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Abstract: The yaw angle control of a wind turbine allows maximization of the power 26 
absorbed from the wind and, thus, the increment of the system efficiency. Conventionally, 27 
classical control algorithms have been used for the yaw angle control of wind turbines. 28 
Nevertheless, in recent years advanced control strategies have been designed and 29 
implemented for this purpose. These advanced control strategies are considered to offer 30 
improved features in comparison to classical algorithms. In this paper, an advanced yaw 31 
control strategy based on Reinforcement Learning (RL) is designed and verified in 32 
simulation environment. The proposed RL algorithm considers multivariable states and 33 
actions, as well as the mechanical loads due to the yaw rotation of the wind turbine nacelle 34 
and rotor. Furthermore, a Particle Swarm Optimization (PSO) and Pareto optimal Front 35 
(PoF) based algorithm has been developed in order to find the optimal actions that satisfy 36 
the compromise between the power gain and the mechanical loads due to the yaw rotation. 37 
Maximizing the power generation and minimizing the mechanical loads in the yaw bearings 38 
in an automatic way are the objectives of the proposed RL algorithm. The data of the 39 
matrices Q(s,a) of the RL algorithm are stored as continuous functions in an Artificial 40 
Neural Network (ANN) avoiding any quantification problem. The NREL 5MW reference 41 
wind turbine has been considered for the analysis and real wind data from Salt Lake, Utah, 42 
USA have been used for the validation of the designed yaw control strategy via simulations 43 
with the aeroelastic code FAST.  44 

Keywords: wind turbine control; yaw control; reinforcement learning; artificial neural 45 
network; optimization; Pareto front. 46 
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Acronyms and Symbols 47 
The following acronyms and symbols are used in this manuscript: 48 
RL  Reinforcement Learning    ANN  Artificial Neural Network 49 
PSO  Particle Swarm Optimization   PoF   Pareto optimal Front 50 
PID  Proportional Integral Derivative  PI   Proportional Integral 51 
MLP-BP MultiLayer Perceptron with BackPropagation 52 
FAST  Fatigue, Aerodynamics, Structure and Turbulence 53 
FPGA  Field Programmable Gate Array 54 

 55 

1. Introduction 56 
The promotion of the renewable energies has nowadays emerged as a major necessity in 57 

order to overcome the problems associated with the combustion of conventional fossil fuels. 58 
In this context, as presented in the work Nehrir et al. 1, extensive research has been conducted 59 
with the objective of discovering alternative sustainable energy resources. Additionally, 60 
many efforts are directed to the technological development and efficiency enhancement of 61 
the existing renewable energy generation systems 2-4. 62 

One of the fields on the focus is the improvement of the control system of the sustainable 63 
energy generation systems. The design of an adequate control strategy enables maximization 64 
of the power generated by the system, and thus, its efficiency. As introduced by Njiri et al. 5, 65 
the principal objectives of the control system implemented in a wind turbine are to guarantee 66 
the safety of the workers and the turbine and to maximize its power output. 67 

From a control design perspective, conventionally algorithms based on classical PIDs 68 
(Proportional, Integral, Derivative) or PIDs with slight variations have been implemented in 69 
industrial wind turbines. In the work of Habibi et al. 6 an adaptive PID strategy is designed 70 
for the output power regulation of a wind turbine. A Fuzzy logic based PI (Proportional 71 
Integral) controller to optimize the power generation of a wind turbine is presented by 72 
Aissaoui et al. 7. 73 

Nowadays, with the objective of providing control systems of wind turbines with 74 
additional features, advanced control strategies are being introduced. The application of 75 
different advanced control strategies to the operation and grid connection of wind turbines 76 
has been found in the literature. Kim 8 presents a data driven robust H∞ controller which is 77 
aimed to improve the operation of a wind turbine. A non-linear control strategy for variable 78 
speed wind turbines based on Fuzzy Logic is proposed in the work of Liu et al. 9. 79 
Jafarnejadsani et al. 10 present in their work a gain scheduled optimal control of a wind 80 
turbine. An advanced control strategy for the generator of a wind turbine based on Sliding 81 
Mode Control is introduced by Merabet et al. 11 and Evangelista et al. 12. A novel 82 
multifrequency power oscillations mitigation algorithms to improve the grid connection of 83 
the wind turbine is proposed in the work of Moriano et al. 13. 84 

Regarding the yaw operation of a wind turbine, different studies such as the one 85 
presented by Gebraad et al. 14, have been introduced in the literature to optimize the power 86 
production of a wind farm by calculation of the optimal yaw angle for individual wind 87 
turbines. Munters et al. 15 present a gradient-descent based algorithm for the calculation of 88 
this optimal yaw angle. Dar et al. 16 present an optimization technique for the yaw angle of 89 
individual wind turbines in a wind farm through a dynamic programming formulation. 90 

Additionally, some advanced control strategies applied to enhance the operation of the 91 
yaw system of individual wind turbines have been found in the literature. Song et al. 17 present 92 
two variations of a predictive control strategy applied to the yaw operation of the wind 93 
turbine. The use of estimators to anticipate the wind direction is shown to improve the 94 
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performance of the classical yaw control methods. Saenz-Aguirre et al. 18 present an Artificial 95 
Neural Network (ANN) based Reinforcement Learning (RL) control strategy for the yaw 96 
control of a wind turbine. According to the work of Saenz-Aguirre et al. 18, a RL based yaw 97 
control algorithm shows important advantages in comparison to the conventional PID based 98 
yaw control methods 19,20, especially in form of lack of control parameters tuning necessity 99 
and a fully automatic performance, due to the self-learning process. 100 

The two principal RL algorithms, SARSA 21 and Q-Learning 22, are introduced in the 101 
work of Liu et al. 23. The RL algorithms are based on the knowledge acquired by a system 102 
via its interaction with the environment. For that purposed, a Q : S x A  R function is defined 103 
by the RL algorithm. In this function, S refers to the range of considered states of the system, 104 
A is the available set of different actions that can be taken in a given state and R refers to the 105 
reward obtained by the system if the action a is taken in a state s. The definition of this matrix 106 
Q is the main difference between the RL algorithms SARSA and Q-Learning. While Q-107 
Learning considers quantified states and actions in a quantified matrix Q(s,a), SARSA 108 
considers the matrix Q as a continuous function Q(s(t),a(t)) calculated from an initial time to 109 
an horizon time value. The main characteristic of both RL algorithms is the fully automatic 110 
performance that is achieved after a training process covering the whole range of states and 111 
actions considered for the system.  112 

The use of ANNs have also been introduced in the field of the renewable energies, 113 
especially with the objective of obtaining data driven models. Lopez-Guede et al. 24 present 114 
an ANN based modelling technique of photovoltaic modules. A modelling of the wind power 115 
output, the vibration of the drive train and the vibration of the tower of a wind turbine using 116 
ANNs is introduced in the work of Kusiak et al. 25. Although the use of ANNs as controllers 117 
is not generalized, some examples of ANNs in the control system of a wind turbine have been 118 
found in the literature. Shi et al. 26 present in their work a neural network based power 119 
coefficient compensation to optimize the power production of a wind turbine. Li et al. 27 120 
introduce the process of the digital implementation of an ANN in a Field Programmable Gate 121 
Array (FPGA) to be implemented in a wind turbine and optimize its operation. 122 

In this paper, an improved version of the ANN based RL yaw control strategy introduced 123 
by Saenz-Aguirre et al. 18 is developed. The performance enhancement of the ANN based RL 124 
yaw control strategy is aimed to improve the operation of the yaw control system for wind 125 
speed values over the rated value and to reduce the mechanical moments in the yaw system 126 
bearings. To that end, the error and action variables of the RL algorithm have been converted 127 
into multivariate variables and the mechanical loads due to the correction of the yaw angle 128 
during operation of the wind turbine have been considered as a reward value and incorporated 129 
to the calculation of the matrices Q(s,a). Another innovative element introduced in the ANN 130 
based RL algorithms presented in this paper is the implementation of a Particle Swarm 131 
Optimization (PSO) algorithm 28,29 and a Pareto optimal Front (PoF) 30,31 based optimization 132 
algorithm in order to calculate the optimal actions that maximize the power gain as a result 133 
of the yaw correction and minimize the mechanical loads induced in the yaw system bearings 134 
due to it.  135 

A MultiLayer Perceptron with BackPropagation (MLP-BP) neural network is designed 136 
in this paper to store the matrices Q(s,a) correspondent to the RL algorithm as continuous 137 
functions and avoid quantification problems. Furthermore, the use of a MLP-BP is expected 138 
to erase the needs for management of large amounts of data during operation of the wind 139 
turbine. The NREL 5MW reference wind turbine, introduced by Jonkman et al. 32, has been 140 
considered for the analysis presented in this paper. The simulations for the validation of the 141 
designed ANN based RL yaw control strategy have been carried out with the aeroelastic code 142 
FAST 33, widely-used for the analysis of the performance and mechanical loads during 143 
operation of wind turbines. As shown in the works of Rahimi et al. 34-36, the skewed wake 144 
model implemented in the aeroelastic code is observed to affect the calculation of the 145 
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mechanical loads in the wind turbine in cases of yaw misalignment. All the simulation results 146 
presented in this paper are based on the Pitt and Peters37 skewed wake model. Real wind data 147 
from Salt Lake, Utah, USA have been introduced as input of the aeroelastic code FAST 33 148 
and used for the validation process. 149 

In comparison to conventional control algorithms, the ANN based RL yaw control 150 
strategy presented in this paper is considered to offer the same advantages as the strategy 151 
presented in the work of Saenz-Aguirre et al. 18, i.e., online learning capability (during 152 
operation of the wind turbine), fully autonomous performance and lack of design of a 153 
controller. However, the additional features introduced to the strategy are supposed to 154 
improve the performance of the system, especially in form of reduction of the mechanical 155 
loads in the yaw system components, which in absence of an adequate control strategy could 156 
become too high and endanger the safe operation of the wind turbine. 157 

The paper is structured as follows: The main characteristics of the NREL 5MW wind 158 
turbine and the method for the calculation of the power generated by the wind turbine and 159 
the mechanical loads in the yaw bearing are presented in Section 2. In Section 3 the structure 160 
of the ANN based RL yaw control algorithm proposed in this paper is given. The synthesis 161 
and design process of the ANN based RL yaw control strategy is shown in Section 4. Finally, 162 
Sections 5 and 6 correspond to the validation results and the conclusions, respectively. 163 

2. Wind Turbine Characterization 164 
The NREL 5MW wind turbine, introduced by Jonkman et al. 32 and considered as the 165 

reference wind turbine for many offshore applications, has been adopted for the simulations 166 
presented in this document. The main features of the NREL 5MW wind turbine are presented 167 
in Table 1. 168 

The yaw control strategy presented in this document is based on the selection of the 169 
optimal control action that maximizes the power generated by the wind turbine while 170 
minimizing the mechanical moments induced in the bearings of the yaw system. 171 
Consequently, for the development of the proposed yaw control strategy the characterization 172 
of the generated power and the z axis mechanical moment in the yaw bearings for different 173 
operating points of the wind turbine is of great importance. The mechanical moment with 174 
respect to the z axis has been found to be the most critical load in cases of yaw rotations. 175 

As it can be observed in Figure 1 (a), the power generated by the wind turbine is fully 176 
defined and can be easily calculated with the power curve of the wind turbine and setting the 177 
wind speed and the yaw angle (misalignment angle between the incident wind and the 178 
orientation of the wind turbine rotor) as inputs of the power curve. Hence, the power curve 179 
of the NREL 5MW wind turbine has been stored in a 2-D Look-up Table for further access 180 
during the training process of the RL algorithm. 181 

Regarding the mechanical moment with respect to the z-axis induced in the yaw 182 
bearings, more than two variables are necessary to estimate its value. Figure 1 (b) shows the 183 
variables involved in an accurate estimation of this magnitude. 184 

As it can be observed in Figure 1 (b), the z axis mechanical moment in the yaw bearings 185 
has been approximated to be a function of some external factors, such as the wind speed and 186 
the yaw angle, and the control action taken by the yaw control system of the wind turbine 187 
(YawRateK [-] refers to the yaw rotation speed factor and YawToMove [deg] refers to the 188 
duration of the yaw rotation). The larger the values of the YawRateK [-] and the YawToMove 189 
[deg] parameters are, the higher the z axis mechanical moment induced in the yaw bearings 190 
is. The mechanical moment in the yaw bearings is also known to be affected by other external 191 
factors such as the skewed wake model employed in the aeroelastic simulation 34-36. 192 

Since the estimation of the z axis mechanical moment in the yaw bearings has been 193 
observed to depend on the control action of the yaw control system, several simulations 194 
covering all possible scenarios considered in this analysis have been performed with the 195 
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aeroelastic code FAST. As it is shown in Figure 2, wind direction variations of -90:10:90 deg 196 
with a constant wind speed value have been considered. These scenarios has been repeated 197 
for constant winds from 3:2:25 m/s. Finally, each wind scenario has been simulated for the 198 
whole range of the control action YawRateK=0:0.1:1 considered in the analysis and the 199 
values of the sum of the z axis mechanical moment induced in the yaw bearings for each 200 
action YawRateK [-] and YawToMove [deg] has been calculated. 201 

The results of the simulations have been stored in a 4-D Look-up Table for further access 202 
during the training process of the RL algorithm. 203 

3. Structure of the proposed Yaw Control Strategy 204 
The yaw control strategy introduced in this paper is based on the ANN based RL yaw 205 

control strategy presented in the work of Saenz-Aguirre et al. 18 and it is intended to improve 206 
its performance by the introduction of additional features. 207 

The yaw control strategy introduced in this paper considers new state and actions that 208 
define the operation of the wind turbine more accurately. Furthermore, the mechanical 209 
moment with respect to the z axis induced in the yaw bearings as a result of the yaw rotation 210 
has been considered as a reward variable of the RL algorithm. Finally, a PSO and PoF based 211 
optimization algorithm has been designed to respond to the necessity of compromise between 212 
the power increment with a severe yaw control action and the mechanical costs associated to 213 
it.  214 

This section is divided in 3 subsections: An extended explanation of the ANN based RL 215 
algorithm is presented in Subsections 3.1. The introduction of the PSO and PoF based 216 
optimization algorithm in the yaw control system of a wind turbine is given in Subsection 217 
3.2. Finally, Subsection 3.3 presents the Decision Making algorithm associated to the 218 
selection of one of the possible optimal actions presented by the PoF. 219 

3.1 Artificial Neural Network based Reinforcement Learning algorithm 220 
A multivariate RL algorithm (two states, two actions and two immediate reward 221 

variables are considered) is proposed in this document. The objective of considering an 222 
extended RL algorithm, in comparison to the simple RL algorithm considered in the work 223 
Saenz-Aguirre et al. 18, is to provide an improved characterization of the states, actions and 224 
rewards of the RL algorithm associated to the yaw control system of the wind turbine. The 225 
following state, action and reward variables have been considered in the RL algorithm 226 
proposed in this paper. 227 

- Two states s are considered: 228 
o YawAngle [deg]: Represents the misalignment angle between the orientation of 229 

the rotor of the wind turbine and the direction of the incoming wind, as shown in 230 
Eq. (1). 231 

𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦 =   𝜃𝜃𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤 −  𝜃𝜃𝑤𝑤𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛        (1) 232 

o WindSpeed [m/s]: Determines the operating point of the wind turbine. As a result 233 
of the control system implemented in wind turbines, the power loss due to yaw 234 
misalignments is not equal for every wind speed value. The consideration of the 235 
wind speed as a state enables the particularization of the effect of each yaw angle 236 
to a determined operating point of the wind turbine.  237 

- Two actions a are considered: 238 
o YawRateK [-]: Represents the gain associated to the yaw rotational speed of the 239 

wind turbine, as shown in Eq. (2). 240 
𝛺𝛺𝑦𝑦𝑦𝑦𝑦𝑦 =  𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 ·  𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦         (2) 241 
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o YawToMove [deg]: Limits the rotation of the rotor of the wind turbine to a certain 242 
value, as described in Eq. (3). 243 

∆𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦 ∈ [−𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌,𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌]     (3) 244 

- Two immediate reward variables r are considered: 245 
o PowerGain [%]: Indicates the power gain the wind turbine could achieve by 246 

performing a concrete action (YawRateK [-] and YawToMove [deg]) in a defined 247 
state (YawAngle [deg] and WindSpeed [m/s]). The expression to calculate 248 
PowerGain [%] is given in Eq. (4). 249 

𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌𝑃𝑃𝑃𝑃𝑌𝑌𝑃𝑃𝑃𝑃 =   𝑃𝑃_𝑛𝑛𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛− 𝑃𝑃_𝑤𝑤𝑐𝑐_𝑛𝑛𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛
𝑃𝑃_𝑤𝑤𝑐𝑐_𝑤𝑤𝑛𝑛𝑑𝑑𝑤𝑤𝑦𝑦𝑐𝑐𝑤𝑤𝑐𝑐𝑤𝑤

· 100      (4) 250 

where, as it is described in the work of Saenz-Aguirre et al. 18, P_control [W] refers to 251 
the power generation of the wind turbine when the yaw control system is activated, 252 
P_no_control [W] refers to the power generation of the wind turbine when the yaw control 253 
is not activated and P_no_deviation [W] refers to the power generation of the wind turbine 254 
if the yaw angle was zero. 255 

o YawMoment [N·m]: Indicates the value of the sum of the mechanical moment 256 
with respect to the z axis induced in the yaw system bearing by performing a 257 
concrete action (YawRateK [-] and YawToMove [deg]) in a defined state (Yaw 258 
angle [deg] and Wind speed [m/s]). 259 

The mathematical procedure to calculate the function Q(s,a) corresponding to both 260 
reward variables is given by an exponential moving average from the instant in which the 261 
action is taken to a predefined time horizon, in this case set to T=60 s., as described in Eq. 262 
(5). Since no difference of importance between the responses of the system until the end of 263 
the time horizon is considered, the discount factor 𝛾𝛾 is set to 1. 264 

𝑄𝑄(𝑠𝑠,𝑌𝑌) = ∑ 𝑃𝑃𝑐𝑐+𝑤𝑤𝑤𝑤=𝑇𝑇
𝑤𝑤=0 · 𝛾𝛾𝑤𝑤        (5) 265 

The expressions of the matrix Q(s,a) for each one of the considered reward variables are 266 
presented in Eq. (6) and Eq. (7) respectively. 267 

𝑄𝑄_𝑃𝑃(𝑠𝑠,𝑌𝑌) =
1
𝑇𝑇 ∫ (𝑃𝑃_𝑛𝑛𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑐𝑐) − 𝑃𝑃_𝑤𝑤𝑐𝑐_𝑛𝑛𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑐𝑐))𝑡𝑡+𝑇𝑇

𝑡𝑡 ·𝑤𝑤𝑐𝑐 

 1𝑇𝑇 ∫ 𝑃𝑃_𝑤𝑤𝑐𝑐_𝑤𝑤𝑛𝑛𝑑𝑑𝑤𝑤𝑦𝑦𝑐𝑐𝑤𝑤𝑐𝑐𝑤𝑤·𝑤𝑤𝑐𝑐𝑡𝑡+𝑇𝑇
𝑡𝑡

· 100     [%]   (6) 268 

𝑄𝑄_𝑌𝑌(𝑠𝑠,𝑌𝑌) =  ∫ 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑃𝑃𝑌𝑌 (𝑌𝑌)𝑐𝑐+𝑇𝑇
𝑐𝑐 · 𝑑𝑑𝑌𝑌        [𝑁𝑁 · 𝑌𝑌]    (7) 269 

Once the matrices Q_P(s,a) and Q_M(s,a) have been calculated, they are stored in an 270 
ANN with the objective of avoiding quantification problems and eliminating the need of 271 
management of big amounts of data during operation of the wind turbine. In addition, the use 272 
of an ANN to store the matrices Q_P(s,a) and Q_M(s,a) as continuous functions 273 
Q_P(s(t),a(t)) and Q_M(s(t),a(t)) allows simple estimation of the non-simulated scenarios. 274 
Finally, due to the use of an ANN, the refreshment policy of the RL algorithm is incorporated 275 
in the training process of the ANN. The inputs and outputs of the designed ANN are presented 276 
in Figure 3. 277 

If the effect of the state variables s and the actions a on both Q_P(s(t),a(t)) and 278 
Q_M(s(t),a(t)) matrices is studied in detail, a necessity for compromise in the selection of the 279 
optimal action can be observed. On the one hand, the bigger the value of the YawRateK [-] 280 
and YawToMove [deg] is, the larger the power gain of the wind turbine will be. Nevertheless, 281 
the higher the value of the YawRateK [-] and YawToMove [deg] is, the larger the z axis 282 
mechanical moment in the yaw bearings will be. 283 
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Due to the existence of two Q(s(t),a(t)) functions, the output values of which are 284 
subjected to a compromise, a PSO and PoF based optimization algorithm is proposed to 285 
calculate the optimal set of solutions for the yaw control system of the wind turbine. 286 

3.2 Particle Swarm Optimization and Pareto optimal Front 287 
The objective of the PSO and PoF based optimization algorithm is to give response to 288 

the compromise situation explained in Subsection 3.1 and to calculate the optimal set of 289 
combinations of the RL actions YawRateK [-] and YawToMove [deg]. A maximum power 290 
generated by the wind turbine and a minimum z axis mechanical moment in the yaw bearing 291 
are desired. 292 

According to Ho et al. 28, one characteristic aspect of the PSO algorithm is that it works 293 
with a potential group of solutions instead of a unique solution. Moreover, instead of 294 
evolutionary aspects to generate new generations of populations, in PSO there is a parameter 295 
space in which the particles move according to their own experience and the experience of 296 
the other particles. As a result, each particle moves toward a weighted average of its own 297 
maximum and the maximum of the rest of the particles. Nevertheless, as introduced in the 298 
work of Ehrgott et al. 38, in a multiobjective optimization problem there are solutions in which 299 
one of the optimization objectives is not fulfilled. This set of solutions is called non-300 
dominated and form the PoF.  301 

In the analysis presented in this document, the states of the system are defined as 302 
YawAngle [deg] and WindSpeed [m/s]. Hence, for a given known state of the system, the 303 
PSO and PoF based algorithm should find the set of optimal actions (YawRateK [-] and 304 
YawToMove [deg]) that maximize the power generated by the wind turbine and minimize 305 
the z axis mechanical load in the yaw bearing. As it was previously explained, an ANN has 306 
been trained to store the data of both matrices Q_P(s,a) and Q_M(s,a) as continuous functions 307 
Q_P(s(t),a(t)) and Q_M(s(t),a(t)). Hence, the PSO and PoF based optimization algorithm will 308 
access the ANN to optimize its output values. At the end of the optimization process, a PoF 309 
with a set of 20 optimal solutions for both Q_P(s(t),a(t)) and Q_M(s(t),a(t)) functions is 310 
obtained. Each solution correspond to the optimal solution of a 5% wide window of the whole 311 
range considered for the output of the Q_P(s(t),a(t)) function, i.e. [0, 100] %. 312 

A pseudocode with the principal aspects of the PSO and PoF based optimization 313 
algorithm is presented in Figure 4. 314 

3.3 Decision Making Algorithm 315 
After calculation of the PoF, a Decision Making algorithm is designed to select one 316 

action (YawRateK [-] and YawToMove [deg]) from the set of optimal actions proposed by 317 
the PSO-PoF algorithm for a given known state of the system (YawAngle [deg] and 318 
WindSpeed [m/s]). 319 

 320 
The Decision Making algorithm proposed in this paper is based on two concepts: 321 
- All the solutions, in which the output of the function Q_M(s(t),a(t)) is bigger than a 322 

predefined upper threshold value, are discarded. 323 
- From the rest of the solutions, the one with the biggest output value of the function 324 

Q_P(s(t),a(t)) is selected. 325 

4 Design of the proposed Yaw Control Strategy 326 
The design process of the ANN based RL yaw control strategy of the wind turbine has 327 

been carried out with a simplified model of the yaw control system, see Figure 5. This 328 
simplified model is very similar to the model introduced in the work of Saenz-Aguirre et al. 329 
18. However, a limiter to include the actuation of the RL action YawToMove [deg] has been 330 
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introduced. The successful completion of the design process with the simplified model would 331 
prove its validity and enables its use for the online training of the system during operation of 332 
the wind turbine. 333 

Another important aspect of the training process of the RL algorithm is that the operation 334 
of the yaw control system of the wind turbine is prevented to actuate when the possible power 335 
gain as a result of the yaw rotation is not significant. To that purpose, a parameter named 336 
DeserveMove [%] has been created for the training process. If the output of the function 337 
Q_P(s(t),a(t)) is smaller than the parameter DeserveMove [%], the value of the corresponding 338 
RL actions YawRateK [-] and YawToMove [deg] are directly set to 0. 339 

The states YawAngle [deg] and WindSpeed [m/s] of the RL algorithm are based on 60 s 340 
filtered measurements of the wind direction and wind speed, respectively. The time constant 341 
of the filter is related to the time horizon selected for the RL algorithm, which is an adaptable 342 
parameter subject to any kind of restriction associated to the yaw system of the wind turbine 343 
or its control execution management. The objective of the filtering step is to reduce the 344 
possible affection of sudden and short-term wind gusts or failed measurements on the RL 345 
algorithm. 346 

As it was explained in Section 2 and shown in Figure 2, simulations with constant wind 347 
values and the whole range of considered yaw angle values have been performed for the 348 
training process of the RL algorithm. Furthermore, these simulations are repeated for the 349 
whole range of values of the control actions considered in the analysis. The objective is to 350 
train the system with cases correspondent to the whole operating range of the wind turbine. 351 

In this case, the training process of the RL algorithm has been performed offline, i.e., not 352 
during operation of the wind turbine, and considering all possible winds and yaw control 353 
actions, so an adequate response of the system for the whole range of possible scenarios is 354 
achieved. Furthermore, an online training process linked to the actual operational conditions 355 
of the wind turbine could be implemented to keep the system learning during its operation. 356 

Similarly to how it is done in the work of Saenz-Aguirre et al. 18, once the training 357 
process is finished and the matrices Q_P(s,a) and Q_M(s,a) have been obtained, a MultiLayer 358 
Perceptron with BackPropagation neural network is trained to store the data correspondent 359 
to the matrices as a continuous functions Q_P(s(t),a(t)) and Q_M(s(t),a(t). 360 

The list of the parameters considered for the design process of the ANN based RL yaw 361 
control is presented in Table 2. 362 

The training process of the MLP-BP has been completed with a correlation coefficient 363 
of 0.9999 and a Mean Squared Error (MSE) value of 1.62·10-6. Both values indicate that the 364 
training process of the MLP-BP has been successful and the neural network is accurate 365 
enough to adequately store the data of the matrices Q_P(s,a) and Q_M(s,a). 366 

In order to prove the correct training process of the RL algorithm a comparison between 367 
the output values of the matrices Q_P(s,a) and Q_M(s,a) and the functions Q_P(s(t),a(t)) and 368 
Q_M(s(t),a(t) for three different set of RL actions (YawRateK = 0.5 and YawToMove =70 369 
deg, YawRateK = 0.5 and YawToMove = 30 deg and YawRateK = 0.1 and YawToMove 370 
=70 deg) is presented in Figure 6 and Figure 7. For each one of the three RL action cases two 371 
different WindSpeed [m/s] states are defined: WindSpeed = 11 m/s and WindSpeed = 21 m/s. 372 

As it can be observed in Figure 6, the value of the power gain that can be achieved with 373 
the yaw control depends on 4 different factors. First, as a result of the control system 374 
implemented in the wind turbines, the value of the power gain depends on the wind speed 375 
value. As it can be seen in Figure 6 (a), the amount of power that can be gained in a state 376 
YawAngle = 50 deg and WindSpeed = 11 m/s is around 60%. However, in Figure 6 (b), in 377 
case of YawAngle = 50 deg and WindSpeed = 21 m/s the possible power gain is 0%. This is 378 
due to the fact that despite the misalignment of 50 deg, the wind turbine operates in the rated 379 
power zone and there is no loss of power.  380 
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The YawAngle [deg] also affects the power gain that can be achieved with the yaw 381 
control, since the bigger the YawAngle [deg] is, the bigger the power loss is, unless the 382 
YawAngle [deg] value is not large enough to make the wind turbine operate outside the rated 383 
power zone. Finally, the two other factors that influence the power gain are the RL actions 384 
YawRateK [-] and YawToMove [deg]. As it can be seen in Figure 6 (a), if the YawToMove 385 
[deg] action limits the rotation capability of the wind turbine, the power gain that can be 386 
extracted in high YawAngle [deg] values is severely decreased The effect of the YawRateK 387 
[-] is as well clearly observable in Figure 6 (a), where the power gain achieved by the wind 388 
turbine has been reduced with the reduction of the YawRateK [-]. 389 

As it can be observed in Figure 7, the value of the z axis mechanical moment in the yaw 390 
bearing does not vary significantly with the WindSpeed [m/s] but it does with the YawAngle 391 
[deg] state and the YawRateK [-] and the YawToMove [deg] actions. The larger the value of 392 
the YawAngle [deg], the YawRateK [-] and the YawToMove [deg] are, the higher the value 393 
of the z axis mechanical moment in the yaw bearing is. 394 

Both Figure 6 and Figure 7 shown that the training process of the MLP-BP neural 395 
network has been successful since there is a complete correspondence between the values of 396 
the matrices Q_P(s,a) and Q_M(s,a) and the values of the functions Q_P(s(t),a(t)) and 397 
Q_M(s(t),a(t)) modelled by the MLP-BP. 398 

Once the training process of the RL algorithm is finished, the PSO and PoF based 399 
optimization algorithm must be designed. The objective of the PSO and PoF based algorithm 400 
is to find the set of optimal actions (YawRateK [-] and YawToMove [deg]) that maximize 401 
the power generated by the wind turbine and minimize the z axis mechanical moment in the 402 
yaw bearing for a given known state of the system (YawAngle [deg] and WindSpeed [m/s]). 403 

A list of the parameters considered for the design process of the PSO and PoF based 404 
optimization algorithm is presented in Table 3. 405 

To ensure the correct performance of the designed PSO and PoF optimization algorithm, 406 
the intermediate solutions of the algorithm for two different states of the RL algorithm are 407 
presented in Figure 8. The RL states are defined as YawAngle = 90 deg and WindSpeed =11 408 
m/s in Figure 8 (a), and YawAngle = 30 deg and WindSpeed =11 m/s in Figure 8 (b).  409 

Furthermore, the output result of the PSO and PoF based optimization algorithm for both 410 
cases is presented in Figure 9. 411 

As it can be observed in Figure 8 and Figure 9, the PoFs represented in Figure 9 412 
correspond to the highlighted zone of the Figure 8, which indicates that the performance of 413 
the optimization algorithm is correct. If the PoF is analyzed in detail it is to be observed the 414 
compromise between the power gain of the system and the z axis mechanical moment in the 415 
yaw bearings. In the case of YawAngle=30 deg in Figure 8 (b) the maximum output of the 416 
function Q_P(s(t),a(t)) is seen to be smaller than 20%, which is concordance with the results 417 
obtained in Figure 6 (a). 418 

Finally, the parameters defined for the Decision Making process are presented in Table 419 
4. 420 

The selection of the optimal solution with respect to the Decision Making process 421 
parameter defined in Table 4 is shown in Figure 10. 422 

The ANN based RL yaw control strategy introduced in this document has been verified 423 
with the aeroelastic code FAST using with real wind speed data 39 from a meteorological 424 
station located in Salt Lake, Utah, USA. The location of the meteorological station is defined 425 
with the following geographical coordinates [-112.0621˚, 40.5938˚] and it is formed by seven 426 
measuring stations containing ultrasonic anemometers capable of recording data at sampling 427 
rates higher than 1 Hz. The measurements have been afterwards averaged to 1 second rates. 428 
The collection of the data was carried out from November 10, 2010 to February 2, 2011. 429 

The meteorological station is situated at a height of 10 m and the data have been 430 
transformed to the hub height of the NREL 5MW wind turbine, i.e., 90 m. Due to the adequate 431 
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location of the meteorological station in a flat terrain, without obstacles for the wind, the 432 
logarithmic law have been used for this transformation. 433 

The use of real wind speed data in the FAST simulation environment is important since 434 
it allows a detailed analysis of the performance of the designed control strategy in a realistic 435 
scenario. In fact, the data collected from this meteorological station has been used in several 436 
publications 40,41. 437 

A detailed analysis of the available wind data has been conducted and 6 different cases 438 
with a variety of stable wind conditions have been identified and isolated to be used in the 439 
study of the performance of the proposed yaw control system. One example case where the 440 
wind conditions remain rather stable during a time span of 10000 s is represented in Figure 441 
11. 442 

Once the wind cases have been identified, the operation of the proposed ANN based RL 443 
yaw control system is verified with the aeroelastic code FAST. First, the 60 s filtered wind 444 
direction and wind speed values correspond to the states YawAngle [deg] and WindSpeed 445 
[m/s] of the RL algorithm. When the states are known, the PSO-PoF optimization algorithm 446 
is executed and the optimal front of Pareto is obtained. Once this is obtained, one of the 447 
solutions is selected with the Decision Making algorithm, and the optimal actions YawRateK 448 
[-] and YawToMove [deg] are calculated. Finally, at the end of the simulation the power gain 449 
and the z axis mechanical moment in the yaw bearing are analyzed. The values of the states 450 
and actions of the RL algorithm and the power gain and the z axis mechanical moment for 451 
the considered 6 scenarios are listed in Table 5. 452 

As it can be observed in Table 5, the power increment that can be achieved with the yaw 453 
control is dependent on both, the YawAngle [deg] and the WindSpeed [m/s]. For instance, 454 
the power increment in case 6 is larger than in case 3, being the value of the WindSpeed [m/s] 455 
smaller. However, a similar YawAngle [deg] in case 4 and case 5 does not cause a larger 456 
power increment. This is due to the fact that the WindSpeed [m/s] is high enough to keep the 457 
wind turbine operating at the rated power zone, so the effect of the yaw misalignment is not 458 
significant. Regarding the z axis mechanical moment in the yaw bearings, it is to be noted 459 
that its value is above all dependent on the duration of the yaw movement, which is related 460 
to the YawAngle [deg] state and the YawToMove [deg] action. In this way, it is to be 461 
observed that the biggest values of the z axis mechanical moment correspond to the longest 462 
yaw rotations. 463 

The results obtained with the ANN based RL yaw control algorithm presented is this 464 
document have also been compared to the results obtained with yaw control algorithm in the 465 
work of Saenz-Aguirre et al. 18 for the same input wind conditions. The objective is to 466 
characterize the improvements achieved with the enhancement of the control strategy. To 467 
that end, the values of the action YawRateK [-] of the RL algorithm that would be obtained 468 
with the yaw control algorithm in the work of Saenz-Aguirre et al. 18 are listed in Table 6. 469 

In Table 6 it is to be seen that the values of the action YawRateK [-] are considerably 470 
higher than in Table 5, which should translate in higher z axis mechanical moments in the 471 
yaw bearings. The RL action YawToMove [deg] is not included in Table 6 because this action 472 
was not considered in the work of Saenz-Aguirre et al. 18, so it is considered to have a value 473 
of 90 deg. 474 

The values of the power gain and the z axis mechanical moment in the yaw bearings for 475 
each one of the analyzed yaw control strategies and a comparison between these values are 476 
presented in Table 7. The columns 2 and 3 correspond to the results obtained for the ANN 477 
based RL yaw control strategy presented in this paper. The columns 4 and 5 correspond to 478 
the results obtained for the yaw control strategy presented by Saenz-Aguirre et al. 18. 479 

The results presented in Table 7, show a considerable performance improvement of the 480 
ANN based RL yaw control strategy presented in this document with respect to the yaw 481 
control algorithm presented in the work of Saenz-Aguirre et al. 18. As it can be seen in the 482 
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power increment and z axis mechanical moment comparison, the values of the mechanical 483 
moments are drastically reduced, while the value of the power gain has been kept similar. 484 
The reason for that is that the designed PSO-PoF algorithm calculates the best actions to limit 485 
the z axis mechanical moment in the yaw bearings and maximize the power gain. The absence 486 
of such an algorithm in the strategy in the work of Saenz-Aguirre et al. 18 causes the system 487 
to operate with the only objective of maximizing the power and not caring about the 488 
mechanical loads. 489 

Especially remarkable is the performance of the proposed RL based yaw control 490 
algorithm in the cases 4 and 5 presented in Table 7. In these cases, in which the wind turbine 491 
is operating in its rated power zone, no power gain could be achieved with the yaw correction, 492 
but high mechanical loads will occur as a result of it. With the proposed yaw control 493 
algorithm significant moment reductions with no power loss are achieved in these both cases, 494 
which is translated in a longer lifetime of the wind turbine. 495 

5 Conclusions 496 
An enhanced performance of the ANN based RL yaw control strategy is presented and 497 

verified in this document. The proposed yaw control algorithm has been observed to 498 
drastically reduce the mechanical moments in the components of the yaw system while 499 
keeping similar values of the power gain in comparison to similar strategies previously found 500 
in the literature. 501 

The extension of the RL algorithm by considering new states and actions and the 502 
execution of the PSO-PoF optimization algorithm allow the calculation of a set of optimal 503 
solutions from which a desired one can be selected in every case. 504 

In comparison to conventional yaw control strategies, the ANN based RL yaw control 505 
strategy introduced in this document is designed to achieve a completely automatic operation 506 
of the yaw system after the training process of the RL algorithm. The off-line training 507 
proposed in this paper, based on data obtained from simulations in FAST, tries to cover all 508 
the possible scenarios in the operation of the wind turbine. However, one important aspect of 509 
the ANN based RL yaw control strategy presented in this document is that the training 510 
process of the RL algorithm could be performed on-line during the operation of the wind 511 
turbine and feed the system with real-time data.  512 

Moreover, the yaw control strategy introduced in this document eliminates the need for 513 
tuning the controller of the yaw control system of the wind turbine and, hence, erases the risk 514 
of an inadequate tuning and possible damages to the wind turbine components. Furthermore, 515 
the possibility to select one optimal solution from a set of optimal solutions enables the wind 516 
turbine operator to adequate the operation of the wind turbine to its condition or the need of 517 
energy production. 518 

Finally, the validation of the proposed ANN based RL yaw control strategy with the 519 
aeroelastic code FAST and using real wind speed data gives certainty about its correct 520 
operation and its applicability in real wind generation systems. 521 
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 653 

Table 1. Principal characteristics of the NREL 5MW reference wind turbine 654 

Turbine model NREL 5MW 
Skewed wake correction Pitt and Peters 

Rated power 5 MW 
Rotor diameter 126 m 

Hub height 90 m 
Cut-in wind speed 3 m/s 
Rated wind speed 11.4 m/s 

Cut-out wind speed 25 m/s 

 655 

Table 2. Parameter definition for the ANN based RL yaw control training process 656 

Parameter Value 
Wind Speed [m/s] 3:2:25 
DeserveMove [%] 5 

YawRateK [-] 0:0.1:1 
YawToMove [deg] 0:10:90 

ANN Input neurons [-] 4 
ANN Hidden Neurons [-] [75 25] 
ANN Output neurons [-] 2 
ANN Learning Rate [-] 1·10-50 

Training Ratio [%] 90 
Validation Ratio [%] 5 

Test Ratio [%] 5 

 657 

Table 3. Parameters definition for the ANN based RL yaw control PSO and PoF optimization 658 
algorithm 659 

Parameter Symbol Value 
Population [-] P 1000 
Iterations [-] n 30 

phi_1_max [-] phi_1_max 1.5 
phi_2_max [-] phi_2_max 0.1 
Inertia_max [-] I_max 0.5 

 660 

Table 4. Parameters definition for the ANN based RL yaw control. Decision Making process. 661 

Parameter Wind Speed 

Maximum Mechanical Moment [N·m] 2.5·105 

 662 

 663 
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 664 
Table 5. Validation results of the proposed ANN based RL yaw control strategy 665 

Case YawAngle 
[deg] 

WindSpeed 
[m/s] 

YawRateK 
[-] 

YawToMove 
[deg] 

Generated 
power gain 

[%] 

z axis yaw 
mechanical 

moment 
[N·m] 

Case 
1 72.5 9.1 0.1368 68.87 42.64 3.657·105 

Case 
2 38.8 10.73 0.0521 65.8992 21.86 8.317·104 

Case 
3 -49.1 15.3 0.2821 7.6969 12.92 1.533·105 

Case 
4 43.4 15.7 0 0 0 0 

Case 
5 42.19 25 0 0 0 0 

Case 
6 -46.3 6.3 0.0272 37.72 19 1.227·105 

 666 
Table 6. State and action variables of the ANN based RL yaw control strategy proposed in 18 667 

Case YawAngle [deg] YawRateK [-] 
Case 1 72.5 0.5 
Case 2 38.8 0.7 
Case 3 -49.1 0.9 
Case 4 43.4 0.6 
Case 5 42.19 0.6 
Case 6 -46.3 0.9 

 668 
Table 7. Power gain and mechanical moment comparison 669 

Case Power 
gain [%] 

Mechanical 
moment 
[N·m] 

Power 
gain Old 

[%] 

Mechanical 
moment 

Old [N·m] 

∆ 
Generated 
power gain 

[%] 

∆ z axis 
yaw 

mechanical 
moment 

[%] 
Case 

1 42.64 3.657·105 47.83 5.185·105 -5.19 -29.45 

Case 
2 21.86 8.317·104 27.43 3.325·105 -5.57 -74.99 

Case 
3 12.92 1.533·105 13.92 5.114·105 -1 -70.08 

Case 
4 0 0 0 5.609·105 0 -100 

Case 
5 0 0 0 8.308·105 0 -100 

Case 
6 19 1.227·105 32.5 4.487·105 -13.5 -72.65 

 670 
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