(F)=cmgF. This assumption is 
equivalent to assume constant catchability which is the assumption used by the XSA 

analysis to calibrate the age-structured model.  Since TACs quotas are equal among the 

fisheries units (FU), we have decided to calibrate cmg as the average cost for all FUs.  
We use data about the cost structure and the dependency degree of hake for the 
different FUs for the Spanish fleet in 2004 and for the French fleet in 2006 (See 
Tables 6 and 7). 

For determining, the running costs per day, we calculate fuel costs, other costs, 
depreciation and interest divided by the days at the sea of each segment. Secondly, 
we calculate the average costs weighted by the sea days for each segment. Finally, 
we use the hake average dependency (0,47) to calculate the percentage of imputed 
costs. This implies an average costs for fuel equal to 294 Euros, and other costs 
equal to 438 Euros per day. 

Taking into account that fuel costs rose during 2007, we decided to increase the 
fuel costs in the same proportion. In particular, we multiply fuel costs by 1,625. 
This proportion is the result from dividing the price of fuel during the first days on 
2008, 0.52 Euros, by the price of the fuel during the last days on 2006, 0.32 Euros. 
The final costs for the fuel are 477 Euros. Adding this amount to the other costs 
implies a total cost of  915,87 euro per day. 

The days at the sea are originally calculated with data from 2004 and 2006. 
However, since these amounts are overestimated, we reduce them by a 5%. The 
result is 80,335 days at the sea. 

Therefore, we assume that 915.87 Euros and 80,335 days are good proxy's of 
the average running cost and total effort, respectively. Then, the total cost can be 
considered equal to 73.57 millions of Euros. The valued added of a fishery is 
defined as the difference between the value of yield and the total running cost. As a 
result, the valued added of the hake fishery can be considered equal to 248.78 
million of Euros. For calculating the labor costs we assume a crew share equal to 
37% of the yield. This implies labor costs equal to 120.62 million of Euros. Finally, 
the fishery profits, 128.16 million Euros, are equal to added value less wages.  
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For obtaining the optimal paths that maximize the added value of yield, cmg
 is 

calculated taking into account the total operating costs of 73,576 Euros. This 
number is divided by the current mortality rate, Fsq=0.25, to calculate the marginal 
cost. When maximizing profits, cmg is calculated assuming a value of cost equal to 
the sum of operating cost and labor cost (73,576 plus 120,62 Euros), which is 
divided by the current mortality rate, Fsq=0.25. 
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Figure 1: Optimal F for different values of  using the age-structured model reported in 
Table 5. The black line represents yield for constant cohort sizes are constant (the left hand 
side of equation (2)). It decreases because as F increases its relative weight increases less 

than proportionally (this is due by Baranov's assumption). The grey lines represent for  

=1, =0.95 and  =0.90, yield for a constant weight of fishing mortality on total mortality. 

It shows that if the discount rate, , is lower than one then the optimal F is higher than Fmax.  
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Table 1: French fleet segments

Net present value   1,2  Fmax Fmax 0,8  Fmax

at 5%  SQ 5 10 15 5 10 15 5 10 15

Value of landings 2077 2054 2057 2059 2032 2027 2029 2026 1994 1989
Crew share 699 693 694 695 686 685 686 684 674 673

Gross cash flow 394 391 393 394 383 385 387 381 373 374

Net profit 207 203 205 207 196 197 199 194 186 187

Gross value added 1093 1084 1087 1089 1069 1070 1073 1065 1047 1047
      Source: Table 7.3.1, STEFC, SEC(2007b).  In bold the best scenario in terms of net present value. 

 

 

Table 2: Spanish fleet segments

Net present value   1,2  Fmax Fmax 0,8  Fmax

at 5%  SQ 5 10 15 5 10 15 5 10 15

Value of landings 1823 1783 1779 1778 1759 1735 1731 1757 1696 1677
Crew share 837 818 817 817 807 797 795 806 778 769

Gross cash flow 372 365 366 366 360 356 357 359 345 343

Net profit 181 174 174 175 168 164 165 167 154 151

Gross value added 1210 1183 1183 1184 1167 1153 1152 1165 1123 1112

       Source: Table 7.4.1, STEFC, SEC(2007b).  In bold the best scenario in terms of net present value. 
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Table 3: Economic indicators 

  Status Quo
Maximizing 

Yield (weight)
Maximizing 
Yield (value)

Maximizing 
Value Added 

Maximizing
 Profits 

Reference points 0.25 0.21 0.17 0.14 0.10 

Net present value with 950.            

 - Yield (t) 1136 1144 1133 1095 1024 

     (c.v.)  (3.29)   (3.32)   (3.36)   (3.38)   (3.36) 

 - Yield (million €) 6041 6236 6310 6208 5892 

    (c.v.)  (3.26)   (3.31)   (3.36)   (3.40)   (3.40) 

 - Value Added (million €) 4570 5020 5307 5387 5221 

    (c.v.)  (4.31)   (4.11)   (4.00)   (3.92)   (3.84) 

 - Profits (million €) 2157 3027 3664 4042 4120 

    (c.v.)  (9.13)   (6.81)   (5.79)   (5.22)   (4.86) 

Source: Own calculations. Bold means the best scenario for each economic indicator. 
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Table 4: Implicit cost (2008-2016)
 1,2 Fmax Fmax 0,8 Fmax

 SQ 5 10 15 5 10 15 5 10 15
Net Present Value at 5%   
French fleet segments 1870 1851 1852 1852 1836 1830 1830 1832 1808 1802
Spanish fleet segments 1642 1609 1605 1603 1591 1571 1566 1590 1542 1526

   
SQ=100     
French fleet segments 100,00 98,99 99,04 99,04 98,18 97,86 97,86 97,97 96,68 96,36
Spanish fleet segments 100,00 97,99 97,75 97,62 96,89 95,68 95,37 96,83 93,91 92,94
Source: Own calculations  
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Table 5 Age structured model 

Initial conditions

Age 0 1 2 3 4 5 6 7 8 9 10

N 186213 152458 123457 100213 67409 35551 19674 10206 9147 4078 1819

Population dynamics

Age 0 1 2 3 4 5 6 7 8 9 10

pa 0.00 0.06 0.05 1.15 1.03 1.52 2.09 2.43 2.43 2.43 2.43

!a 0.06 0.13 0.22 0.34 0.60 0.98 1.44 1.83 2.68 2.68 2.68

ｹa 0.00 0.00 0.00 0.23 0.60 0.90 1.00 1.00 1.00 1.00 1.00

Stochastic shocks

Age 0 1 2 3 4 5 6 7 8 9 10

sigmalogN 0.200 0.200 0.166 0.086 0.061 0.063 0.076 0.084 0.084 0.084 0.084

Prices

Age 0 1 2 3 4 5 6 7 8 9 10

euros per kilo 2.36 2.93 3.42 3.85 4.55 5.22 5.81 6.22 6.92 6.92 6.92  

Source. Meeting on Northern Hake Long-Term Management Plans (STECF/SGBRE-07-03), ICES Report-2007 and Spanish 300 fleet. 
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Table 6  Economic indicators for segment 

Economic Indicators for segment S1(2004) S2(2004) S3(2004) F1(2006) F2(2006) F3(2006) F4(2006) F5(2006) F6(2006)
Value of landings 101.914.422 19.172.000 90.970.320 98,1 77,6 67,5 3,9 37,9 18,3
Fuel costs 21.182.889 3.141.640 7.300.860 20,2 15,9 15,4 0,5 3,0 1,7
Other running costs 12.071.121 3.867.258 20.030.640 9,7 7,7 7,1 0,4 3,1 1,5
Depreciation 12.938.904 2.551.888 10.711.260 8,8 7,0 8,1 0,3 2,8 1,4
Interest 879.594 194.053 859.236 1,6 1,3 1,6 0,2 0,6 0,4
Days at the sea 25.389 4.112 21.924 32.300,0 21.500,0 14.500,0 1.100,0 10.300,0 4.500,0
Crew share 40.876.476 7.221.568 44.804.508 32,1 25,4 20,1 1,5 15,0 7,3  

S1= Demersal trawlers (24-40m); S2= Pair demersal trawlers (24-40m); S3= Longliners (24-40m); F1=DTS - Targeting Nephrops, (12-24m); F2= DTS, - Targeting Fish, (12-24m); F3=DTS (24-40m); F4= Hook (24-40m); 
F5= Netters (12-24m) and F6=Netters (24-40m). 

Source: Tables 6.1.7-6.1.9, 6.2.8-6.2.13 and 7-2-3, (SEC 2007b). 

 

Table 7  Costs per day and FU 

data per day S1(2004) S2(2004) S3(2004) F1(2006) F2(2006) F3(2006) F4(2006) F5(2006) F6(2006) mean
fuel per day 834,3 764,0 333,0 625,4 739,5 1062,1 454,5 291,3 377,8 651
other costs per day 475,4 940,5 913,6 300,3 358,1 489,7 363,6 301,0 333,3 483
depreciation/day 509,6 620,6 488,6 272,4 325,6 558,6 272,7 271,8 311,1 403
interest/day 34,6 47,2 39,2 49,5 60,5 110,3 181,8 58,3 88,9 56

Total cost per day 1854,1 2372,3 1774,4 1247,7 1483,7 2220,7 1272,7 922,3 1111,1 1.593
Hake dependency
% value of landings 24% 36% 98% 4% 2% 6% 77% 20% 84% 0,47

Crew share /y 0,40 0,38 0,49 0,33 0,33 0,30 0,38 0,40 0,40 0,37
 S1= Demersal trawlers (24-40m); S2= Pair demersal trawlers (24-40m); S3= Longliners (24-40m); F1=DTS - Targeting Nephrops, (12-24m); F2= DTS, - Targeting Fish, (12-24m); F3=DTS - Targeting 
Nephrops or Fish, (24-40m); F4= Hook (24-40m); F5= Netters (12-24m) and F6=Netters (24-40m). 

Source:Own calculation from Table 6. 


