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A B S T R A C T   

The electrification of mobility is a promising solution to effectively reduce CO2 emissions in urban areas. The 
integration of electric vehicles (EVs) and solar energy is a practical approach for mitigating the strain on power 
grids and storing surplus energy. However, the selection of sites for EV charging stations (EVCS) integrated with 
renewable sources is challenging. This study aims to develop a scalable and highly spatially explicit methodology 
for identifying optimal locations for EVCS powered by photovoltaic (PV). A novel decision framework for EVCS 
site selection is put forward, entailing the design of a parametric solar tool, and integrating PV and EV systems to 
power EVCS. This GIS-based methodology can be used to evaluate the parameters and constraints for EVCS 
placement, estimate solar rooftop potential, and integrate them into the power grid. The local solar energy 
potential complements the installation of additional on-street charging points in power substations. Results show 
that the city centre and a small region in the east are the most suitable locations for installing EVCS in Bilbao. 
Moreover, the results demonstrate the potential for charging 16% more EVs through a grid-connected PV system 
without increasing the capacity of the distribution substations of a district in Bilbao.   

1. Introduction 

It is widely accepted that climate change can be effectively mitigated 
by transitioning from fossil fuels to renewable energy sources (RES). 
Energy transition reduces greenhouse gas (GHG) emissions, which are a 
primary driver of climate change. The energy consumption of trans-
portation systems accounts for ~68% of GHG emissions in urban areas 
(Zhang et al., 2021). Electric vehicles (EVs) are a promising solution to 
global challenges such as the energy crisis and GHG emissions (Ding, 
Prasad, & Lie, 2017; Feng, Xu, & Li, 2021; Polisetty, Jayanthi, & Veer-
raju, 2023; Yu, Wu, Li, & Bai, 2022). However, inadequate access to 
charging infrastructure remains a critical barrier to the spread of elec-
tromobility in urban areas (Chen, Xu, Song, & Jermsittiparsert, 2021; 
Hsu & Fingerman, 2021). 

Numerous studies have explored the possible advantages of EVs, 
highlighting their high efficiency and environmentally friendly nature. 
Compared to traditional vehicles, EVs primarily reduce emissions by 
using green sources of electricity (Bibra et al., 2021). Reports show that 
EVs can reduce GHG emissions by ~17-30% compared with conven-
tional vehicles (European Environment Agency, 2018). Additionally, 
deploying EVs is crucial for decarbonising urban energy systems and 

reducing the dependency on traditional power sources, primarily 
through integration with RES (Yap, Chin, & Klemeš, 2022). EVs can be 
considered net-zero technologies if powered by RES (Rane et al., 2023). 
Moreover, EVs have a lower autonomy and require longer charging 
times, necessitating the installation of charging points that require 
additional space and infrastructure (Huang & Sun, 2023). This has led to 
significant challenges in the widespread adoption of EVs. 

Among the primary obstacles to the widespread electrification of 
vehicles are high costs (Kaya, Tortum, Alemdar, & Çodur, 2020; Loni & 
Asadi, 2023), range anxiety (Li & Jenn, 2022; Roy & Law, 2022), 
inadequate equipment supply for EVs (Feng et al., 2021; Li & Jenn, 
2022), insufficient distribution of charging points (Ma, Pei, Zhang, Xu, & 
Li, 2023; Roy & Law, 2022), and long charging times (Li, Luo, & Song, 
2022; Loni & Asadi, 2023). Among these obstacles, inadequate electric 
vehicle charging station (EVCS) infrastructure is the primary constraint 
hindering the widespread penetration of the EV market (Li et al., 2022). 
Currently, the number of EVCS is limited in most cities worldwide, 
making it impossible to provide sufficient charging services and 
convenient options to EV owners (Huang & Sun, 2023). Range anxiety 
refers to EV owners’ concerns about depleting their vehicles’ power and 
the challenges of quickly recharging batteries. Additionally, the 
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mismatch between charge supply and demand can fail during pick 
hours, resulting in extended wait times and dissatisfaction among EV 
owners. Moreover, deploying accessible and affordable EVCS to extend 
their coverage is crucial for addressing these issues (Loni & Asadi, 2023). 

It is generally acknowledged that appropriate site selection for EV 
charging points plays a crucial role in the life cycle of EV infrastructure 
(Guo & Zhao, 2015), improving system efficiency (Yu et al., 2022) and 
encouraging customer interest in EVs (Feng et al., 2021). The wide-
spread adoption of EVs requires spatially feasible solutions for deploying 
charging infrastructures. Because the adoption of EVs is progressive and 
occurs at different speeds in every country and city, implementing 
effective planning strategies to deploy infrastructure with available re-
sources is crucial. Efficient planning should involve a technical analysis 
of the site selection of EVCS to reduce the total cost (Kaya et al., 2020). 
Moreover, integrating charging points with RES such as solar and wind 
energy has the potential to promote energy transitions and achieve 
climate-neutral targets. Hence, developing a comprehensive methodol-
ogy to evaluate the optimal geographical distribution of EVCS and the 
feasibility of integrating EVs and PV systems across various urban re-
gions plays a crucial role in the widespread deployment of EVs. 

Integrating EVs with solar power is an innovative approach that of-
fers various advantages to the electricity grid, primarily through 
Vehicle-to-Grid (V2G) systems (Van der Kam, Meelen, Van Sark, & 
Alkemade, 2018). The integration of PV system with EVs (PV+EV) is a 
cost-effective approach for decarbonising urban areas. Although this 
fusion can meet a substantial portion of power requiremnts, a compre-
hensive assessment of its energy potential is imperative, as each district 
features diverse built environments, load patterns, and parking capacity 
(Kobashi, Choi, Hirano, Yamagata, & Say, 2022). Multiple approaches 
have been proposed to integrate EVs and solar energy within a power 
grid. Developing microgrids that incorporate RES and EVs can effec-
tively combine PV with EV technology (Himabindu, Hampannavar, 
Deepa, & Swapna, 2021). Furthermore, the implementation of V2G 
technology has assisted in integrating solar energy, EVs, and power grids 
(Shi, Li, Zhang, & Lee, 2020). 

Given the various conflicting criteria in the site selection process for 
an EVCS, this can be considered a Multiple-Criteria Decision-Making 
(MCDM) problem (Feng et al., 2021). Social, economic, environmental, 

and operational parameters must be considered to spatially define the 
locations of on-street charging points. Integrating Geographic Informa-
tion System (GIS) and MCDM assists researchers in exploring solutions 
related to spatial challenges and evaluating diverse criteria, particularly 
in the context of EVCS placement (Rane et al., 2023). This study aimed 
to develop a geospatial model for the broad deployment of an ECVS 
within a power distribution grid. It also proposes a practical method-
ology for applying this geospatial model at the district level while 
evaluating the potential for solar rooftop deployment. Furthermore, this 
methodology offers a spatially feasible approach for developing an EVCS 
while integrating it with solar energy at the district level. This paper 
describes a methodology and geospatial model developed to assist de-
cision making for the broad deployment of ECVS at the district or city 
level. The method and model allow the selection of suitable sites for 
EVCS by spatially considering diverse urban criteria, solar electricity 
production potential, and power distribution grid capacity. 

The remainder of this paper is organised into five sections. The 
second section focuses on a literature review on site selection for EVCS. 
Section 3 introduces the methodology in three steps: developing a 
parametric solar tool, selecting the EVCS site in Bilbao, and evaluating 
EV penetration within a designated district in Bilbao City. Section 4 
introduces Bilbao City as the primary case study. Section 5 presents the 
results obtained from the solar tool and site selection process for Bilbao. 
It also discusses the feasibility of integrating EVs with PV systems based 
on the power capacity. Section 6 concludes the paper by providing a 
concise summary of the findings. 

2. Literature review 

Integrating the EV infrastructure with RES is essential for creating 
sustainable cities and societies by mitigating GHG emissions and pro-
moting sustainable transportation. In the literature, three main ap-
proaches have been identified for the site selection of EVCS: the first uses 
optimisation algorithms (Deb, Tammi, Gao, Kalita, & Mahanta, 2020; 
Gampa, Jasthi, Goli, Das, & Bansal, 2020), the second applies optimi-
sation or mathematical algorithms integrated with geospatial analysis 
(Roy & Law, 2022; Woo, Son, Cho, Kim, & Choi, 2023), and the third 
employs MCDM with geospatial analysis (Rane et al., 2023; Yu et al., 

Table 1 
Summary of the related works.  

Category Case study Research focus Applied method Reference 

MCDM and spatial 
analysis 

Xian, China EVCS site selection at the directional road segments TOPSIS- spatial analysis in GIS (Yu et al., 2022) 
Istanbul, Turkey Site selection of electric taxi charging stations Fuzzy AHP- TOPSIS- spatial 

analysis in GIS 
(Kaya, Alemdar, & Çodur, 
2020) 

Mumbai, India Proposing site selection approach to widespread adaptation 
of EVCS 

TOPSIS- Multi Influencing Factor 
(MIF), spatial analysis in GIS 

(Rane et al., 2023) 

Dublin, Ireland Suitable site selection of community EVCS AHP- spatial analysis in GIS (Charly, Thomas, Foley, & 
Caulfield, 2023) 

Beijing, China Comprehensive MCDM framework for the site selection of 
charging points 

FAHP- spatial analysis in GIS (Ju, Ju, Gonzalez, Giannakis, 
& Wang, 2019) 

Mathematical and 
spatial analysis 

Orange County, 
USA 

Identify and address the spatial disparities in EVCS using 
social, economic, demographical, and EVCS and solar data. 

Machin learning (Roy & Law, 2022) 

Chengdu, China Route planning and public charging station placement Genetic algorithm and simulated 
annealing 

(Li, Liu, & Wang, 2022) 

Jeju Island, 
South Korea 

Optimal EVCS placement to obtain charging demand Genetic algorithm (Woo et al., 2023) 

San Fransisco, 
USA 

Equitable distribution of EVCS TOPSIS- Genetic algorithm and 
spatial analysis 

(Loni & Asadi, 2023) 

London, UK Maximal coverage of EVCS by optimization of charging point 
placement 

Bayesian spatial log-Gaussian Cox (Dong et al., 2019) 

Optimization - Optimal allocation and sizing of fast charging stations 
considering the uncertainty of renewable sources. 

Mixed integer linear programming (Sa’adati, Jafari-Nokandi, & 
Saebi, 2021) 

- Optimal distribution and sizing of distributed generation and 
EVCS 

Grasshopper optimization 
algorithm and fuzzy approach 

(Gampa et al., 2020) 

Allahabad, India Planning of optimal sizing and placing EVCS Genetic algorithm and Particle 
Swarm Optimization 

(Awasthi et al., 2017) 

- Optimal allocation of EVCS within the distribution system Genetic algorithm and Particle 
Swarm Optimization 

(Rene, Fokui, & Kouonchie, 
2023)  
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2022). Table 1 summarises related works aligned with their applied 
methods and research focus. This study focuses on the latter category, 
which incorporates the MCDM and geospatial approaches to EVCS 
placement. As a comprehensive approach, this framework includes 
diverse sustainability criteria integrated with a geospatial analysis to 
provide a robust decision-making process. 

Several studies have been conducted on placing EVCS or integrating 
PV and EV systems into power grids at a municipal scale. Kobashi et al. 
(2020) investigated the cost/benefits of incorporating PV and EV sys-
tems within Kyoto’s power grid and assumed that 70% of building 
rooftops are suitable for PV installation. Dong, Ma, Wei, and Haycox 
(2019) proposed a methodology for the placement of EVCS using a 
mathematical model to maximise the coverage of EVCS in London; 
however, this study overlooked environmental aspects, renewable en-
ergy potential, and required infrastructure. Huang and Sun (2023) 
developed a methodology for optimising solar-powered EVCS for 
high-density urban areas. However, they did not consider the height and 
shape of the buildings, and used a sampling method to estimate suitable 
parts of the rooftops. Li et al. (2022) developed a spatial statistical 
method to assess the equitability of the EVCS distribution, which can be 
used as a tool for policymakers in EVCS planning. 

Moreover, Kaya et al. (2020) studied the site suitability of an EVCS 
with geospatial analysis and MCDM in Istanbul, but still needed to 
evaluate the availability of energy infrastructure. Kobashi et al. (2022) 
investigated the potential of combining EV and PV in residential and 
commercial buildings, and compared them with PV and battery storage 
systems. Gue and Zhao (Guo & Zhao, 2015) studied the site selection of 

charging points based on environmental, economic, and social compo-
nents; however, they encompassed only a narrow range of essential 
variables. Schmidt, Zmuda-Trzebiatowski, Kiciński, Sawicki, and Lasak 
(2021) developed a framework to design a network of EVCS through a 
multi-criteria geospatial-based methodology but excluded environ-
mental, social, and energy-related factors. Erbaş, Kabak, Özceylan, and 
Çetinkaya (2018) investigated the site suitability of an EVCS in Istanbul 
using a geospatial Fuzzy-based Analytic Hierarchy Process (AHP) 
methodology, but overlooked the availability of RES. 

Despite several studies on the site selection of EVCS, there is a sig-
nificant knowledge gap in EV and PV system integration according to 
their geospatial context. Hence, this study attempts to address the need 
for more knowledge to develop a high-resolution spatial approach. Its 
primary objective is to precisely estimate the solar energy potential and 
integrate it into the EVCS site selection process at the municipal scale. 
Furthermore, this study attempted to bridge the existing knowledge gap 
by determining a feasible number of EVCS based on the available solar 
potential and power grid capacity at the district scale. 

This study contributes to the existing literature on EVCS site selec-
tion in various ways. First, a highly spatially explicit tool was developed 
to estimate the solar-generation potential of building rooftops at the 
municipal scale. Using high-resolution Airborne Light Detection and 
Ranging (LiDAR) data, we obtained an annual mean solar radiation map, 
which was imported into a solar tool to precisely estimate solar gener-
ation. To the best of the authors’ knowledge, this is the only study 
focusing on EVCS site selection that has developed a highly spatially 
explicit tool to measure solar generation as a potential source for 

Fig. 1. Research methodology of integrating EVCS and power distribution system in the geospatial context.  
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charging EVCS. 
Second, the site selection of the EVCS was performed based on 

various urban-related aspects, which is essential for suggesting a 
spatially feasible plan for the vast development of EVs. Most previous 
studies focused on evaluating the socioeconomic and environmental 
factors of site selection for EVCS. However, only a few studies, including 
ours, have considered the accessibility criteria and resource availability 
required to meet the energy demands of these charging points. 
Furthermore, most studies have utilised Euclidean distance analysis, 
which is not an accurate approach for estimating the proximity of urban 
amenities, infrastructure, and land use. In contrast, our study employed 
network analysis as a precise method to measure the proximity of 
various sub-criteria such as accessibility to public transportation. 

Finally, the proposed methodology aids in the incorporation of PV 
and EV systems to reduce the burden on the power grid to charge more 
electric vehicles. Therefore, we analysed EV penetration by focusing on 
a case study selected from the site suitability map of EVCS in Bilbao City. 
To the best of our knowledge, this is the first study to simultaneously 
combine a high-resolution geospatial solar tool within the framework of 
EVCS site selection to estimate the prospective number of charging 
points and EVs. This methodology is reproducible and can be effectively 
adapted to any case study, albeit with some modifications according to 
data availability and the relative importance of the distinct site selection 
criteria. 

3. Materials and methods 

The methodology was developed in three main stages: Stage1 
involved developing a tool for estimating solar power on building 
rooftops; Stage2 focused on the site selection of the EVCS using the 
parametric solar tool as a leading indicator; and Stage3, a group of 
buildings was selected from the site selection stage to analyse the energy 
profile of the EVCS and EVs. Additionally, a solar energy tool was 
employed in Stage 3 to estimate the solar potential of the buildings. 
Fig. 1 presents an overview of the proposed methodology. 

3.1. Stage1: developing a parametric solar tool 

This section outlines the rationale behind the developed solar tool, 
which aims to estimate solar energy generation. It identifies suitable 

areas on building rooftops for installing photovoltaic (PV) panels and 
assesses the resulting electricity generation. ESRI’s potential solar ra-
diation solution for building rooftops was refined and developed into a 
parametric tool using ArcGIS Pro (Khanna, 2023). One of the main in-
puts for solar tools is Digital Surface Model (DSM) data, which repre-
sents the Earth’s surface in 3D, including built-up and natural features 
(Nemmaoui, Aguilar, Aguilar, & Qin, 2019). LiDAR is a cutting-edge 
technology that has recently been used to extract and capture DSMs 
(Cheng et al., 2020; Gehrke, Morin, Downey, Boehrer, & Fuchs, 2010). 

The most suitable parts of building rooftops for PV installation were 
determined using various geospatial criteria, including orientation, 
slope, available roof area, minimum annual mean radiation, and avail-
able space. Rooftop slopes greater than 60◦ are unsuitable for PV 
installation (Song et al., 2018). Buffat, Grassi, and Raubal (2018) sug-
gested a threshold of 50◦ for rooftop slope suitability. Notably, building 
orientation and other geometric aspects significantly affect solar irra-
diance absorption (Buffat et al., 2018; Song et al., 2018). Because the 
entire rooftop area might not be suitable for PV, it is essential to consider 
the ratio of the effective PV available roof area (PVA). PVA was used 
because many sections of rooftops are unsuitable for PV installation 
owing to their irregular form, shadow effects, and the presence of util-
ities such as heat, ventilation, and air conditioning (HVAC) on the 
rooftops (Izquierdo, Rodrigues, & Fueyo, 2008; Singh & Banerjee, 
2015). 

Moreover, a payback analysis was used to define the lowest mean 
yearly solar radiation and determine suitable rooftop areas. A minimum 
space of 6 square meters is required to install a 1Kw PV system (Jack-
man, 2022). In this study, protected and listed buildings were inten-
tionally excluded from the results, as they require meticulous 
assessment to determine the feasibility of PV adaptation. PV adaptation 
in these buildings is subject to specific local regulations and restrictions, 
necessitating a distinct methodology for evaluation compared to other 
buildings. Fig. 2 shows the main components of the parametric solar tool 
designed using ArcGIS Pro and the model builder. Each component in-
cludes several geospatial analyses to extract the power capacity across 
various scales, from individual buildings to municipality levels. 

A systematic methodology was employed to calculate the solar PV 
capacity of the building rooftops. Initially, LiDAR data were converted 
into the LAS format and merged to generate the DSM layer using Las-
Tools within the QGIS. Subsequently, a mean solar radiation map was 

Fig. 2. The diagram of the parametric solar tool in ArcGIS Pro using Model Builder.  
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constructed by importing the DSM map into the area solar radiation tool 
available in ArcGIS Pro. The slope and aspect maps were created from 
the DSM layer at the municipal scale. Areas with slopes of 10-45 degrees 
and north-facing parts were excluded from the results. The solar radia-
tion of the buildings was extracted from the city map using an extract- 
by-mask tool and converted into vector format. Next, the vector layer 
was processed using the dissolved tool, and a multipartial-to-single-part 
conversion was used to calculate the areas suitable for PV installation. 

Moreover, an area constraint was applied to exclude regions smaller 
than 6 square meters. The feature-to-point and spatial join tools link 
suitable solar areas to buildings by converting them into points and 
connecting them to their respective buildings. To further improve the 
results, the PVA indicator removed regions of buildings designated for 
other functions, and protected buildings were excluded from the pro-
cess. Protected buildings were excluded from this process. Subsequently, 

Zonal statistics were used as a table and join tool to allocate the mean 
solar radiation on each building’s rooftop and join the data to the 
building database. The solar radiation was calculated in kilowatt-hours 
(kWh) by multiplying the building’s PV area by the mean solar radiation 
derived from the zonal statistics. This result was then converted into 
power by multiplying the energy efficiency by the performance ratio of 
the PV panels. 

The energy generation of each building was calculated using Eq. (1) 
(Pedrero, Hernández, & Martínez, 2021): Here Imean is the total solar 
radiation on PV panels, Lm is the miscellaneous losses, η is the inverter 
efficiency of PV, α is the roof area ratio, and Sij is the total PV area for 
each building (Huang & Sun, 2023). This equation is used to estimate 
the annual energy production. In this study, the sigma component was 
ignored because energy generation was considered for the mean annual 
solar energy generation per hour. 

Fig. 3. The flowchart of the AHP process.  

Fig. 4. Site selection criteria and indicators.  
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Epv,ij =
∑8760

t=1

(
Imean ×Lm × η×

(
α× Sij

))
(1)  

3.2. Stage2: site suitability of public EVCS 

The site suitability of the EVCS has three main objectives: first, to 
identify optimal areas to establish charging points, prioritise locations 
for charging station installation, and extend coverage to improve the 
service area of the charging points. Multi-criteria decision-making 
(MCDM) is an effective tool for selecting the best choice among multiple 
criteria (Colak, Memisoglu, & Gercek, 2020). As an MCDM method, the 
Analytic Hierarchy Process (AHP) is used to obtain the relative priority 
of factors and alternatives by decision-makers’ judgments (Al-Harbi, 
2001). The AHP is a comprehensive MCDM method that offers a flexible 
and pragmatic approach for selecting desired options according to 
decision-making criteria (Ahadi, Fakhrabadi, Pourshaghaghy, & Kow-
sary, 2023) and structuring the problem by creating a hierarchical 
framework, as depicted in Fig. 3. It employs a pairwise comparison 
matrix to compare objects at each hierarchical level with respect to the 
upper-level superior element (Krejčí & Stoklasa, 2018). Moreover, AHP 
are frequently applied in different fields, including environmental 
studies (Chen, Li, Wang, & Cheng, 2020; Saffarian, Mahmoudi, Shafiee, 
Jasemi, & Hashemi, 2020), energy planning (Ahadi et al., 2023; Colak 
et al., 2020; Coruhlu, Solgun, Baser, & Terzi, 2022), and urban and 
regional planning (Eren & Katanalp, 2022; Feltynowski & Szajt, 2021; 
Mortazavi Chamchali, Mohebbi Tafreshi, & Mohebbi Tafreshi, 2021). 

Matrix A (n × n) is a pairwise comparison matrix used to evaluate n 
alternatives, as shown in Eq. (2): This matrix includes objects ‘aij’, where 
‘i’ expresses the primary comparison criteria of row i, and ‘j’ represents 
the criterion being compared against criterion i (Awad & Jung, 2022). In 
Eqs. (3) and (4), W is the matrix weight criteria, and ‘λmax’ refers to the 
maximum Eigenvalue estimated through the pairwise comparison ma-
trix (Thakur, 2022). As an expert’s judgment should be consistent and 
logical, Saaty proposed a consistency index (CI) to measure the consis-
tency ratio (CR); see Eq. (5) (Saaty, 1987). The CR is calculated by 
dividing the CI by the random index (RI) value obtained from the CR 
table, which should remain below 0.1; see Eq. (6) (Saaty, 2004). We 
used the geometric mean to compute the weights assigned to both the 
criteria and the sub-criteria. The prioritisation of objects is obtained by 
calculating the geometric means of the pairwise comparison within each 
row, as shown in Eq. (7): 

A =

⎡

⎣
1 a12… a1n
⋮ ⋱ ⋮

1/a12 1/a1n… 1

⎤

⎦ (2)  

AW = λmaxW (3)  

downright

⎡

⎣
1 a12… a1n
⋮ ⋱ ⋮

1/a12 1/a1n… 1

⎤

⎦

⎡

⎣
w1
⋮

wn

⎤

⎦ = λmax

⎡

⎣
w1
⋮

wn

⎤

⎦ (4)  

CI =
λmax − n

n − 1
(5)  

CR =
CI
RI

< 0.1 (6)  

GM =

(
∏n

i=1
aij

)1
n

(7) 

The first step in identifying suitable sites involves gathering and 
analysing data to create input layers for overlaying. A wide range of 
socioeconomic, environmental, mobility, and energy factors were 
studied to determine the site suitability of EVCS, as shown in Fig. 4. 
These layers were obtained by reclassifying and normalising the 

subcriteria. Moreover, fuzzy logic has been effectively employed to 
normalise the layers in a GIS. Two fuzzy membership functions, linear 
ascending and linear descending, were applied to normalise the values 
of all GIS layers, see Table 2. The input receives a value in the range of 0, 
indicating no membership, to 1, indicating definite membership 
(Noorollahi, Senani, Fadaei, Simaee, & Moltames, 2022). A linear 
ascending method can be used when higher membership values indicate 
higher suitability. By contrast, we used the linear descending method 
when higher values indicated lower suitability. 

Table 3 lists the main criteria and indicators of EVCS site suitability 
and their measurement methods extracted from an extensive literature 
review. Geospatial methods have been suggested to measure these in-
dicators. The weighted sum tool in ArcGIS combines the sub-criteria into 
the main criteria layers, and the resulting scores are normalised using a 
fuzzy linear method. A specific score was assigned to each indicator 
using the AHP method, indicating its importance compared to others. 

The geospatial procedure involves several steps to import data, 
reclassify, normalise, and overlay layers, and export the site selection 
output. Different approaches such as network analysis and Euclidean 
distance have been employed for these distances. Fig. 5 illustrates the 
general site suitability model for the EVCS. 

The methodology for geospatial analysis utilised various tools and 
spatial processes to identify suitable locations for EVCS. The spatial 
analysis method for the five selected sub-criteria is shown in Fig. 6. A 
network dataset was built in ArcCatalog to assess public transportation 
and was imported into the service analysis layer tool. Subsequently, the 
results were reclassified and converted into a raster format. Null and Con 
tools were then used to manage the No Data cells. Furthermore, nor-
malisation via the fuzzy membership tool was conducted to estimate the 
proximity to the metro, bus, tram, and taxi stations. The weighted sum 
tool combines all these layers as public transportation criteria. Similar 
techniques have been applied in public parking areas, EV charging sta-
tions, and petrol stations. 

The road accessibility layer was analysed using data imported from 
an Open Street Map source (OSM). The Euclidean distance was applied 
to the road layer, and the results were reclassified, followed by the use of 
Is Null, Con, and Fuzzy membership tools. The road map was dissolved 
using the unsplit line and intersection tool to identify road junctions via 
the point output type. Subsequently, inverse distance weighting (IDW) 
was used for raster surface interpolation, and a fuzzy membership tool 
was employed to normalise the outcomes. Proximity to the public and 
mixed-use area layers was assessed using the point density tool to extract 
the mixed-use area density and the fuzzy membership tool to normalise 
the values. The proximity to water bodies and forests was evaluated 
using Euclidean distance, reclassification, and fuzzy membership tools. 
A reclassification tool was applied, and the results were normalised to 

Table 2 
Fuzzy membership functions.  

Function Equation Schematic figure 

Linear 
ascending 

μx =

{

0 x ≤ a
x − a
b − a

a < x < b

1 x ≥ b 

Linear 
descending 

μx =

{

1 x ≤ a
x − b
a − b

a < x < b

0 x ≥ b  
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analyse the air and noise quality criteria. The DSM layer was used to 
create a slope map, and the results were reclassified and normalised to 
evaluate the slope criteria. 

The input layer was converted to a raster format for household 
criteria and normalised using the fuzzy membership tool. Population 
density criteria were assessed using kernel interpolation, followed by the 
Is Null, Con, and fuzzy membership tools. The input layer was converted 
into a raster format for land availability, and the results were reclassi-
fied. A substation distance analysis was performed using the Euclidean 
distance tool and processed by reclassification and normalisation. 
Analysing potential PV areas included converting the solar power layer 

to points, assigning values to an equally sized fishnet layer via spatial 
joins, converting the results to rasters, and managing No Data values. 
The AHP scores were assigned to each sub-criterion to obtain a criteria 
map. The AHP scores for each criterion were then applied using the 
weighted sum tool to generate a suitability map for the EVCS. 

3.3. Stage3: energy profile analysis of EVCS 

It is recommended to use energy simulation software when accurate 
building energy demand data are unavailable. In our case study, we 
employed the ENERKAD tool to estimate building energy demands 

Table 3 
EVCS`` site selection criteria and indicators.  

Criteria Indicators Definition Estimating 
method 

References 

Accessibility C1.1 Public 
transportation 

Placing charging points close to public 
transportation reduces range anxiety and allows 
EV users to park, charge their EVs, and use 
public mobility services. 

Network 
analysis 

(Ghosh et al., 2021; Guler & Yomralioglu, 2020;  
Karolemeas, Tsigdinos, Tzouras, Nikitas, & 
Bakogiannis, 2021; Kaya et al., 2020; Kaya et al., 
2020; Schmidt et al., 2021; Zhang, Teoh, & Zhang, 
2022) 

C1.1.1 Proximity to metro 
C1.1.2 Proximity to bus 
C1.1.3 Proximity to tram 
C1.1.4 Proximity to taxi 
C1.2 Road accessibility The proximity to the main roads directly 

correlates with the need for building EVCS. 
Euclidean 
distance 

(Erbaş et al., 2018; Ghosh et al., 2021; Guler & 
Yomralioglu, 2020; Guo & Zhao, 2015; Hisoglu, 
Tuominen, & Huovila, 2023; Kaya et al., 2020; Kaya 
et al., 2020; Schmidt et al., 2021; Sisman, Ergul, & 
Aydinoglu, 2021; Zhang et al., 2022) 

C1.3 Road junctions Proximity to road junctions enhances service 
accessibility and provides drivers with a backup 
option during traffic congestion. 

Point density (Erbaş et al., 2018; Guo & Zhao, 2015; Kaya et al., 
2020; Kaya et al., 2020; Sisman et al., 2021) 

C1.4 Public parking areas Potential places for charging points that 
facilitate simultaneous parking and EV 
charging. 

Network 
analysis 

(Chen, Kockelman, & Khan, 2013; Efthymiou, 
Antoniou, Tyrinopoylos, & Mitsakis, 2012; Erbaş et al., 
2018; Ghosh et al., 2021; Guler & Yomralioglu, 2020;  
Karolemeas et al., 2021; Kaya et al., 2020; Kaya et al., 
2020; Zhang et al., 2022) 

C1.5 EV charging stations Potential areas for new charging points that 
allow broader coverage across areas. 

Network 
analysis 

(Erbaş et al., 2018; Hisoglu et al., 2023; Kaya et al., 
2020; Kaya et al., 2020; Li et al., 2022; Sisman et al., 
2021) 

C1.6 Petrol stations Combining petrol stations with charging points 
enhances accessibility and provides space. 

Network 
analysis 

(Erbaş et al., 2018; Ghosh et al., 2021; Guler & 
Yomralioglu, 2020; Kaya et al., 2020; Kaya et al., 
2020; Phonrattanasak & Leeprechanon, 2012; Sisman 
et al., 2021) 

C1.7 Proximity to public 
and mixed-use areas 

Locations like shopping centers and hospitals 
demand more EV charging due to the increased 
presence of people during daytime hours. 

Point density (Efthymiou et al., 2012; Ghosh et al., 2021; Guler & 
Yomralioglu, 2020; Karolemeas et al., 2021; Kaya 
et al., 2020; Kaya et al., 2020; Schmidt et al., 2021) 

Socioeconomic 
Development 

C2.1 Household income A direct relationship exists between charging 
demand and car ownership, often influenced by 
household income. 

Raster 
analysis 

(Chen et al., 2013; Efthymiou et al., 2012; Guler & 
Yomralioglu, 2020; Kaya et al., 2020; Kaya et al., 
2020; Namdeo, Tiwary, & Dziurla, 2014) 

C2.2 Population density Areas with high population density require 
more charging points to meet the demand. 

Kernel point 
density 

(Dong et al., 2019; Efthymiou et al., 2012; Erbaş et al., 
2018; Ghosh et al., 2021; Guler & Yomralioglu, 2020;  
Guo & Zhao, 2015; Hisoglu et al., 2023; Karolemeas 
et al., 2021; Kaya et al., 2020; Kaya et al., 2020;  
Schmidt et al., 2021; Sisman et al., 2021; Zhang et al., 
2022) 

Availability of 
resources 

C3.1 Land availability Space scarcity limits the construction of new 
EVCS. 

Raster 
analysis 

(Wu, Yang, Zhang, Chen, & Wang, 2016) 

C3.2 PV potential areas Considering PV’s potential to provide enough 
energy and reduce pressure on power grids 

Solar tool (Ghosh et al., 2021; Hisoglu et al., 2023; Kaya et al., 
2020) 

C3.3 Distance from 
substations 

Proximity to power substations enhances 
capacity efficiency and reduces infrastructure 
costs. 

Euclidean 
distance 

(Erbaş et al., 2018; Guo & Zhao, 2015; Hisoglu et al., 
2023; Kaya et al., 2020; Kaya et al., 2020; Sisman 
et al., 2021; Wu et al., 2016; Xu, Zhong, Yao, & Wu, 
2018) 

Environmental 
criteria 

C4.1 Proximity to water 
resources 

The construction of EVCS should be away from 
natural resources such as water and forests to 
avoid potential environmental hazards. 

Euclidean 
distance 

(Erbaş et al., 2018; Guo & Zhao, 2015; Kaya et al., 
2020; Kaya et al., 2020; Sisman et al., 2021; Wu et al., 
2016; Xu et al., 2018) 

C4.2 Proximity to forest Euclidean 
distance 

(Erbaş et al., 2018; Guo & Zhao, 2015; Kaya et al., 
2020; Kaya et al., 2020; Sisman et al., 2021; Wu et al., 
2016; Xu et al., 2018) 

C4.4 Air and noise 
Quality 

Locating EVs near high-pollution areas helps 
mitigate air and noise pollution. 

Raster 
analysis 

(Ghosh et al., 2021; Guo & Zhao, 2015; Kaya et al., 
2020; Kaya et al., 2020) 

C4.3 Topography Building charging points in flat terrain reduces 
construction and operation costs. 

Slope 
analysis 

(Erbaş et al., 2018; Guler & Yomralioglu, 2020; Guo & 
Zhao, 2015; Kaya et al., 2020; Kaya et al., 2020;  
Sisman et al., 2021)  

Landslide and flood As a criterion for excluding from the result Raster 
analysis 

(Erbaş et al., 2018; Kaya et al., 2020; Kaya et al., 2020; 
Sisman et al., 2021)  
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(Muñoz et al., 2020) and subsequently calibrated the results with data 
from an electricity distribution company. To assess the potential 
deployment of EVCS, it is essential to collect building demand and grid 
data to measure the surplus energy of each substation. Furthermore, the 
hourly solar energy generation was calculated using the developed solar 
tool for a selected district. 

The EV charging load profile is a critical factor for estimating the 
potential number of EVCS and the adaptation of EVs. This factor varies 
across different types of EVCS, including public, private, and on-street 
charging points. Thus, selecting the charging load profile should align 
with the research objective and feasibility of the EVCS type within a 
specific area. The X-axis shows the hourly time division in this chart, and 
the Y-axis represents the normalised relative frequency of the charging 
demand, which adjusts the relative frequencies to sum to 100%. Fig. 7 
illustrates the higher charging demand observed at on-street charging 
points during working hours 7 to 17 in Spain (Corchero García, 2015). 

Moving beyond the basic role of distribution substations in managing 
the supply voltage, estimating the surplus capacity of substations is 
essential. The surplus capacity of the substations was calculated by 
excluding the building demand from the total power capacity of each 
substation. The average contracted power, which is 5.75 kW in Spain, 
was considered to estimate the substation power capacity (Ministerio de 
Industria y Turismo, 2023). The average contract power is multiplied by 
the number of contracted clients to calculate the maximum power of 
each substation. Subsequently, to evaluate the substation capacity, the 
total power was multiplied by 0.4, which is a simultaneous factor. To 
estimate the total surplus energy, solar power capacity was added to the 
power capacity of the substation. 

A sensitivity analysis was conducted to estimate the distribution load 
of the EVCS and to determine the potential number of EVs that can be 
charged. The distribution load was calculated by multiplying the nor-
malised value of the relative frequency of the EVCS by the power ca-
pacity required for charging the EVs. First, this calculation was executed 
on March 21st, the spring equinox, as a representative day with average 
solar radiation. Second, the same analysis was performed on two other 
dates: June 21st, with the highest solar radiation, and December 21st, 
with the lowest solar radiation. The number of potential EVCS was 
calculated by dividing the distribution load of each EVCS by its power 
capacity. Optimising the number of EVCS based on hourly demand 
profiles and high temporal resolution solar data is highly recommended. 

4. The case study 

In this research, the case study was Bilbao City, the capital of Basque 
Country, located on the Eastern Atlantic Seaboard, Fig. 8. Bilbao covers 
an area of ~41.3 Km2, to have a population of 344,678 in 2022. Bilbao 
changed its role from an industrial city to a tourist destination and 
service city (Bilbao Information, 2022). The entire city of Bilbao was 
used as the case study for the site selection of EVCS. 

Fig. 9 shows the index-based LiDAR data in the Laz format and the 
mean annual radiation map of Bilbao City. LasTools in QGIS were used 
to extract the DSM from these data. This information can be used to 
select the most suitable parts of the building rooftop for solar panels. 
Moreover, the mean radiation in Bilbao City was extracted using the 
area solar radiation tool in ArcGIS Pro. The DSM layer provided in the 
previous step was used as the input elevation surface raster to obtain a 

Fig. 5. Methodology of EVCS placement.  
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solar map. Detailed information shows that the mean annual radiation of 
the Bilbao municipality is 1032 kWh/m2, and the maximum solar ra-
diation is ~1379 kWh/m2 annually. 

In this case study, the methodology for site suitability of the EVCS 
was applied to the entire city (Stage 2 of the method). To showcase Stage 
3 of the process, a small area, including 39 buildings and five sub-
stations, was selected to analyse the energy profile and the potential of 

the electricity infrastructure to support the EVCS. Each building was 
connected to a specific substation based on the proximity of the sur-
rounding substations and basic information. Fig. 10 shows a detailed 
view of the substation locations with connected buildings. The 
remaining capacity of each substation can be measured by subtracting 
the substation capacity and energy demand of the connected buildings 
from those of each substation based on Table 4. 

Fig. 6. Model builder diagram for the process of spatial analysis for five selected sub criteria.  
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5. Results and discussion 

5.1. Applying the solar energy tool in Bilbao 

This section describes the development of a tool to estimate the solar 
potential of rooftops based on geospatial conditions. The tool assumes 
that pitched rooftops with slopes less than 45◦ are suitable for installing 
PV panels. In contrast, north-oriented rooftops were excluded because 
they received insufficient solar energy. According to one study, the PVA 
ratio for buildings in Spain is ~0.346 (Singh & Banerjee, 2015). Rooftop 
areas smaller than 6 square meters were excluded from the analysis. 

Approximately 500 protected structures that were unsuitable for PV 
installation were also excluded. A commercial monocrystalline panel 
was selected to calculate the actual electricity production with a PV 

module efficiency of 19.4%, inverter efficiency of 0.95%, and miscel-
laneous losses of 13% (Pedrero et al., 2021). The process and results of 
the solar potential tool were carefully checked at each step to ensure 
accuracy. Table 5 lists the solar tool results for each building, including 
the recommended PV area, mean annual radiation (kWh), and estimated 
energy generation (kWh). 

According to the results, regions receiving solar radiation of over 925 
kWh/m2 per year have a potential solar energy generation of ~205 GWh 
annually on suitable rooftop areas. In Bilbao, the annual electricity 
consumption is ~419 and 484 GWh for residential and nonresidential 
buildings, respectively (Atelier, 2021). Consequently, solar PV energy 
generation can fulfil ~23% of the electricity demand in the built 
environment. 

The existing electrical infrastructure is not always prepared to 

Fig. 7. Normalized EV load profile for on-street charging points.  

Fig. 8. Location of Bilbao city in Spain (OpenStreetMap, 2023).  

K. Javanmardi et al.                                                                                                                                                                                                                           



Sustainable Cities and Society 104 (2024) 105290

11

Fig. 9. LiDAR data and annual mean radiation map of Bilbao city.  

Fig. 10. Substations with connected buildings.  

Table 4 
The information of substations.  

Substation 
number 

Number of 
buildings 

Residential 
gross area (m2) 

Non-residential 
gross area (m2) 

Power 
capacity 
(kW) 

1 6 23787 - 428 
2 4 27279 - 513 
3 7 39350 - 633 
4 8 44590 - 722 
5 14 24305 1938 435  

Table 5 
Different scenarios of solar power generation.  

Minimum solar 
radiation 
(kWh/m2/yr) 

Minimum 
area for PV 
(m2) 

Maximum 
slope (◦) 

Orientation 
condition 

Power 
generation 
(GWh/yr) 

850 6 45 S-E-W 208.0 
925 6 45 S-E-W 205.0 
925 100 45 S-E-W 193.3 
1000 6 45 S-E-W 198.6 
1000 100 45 S-E-W 191.7 
1100 6 45 S-E-W 138.9 
1100 100 45 S-E-W 137.0  
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receive the energy generated by photovoltaic systems. Distributed and 
bidirectional generation characterizes the solar-pose grid control and 
management challenges. The implementation of intelligent automation 
and control technologies can facilitate the integration of PV into existing 
power grids. Advanced technology monitoring systems allow real-time 
generation and consumption tracking, enabling efficient grid manage-
ment decision-making. In addition, microgrids enter the scene as an 
additional solution, allowing local generation and consumption in spe-
cific areas and reducing the burden on the main grids. 

5.2. Site suitability of EVCS in Bilbao 

This section focuses on scoring the main criteria and their indicators 
based on expert judgment. Accordingly, a session was held with experts 
on the project and importance of site suitability indicators for EVCS. 
Subsequently, an AHP survey form was designed and shared with eight 
experts from the urban energy transition unit of TECNALIA. 

5.2.1. Scoring of the accessibility criteria 
Fig. 11 shows that public parking is the most crucial factor in the 

accessibility criteria, based on expert decisions. Other indicators 
received similar scores, including road intersections, public trans-
portation, road accessibility, current EVCS, and mixed-use areas. 
Moreover, proximity to petrol stations received a deficient score 
compared to other factors. The judgments for this matrix are acceptable 
when the consistency ratio is 2%, which is less than the 10% threshold. 
Additionally, this result shows that the city centre has a high accessi-
bility value. There are also small spots in the east with good accessibility 
compared with other parts of the city. 

5.2.2. Scoring of the sub-criteria of public transportation 
Because there are four types of public transportation stations in 

Bilbao City, a weighting matrix is required to compare the relative 
importance of each indicator. The score of proximity to each public 
transportation mode is shown through the weighting matrix and bar 
chart, see Fig. 12. Overall, metro stations received a higher score of 
0.665, followed by proximity to tram stations. The same approach was 
applied to measure proximity to metro, bus, tram, and taxi stations. All 
four layers were overlaid to calculate their proximity to public trans-
portation systems. 

Fig. 11. AHP scoring for accessibility indicators and fuzzy-based accessibility map.  

Fig. 12. AHP scoring and fuzzy-based mapping of the sub-criteria of public transportation indicators.  
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5.2.3. Scoring of environmental criteria 
According to the experts’ judgments, topography and noise pollution 

received higher scores than the other indicators. Fig. 13 shows that the 
weight assigned to the distance between the river and forest was 0.167. 
Regarding environmental criteria, the city centre is the most suitable 
location for deploying EVCS, as it receives a higher score for noise 
pollution and distance from natural resources. 

5.2.4. Scoring of resources and energy criteria 
The expert judgment indicated that all three indicators of resources 

and energy were equally important. A closer look at the resource map in 
Fig. 14 shows that the high-potential areas for EVCS are distributed close 
to the available lands. 

5.2.5. Scoring of socioeconomic criteria 
The following table indicates that population density is more 

important than income for EVCS placement. Fig. 15 presents a nor-
malised socioeconomic criteria map with highly populated areas and 
high-income households in red spots. 

5.2.5. Scoring of main criteria 
The following table compares the ranks of all criteria for the place-

ment of EVCS. This indicates that the resource criterion received a 
higher score, closely followed by the accessibility criterion. In contrast, 
the environmental and socioeconomic scores were lower. Fig. 16 also 
illustrates the combined site selection indicators using the AHP scores; 
the higher the value of an area, the more suitable it is to instal an EVCS. 

Table 6 compares the ranks and score, Eq. (7), of the main criteria 
and sub-criteria for site selection in the EVCS. This table shows that the 
resource criterion has a higher score than the other criteria, followed by 
the accessibility criterion with a score of 0.286. 

Based on the census districts, Fig. 17 shows the areas with the highest 
potential for new electric vehicle charging points. The central part of the 
city is the most suitable area for developing public charging stations for 
electric vehicles owing to its higher accessibility to service areas and 
power sources. Moreover, this area is mainly located away from natural 
resources such as rivers, forests, and disaster-prone regions. 

Fig. 13. AHP scoring and fuzzy-based mapping of environmental criteria.  

Fig. 14. AHP scoring and fuzzy-based mapping of resources criteria.  
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5.3. EVs and EVCS penetration in the case study 

The typical power capacity of an EVCS for fast chargers ranges from 
to 7-22 Kw (Mostyn, 2021). In this case study, charger points with power 
capacities of 22 kW were considered to measure the potential number of 
EVCS. An average EV battery value of 40 kWh was selected to estimate 
the load distribution at the charging points. Fig. 18 shows the hourly 

solar energy generated hourly on March 21st, June, and December. 
These days represent the average, maximum, and minimum solar ca-
pacities during the year. Solar energy generation started to rise at 6, 
peaks at 12, and decreases from 13 to 17. Chart illustrates the energy 
consumption of different numbers of EVs and solar power potential in 
Substation 1. 

According to our findings, substation1 could fully supply two on- 

Fig. 15. AHP scoring and fuzzy-based mapping of socioeconomic criteria.  

Fig. 16. Main criteria for AHP scoring and Fuzzy-based mapping of EVCS site selection.  

Table 6 
Weights of evaluation criteria via AHP.  

C1 C1.1 C2 C3 C4 
Accessibility Public transportation Socioeconomic Resources Environmental 

C1.1 0.138 C1.1.1 0.665 C2.1 0.333 C3.1 0.333 C4.1 0.167 
C1.2 0.136 C1.1.2 0.086 C2.2 0.667 C3.2 0.333 C4.2 0.167 
C1.3 0.130 C1.1.3 0.204   C3.3 0.333 C4.3 0.333 
C1.4 0.265 C1.1.4 0.044     C4.4 0.333 
C1.5 0.130         
C1.6 0.050         
C1.7 0.152         
Total 0.286    0.170  0.341  0.203  
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street charging piles with solar energy between 10:00 and 14:00. 
Additionally, for substation2, one charging pile was fully powered be-
tween 10:00 and 14:00. However, the remaining substations could 
entirely support the charging demand of the three charging piles using 
solar energy from 10:00 to 15:00. The solar power of the building’s 
rooftops on March 21st is represented in Table 7. The ENERKAD tool 
calculates the total energy demand of buildings connected to substations 
on the same day. 

The solar energy potential for meeting the energy demand of build-
ings is relatively low, as this corresponds to a dense and high-rise dis-
trict. It is important to note that the designed capacity of the substations 
is sufficient to cover the total energy demand, leaving some surplus 

Fig. 17. Zone-based site suitability of EVCS.  

Fig. 18. Solar power generation potential vs. EVCS loads in substation 1.  

Table 7 
Solar capacity and building energy demands of substations.  

Substation 
number 

Solar power (kWh/ 
day) 

Building energy demand (kWh/ 
day) 

1 342 2833 
2 204 3249 
3 560 4687 
4 626 5311 
5 607 3338  
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Fig. 19. EV charging loads vs. available capacity of substation number 1.  

Fig. 20. EV charging loads vs. available capacity in substation number 1, including solar capacity.  

Fig. 21. Number of EVs based on available energy in substations.  
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power or remaining capacity throughout the day, depending on the 
actual distribution of the electricity use. In substation 1, this remaining 
capacity sharply declines from 17 to 22 o’clock, when residential elec-
tricity use was at its peak. Considering the EV charging profiles, Fig. 19 
shows that up to 60 EVs can be charged during the day without 
exceeding the remaining substation capacity. 

Substations 2 and 3 have sufficient capacity to charge 85 and 115 
electric cars, respectively. With the defined distribution histogram, 
substation 4 had sufficient power to charge 115 EVs during the day. For 
substation 5, only 50 electric vehicles were charged daily. Fig. 20 il-
lustrates the potential number of EVs that can be charged through the 
available capacity of substations and imported solar generation on 
March 21st, June, and December. This demonstrates the relative 
importance of using the available capacity of substations, both with and 
without solar energy. Notably, we assumed that the daytime energy 
demands of the building would remain consistent across these three time 
slots. According to the following chart, 75 EVs can be charged: 

Fig. 21 shows the potential number of EVs based on the available 
energy for each substation. On average, 16% more EVs can be supplied 
using solar power on building rooftops. The solar potential was esti-
mated on March 21st, a representative day for the average performance. 

6. Conclusion 

This project contributes to the literature by developing a novel 
methodology for integrating EVCS with solar energy and power distri-
bution systems with high spatial resolution. In this study, a novel deci-
sion framework was developed that integrates MCDM and GIS for EVCS 
placement. In addition, a highly spatially explicit tool was designed in 
ArcGIS Pro to estimate the solar potential of rooftops at the local and 
municipal levels. Minor modifications can make the scalable method-
ology applicable to any case study. Moreover, an advanced approach 
was proposed to integrate the PV and EV systems to charge the EVCS. 

Given the high cost of implementing an EVCS, determining suitable 
locations is essential for developing an e-mobility infrastructure. 
Although various factors are involved in the placement of EVCS, a 
methodology for evaluating the feasibility of developing charging points 
that are integrated with solar PV systems must be developed. Therefore, 
this study proposes a spatially feasible approach for developing an EVCS 
that incorporates solar energy at the district level. This study determined 
the best location for developing an EVCS and integrating solar energy 
with the power distribution grid. This methodology proposes a "PV +
EV" system to mitigate the burden on the power grid and the penetration 
of more electric vehicles. 

There is widespread agreement on the use of RES for charging 
electric vehicles, aiming to mitigate CO2 emissions. Hence, this geo-
spatial tool was developed to estimate the solar energy generation po-
tential in Bilbao City, and can be applied to any city or region, regardless 
of size or location. The results of the solar tool are required for public 
EVCS placement and energy profile analysis to distribute the EVs and 
charging stations. In addition, the results show that PV installations in 
suitable parts of Bilbao’s buildings can generate ~205 GWh of solar 
energy annually, accounting for 23% of the power demand of the built 
environment. 

According to the site suitability map for the EVCS, both the city 
centre and a smaller region in the eastern part of Bilbao are found to be 
the most suitable for developing new charging points. The reasons for 
this include their proximity to amenities, high availability of resources, 
and high demand for EVCS in these areas. It is worth mentioning that 
these results are based only on the judgments of smart grids’ and energy 
experts’. The results could vary if experts from different fields such as 
urban planning, transportation, engineering, and local stakeholders 
participated in the survey. The indicators used in this study were 
selected based on the findings of a literature review. Owing to the 
complexity and diversity of the urban system, it is more realistic to select 
these indicators based on the judgment of local experts and 

stakeholders. Furthermore, because Bilbao is still at the initial stage of 
developing EVs, it is advisable to establish these facilities in areas with 
upper-income households. However, including sites with lower-income 
families could be part of mid- or long-term planning. 

To analyse the energy profile of the EVCS precisely, a case study was 
selected based on a site suitability map. This analysis aimed to estimate 
the potential number of EVCS and penetrating EVs based on the relative 
frequency of EV charging during the day. The results indicated that it is 
possible to charge 16% more EVs by transmitting solar energy to the 
substations without increasing their distribution capacity. Solar energy 
provides sufficient power and reduces the pressure on the power grid, 
thereby enabling the charging of more electric vehicles. 

There are several limitations to the framework of this study that 
should be addressed in future research. Regarding the solar tool, a po-
tential improvement involves estimating solar energy generation from 
building façades, and further enhancements could focus on increasing 
the temporal resolution to hourly analysis or including multiple time-
slots to capture the solar potential and energy demand for an entire year. 
Furthermore, instead of considering limited specific days, as in this 
study for solar potential, a scenario-based analysis can cover the prob-
abilities and uncertainties of EV distribution and solar energy produc-
tion. Furthermore, the parametric solar tool does not consider the effects 
of daylight saving time, owing to the complexity and scope of this 
research. Therefore, future studies should explore the role of daylight- 
saving time in solar energy generation. 

To improve the EVCS placement approach, the integration of opti-
misation methods into this MCDM-based framework can effectively 
incorporate sustainability criteria. This approach optimises the sizing 
and placement of the EVCS while considering the grid dynamics. 
Furthermore, it may be beneficial to propose short-, mid-, and long-term 
scenarios for the penetration of EVs, and develop a methodology for car 
sharing. Regarding PV integration into the EV system methodology, this 
study did not consider multiple uncertainties such as EV arrival/de-
parture time, state of charge (SoC), and PV power. In future work, 
advanced scheduling algorithms, real-time data integration, information 
sharing, and advanced optimisation methods can be considered to 
improve grid stability and manage these uncertainties. Moreover, this 
study overlooked the dynamic nature of EV charging behaviour by using 
a simplified approach to estimate the EV load based on the number of 
cars served. It does not consider factors such as the simultaneous arrival 
of EVs, availability of charging piles at the EVCS, or queue times that can 
affect the EV load curve. Moreover, this framework must consider 
charging patterns, station capacities, and demand variations to reduce 
the complexity of the model. 
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