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ABSTRACT

Deconvolution of the hemodynamic response is an important step to access short timescales of brain activity recorded by functional 
magnetic resonance imaging (fMRI). Albeit conventional deconvolution algorithms have been around for a long time (e.g., Wiener 
deconvolution), recent state-of-the-art methods based on sparsity-pursuing regularization are attracting increasing interest to in-
vestigate brain dynamics and connectivity with fMRI. This technical note revisits the main concepts underlying two main methods, 
paradigm free mapping and total activation, in the most accessible way. Despite their apparent differences in the formulation, 
these methods are theoretically equivalent as they represent the synthesis and analysis sides of the same problem, respectively. We 
demonstrate this equivalence in practice with their best-available implementations using both simulations, with different signal-to-
noise ratios, and experimental fMRI data acquired during a motor task and resting state. We evaluate the parameter settings that 
lead to equivalent results and showcase the potential of these algorithms compared to other common approaches. This note is 
useful for practitioners interested in gaining a better understanding of state-of-the-art hemodynamic deconvolution and aims to 
answer questions that practitioners often have regarding the differences between the two methods.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) data 
analysis is often directed to identify and disentangle the 
neural processes that occur in different brain regions 
during task or at rest. As the blood oxygenation level- 
dependent (BOLD) signal of fMRI is only a proxy for neu-
ronal activity mediated through neurovascular coupling, 
an intermediate step that estimates the activity-inducing 
signal, at the timescale of fMRI, from the BOLD time- 
series can be useful. Conventional analysis of task fMRI 
data relies on the general linear models (GLM) to estab-
lish statistical parametric maps of brain activity by regres-
sion of the empirical timecourses against hypothetical 
ones built from the knowledge of the experimental para-
digm. However, timing information of the paradigm can 

be unknown, inaccurate, or insufficient in some scenarios 
such as naturalistic stimuli, resting state, or clinically rel-
evant assessments.

Deconvolution and methods alike are aiming to esti-
mate neuronal activity by undoing the blurring effect of 
the hemodynamic response, characterized as a hemo-
dynamic response function (HRF).1 Given the inherently 
ill-posed nature of hemodynamic deconvolution, due to 
the strong temporal low-pass characteristics of the HRF, 
the key is to introduce additional constraints in the esti-
mation problem that are typically expressed as regular-
izers. For instance, the so-called Wiener deconvolution 

1  Note that the term deconvolution is also alternatively employed to refer to the 
estimation of the hemodynamic response shape assuming a known activity- 
inducing signal or neuronal activity (1–4).
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is expressing a “minimal energy” constraint on the de-
convolved signal and has been used in the framework of 
psychophysiological interaction analysis to compute the 
interaction between a seed’s activity-inducing timecourse 
and an experimental modulation (5–9). Complementarily, 
the interest in deconvolution has increased to explore 
time-varying activity in resting-state fMRI data (10–13). 
In that case, the aim is to gain better insights of the 
neural signals that drive functional connectivity at short 
time scales, as well as learning about the spatiotemporal 
structure of functional components that dynamically con-
struct resting-state networks and their interactions (14).

Deconvolution of the resting-state fMRI signal has 
illustrated the significance of transient, sparse spon-
taneous events (15,16) that refine the hierarchical clus-
terization of functional networks (17) and reveal their 
temporal overlap based on their signal innovations not 
only in the human brain (18), but also in the spinal cord 
(19). Similar to task-related studies, deconvolution allows 
to investigate modulatory interactions within and be-
tween resting-state functional networks (20,21). In addi-
tion, decoding of the deconvolved spontaneous events 
allows to decipher the flow of spontaneous thoughts and 
actions across different cognitive and sensory domains 
while at rest (18,22,23). Beyond findings on healthy sub-
jects, deconvolution techniques have also proven their 
utility in clinical conditions to characterize functional al-
terations of patients with a progressive stage of multiple 
sclerosis at rest (24), to find functional signatures of pro-
dromal psychotic symptoms and anxiety at rest on pa-
tients suffering from schizophrenia 25), to detect the foci 
of interictal events in epilepsy patients without an EEG 
recording (17,26), or to study functional dissociations ob-
served during nonrapid eye movement sleep that are as-
sociated with reduced consolidation of information and 
impaired consciousness (27).

The algorithms for hemodynamic deconvolution can 
be classified based on the assumed hemodynamic model 
and the optimization problem used to estimate the 
neuronal-related signal. Most approaches assume a lin-
ear time-invariant model for the hemodynamic response 
that is inverted by means of variational (regularized) 
least-squares estimators (5,6,28–36), logistic functions 
(37–39), probabilistic mixture models (40), convolutional 
autoencoders (41), or nonparametric homomorphic fil-
tering (42). Alternatively, several methods have also been 
proposed to invert nonlinear models of the neuronal and 
hemodynamic coupling (43–49).

Among the variety of approaches, those based on reg-
ularized least-squares estimators have been employed 
more often due to their appropriate performance at small 
spatial scales (e.g., voxelwise). Relevant for this work, two 
different formulations can be established for the regular-
ized least-squares deconvolution problem, either based 
on a synthesis- or analysis-based model (50,51). The ra-
tionale of the synthesis-based model is that we know or 
suspect that the true signal (here, the neuronally driven 

BOLD component of the fMRI signal) can be represent-
ed as a linear combination of predefined patterns or 
dictionary atoms (for instance, the HRF). In contrast, the 
analysis-based approach considers that the true signal 
is analyzed by some relevant operator and the resulting 
signal is small (i.e., sparse).

As members of the groups that developed paradigm 
free mapping (PFM; synthesis based, solved with regular-
ized least-squares estimators such as ridge regression (28) 
or LASSO (30)) and total activation (TA; analysis based, 
also solved with a regularized least-squares estimator 
using generalized total variation (52,33)) deconvolution 
methods for fMRI data analysis, we are often contacted 
by researchers who want to know about the similarities 
and differences between the two methods and which 
one is better. It depends—and to clarify this point, this 
note revisits synthesis- and analysis-based deconvolution 
methods for fMRI data and comprises four sections. First, 
we present the theory behind these two deconvolution 
approaches based on regularized least-squares estima-
tors that promote sparsity: PFM (30)—available in AFNI 
as 3dPFM2 and 3dMEPFM3 for single-echo and multi-
echo data, respectively—and TA (33)—available as part 
of the iCAPs toolbox.4 We describe the similarities and 
differences in their analytical formulations, and how they 
can be related to each other. Next, we assess their per-
formance controlling for a fair comparison on simulated 
and experimental data. Finally, we discuss their benefits 
and shortcomings and conclude with our vision on po-
tential extensions and developments.

THEORY

Notations and Definitions

Matrices of size N rows and M columns are denoted by 
boldface capital letters, e.g., X ∈ ℝN×M, whereas column 
vectors of length N are denoted as boldface lowercase 
letters, e.g., x ∈ ℝN. Scalars are denoted by lowercase 
letters, e.g., k. Continuous functions are denoted by 
brackets, e.g., h(t), while discrete functions are denoted 
by square brackets, e.g., x[k]. The Euclidean norm of a 
matrix X is denoted as ||X||2, the ℓ1-norm is denoted by 
||X||1, and the Frobenius norm is denoted by ||X|F. The 
discrete integration (L) and difference (D) operators are 
defined as:
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2  https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dPFM.html.
3  https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dMEPFM.html.
4  https://c4science.ch/source/iCAPs/.
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Conventional General Linear Model Analysis

Conventional general linear model (GLM) analysis puts 
forward a number of regressors incorporating the knowl-
edge about the paradigm or behavior. For instance, the 
timing of epochs for a certain condition can be mod-
eled as an indicator function p(t) (e.g., Dirac functions 
for event-related designs or box-car functions for block- 
designs) convolved with the HRF h(t) and sampled at TR 
resolution (53–56):

x(t) = P × h(t) → x[k] = p × h(k · TR).

The vector x = [x[k]]k=1,...,N ∈ ℝN then constitutes the re-
gressor modeling the hypothetical response, and several 
of them can be stacked as columns of the design ma-
trix X = [x1 … xL] ∈ ℝN×L, leading to the well-known GLM 
formulation:

			   y = Xβ + e,� (1)

where the empirical timecourse y ∈ ℝN is explained by 
a linear combination of the regressors in X weighted 
by the parameters in β ∈ ℝL and corrupted by additive 
noise e ∈ ℝN. Under independent and identically distrib-
uted Gaussian assumptions of the latter, the maximum 
likelihood estimate of the parameter weights reverts to 
the ordinary least-squares estimator, i.e., minimizing the 
residual sum of squares between the fitted model and 
measurements. The number of regressors L is typically 
much less than the number of measurements N, and thus 
the regression problem is overdetermined and does not 
require additional constraints or assumptions (57).

In the deconvolution approach, no prior knowledge of 
the hypothetical response is taken into account, and the 
purpose is to estimate the deconvolved activity-inducing 
signal s from the measurements y, which can be formulat-
ed as the signal model

			   y = Hs + e,� (2)

where H ∈ ℝN×N is a Toeplitz matrix that represents 
the discrete convolution with the HRF and s ∈ ℝN is a 
length-N vector with the unknown activity-inducing sig-
nal. Note that the temporal resolution of the activity- 
inducing signal and the corresponding Toeplitz matrix is 
generally assumed to be equal to the TR of the acquisi-
tion, but it could also be higher if an upsampled estimate 
is desired. Despite the apparent similarity with the GLM 
equation, there are two important differences. First, the 
multiplication with the design matrix of the GLM is an 
expansion as a weighted linear combination of its col-
umns, while the multiplication with the HRF matrix rep-
resents a convolution operator. Second, determining s is 
an ill-posed problem given the nature of the HRF. As it 
can be seen intuitively, the convolution matrix H is highly 
collinear (i.e., its columns are highly correlated) due to 
large overlap between shifted HRFs (see Figure 2C), thus 
introducing uncertainty in the estimates of s when noise 
is present. Consequently, additional assumptions under 

the form of regularization terms (or priors) in the estimate 
are needed to reduce their variance. In the least-squares 
sense, the optimization problem to solve is given by

	 ŝ argmin
1
2

|| y Hs || (s)
s 2

2= − +Ω � (3)

The first term quantifies data fitness, which can be jus-
tified as the log-likelihood term derived from Gaussian 
noise assumptions, while the second term Ω(s) brings in 
regularization and can be interpreted as a prior on the 
activity-inducing signal. For example, the ℓ2-norm of 
s (i.e., Ω(s) = λ ||s||22) is imposed for ridge regression or 
Wiener deconvolution, which introduces a tradeoff be-
tween the data fit term and “energy” of the estimates 
that is controlled by the regularization parameter λ. 
Other well-known regularized terms are related to the 
elastic net (i.e., Ω(x) = λ1 ||x||22 + λ2 ||x||1) (58).

Paradigm Free Mapping

In PFM, the formulation of Eq. (3) was considered equiva-
lently as fitting the measurements using the atoms of the 
HRF dictionary (i.e., columns of H) with corresponding 
weights (entries of s). This model corresponds to a synthe-
sis formulation. In Gaudes et al. (30) a sparsity-pursuing 
regularization term was introduced on s, which, in a strict 
way, reverts to choosing Ω(s) = λ||s||0 as the regulariza-
tion term and solving the optimization problem (59). 
However, finding the optimal solution to the problem 
demands an exhaustive search across all possible combi-
nations of the columns of H. Hence, a pragmatic solution 
is to solve the convex-relaxed optimization problem for 
the ℓ1-norm, commonly known as Basis Pursuit Denoising 
(60) or equivalently as the least absolute shrinkage and 
selection operator (LASSO) (61):

	 λ= − + sŝ argmin
1
2

|| y Hs || || || ,
s 2

2
1 � (4)

which provides fast convergence to a global solution. 
Imposing sparsity on the activity-inducing signal implies 
that it is assumed to be well represented by a reduced 
subset of few nonzero coefficients at the fMRI times-
cale, which in turn trigger event-related BOLD respons-
es. Hereinafter, we refer to this assumption as the spike 
model. However, even if PFM was developed as a spike 
model, its formulation in Eq. (4) can be extended to es-
timate the innovation signal, i.e., the derivative of the 
activity-inducing signal, as shown in Section 2.5.

Total Activation

Alternatively, deconvolution can be formulated as if the 
signal to be recovered directly fits the measurements 
and at the same time satisfies some suitable regulariza-
tion, which leads to

	 xx̂ argmin
1
2

|| y x || (x).
x 2

2= − +Ω � (5)
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	 ˆ argmin
1
2

|| || || || ,2
2

1u y HLu u
u

λ= − + � (7)

and becomes equivalent to TA by replacing u = DDHx, 
and thus adopting the block model. Based on the previ-
ous Eqs. (4), (6), and (7), it is clear that both PFM and TA 
can operate under the spike and block models, provid-
ing a convenient signal model according to the different 
assumptions of the underlying neuronal-related signal. 
This work evaluates the core of the two techniques, i.e., 
the regularized least-squares problem with temporal reg-
ularization without considering the spatial regularization 
term originally incorporated in TA. For the remainder of 
this paper, we will use the PFM and TA formalisms with 
both spike and block models.

Algorithms and Parameter Selection

Despite their apparent resemblance, the practical im-
plementations of the PFM and TA methods proposed 
different algorithms to solve the corresponding optimi-
zation problem and select an adequate regularization 
parameter λ (30,33). The PFM implementation available 
in AFNI employs the least angle regression (LARS) (67), 
whereas the TA implementation uses the fast iterative 
shrinkage-thresholding algorithm (FISTA) (68). The blue 
box in Figure 1 provides a descriptive view of the itera-
tive modus operandi of the two algorithms.

On the one hand, LARS is a homotopy approach that 
computes all the possible solutions to the optimization 
problem and their corresponding value of λ, i.e., the 
regularization path, and the solution according to the 
Bayesian Information Criterion (BIC) (69), was recom-
mended as the most appropriate in the case of PFM 
approaches since Akaike Information Criteria (AIC) often 
tends to overfit the signal (30,31).

On the other hand, FISTA is an extension of the clas-
sical gradient algorithm that provides fast convergence 
for large-scale problems. In the case of FISTA though, 
the regularization parameter λ must be selected prior to 
solving the problem but can be updated in every itera-
tion so that the residuals of the data fit converge to an 
estimated noise level of the data :

		
N ˆ

1
2

|| y x ||

n

F

n1

n 2
λ

σ
λ=

−

+ ,� (8)

where xn is the nth iteration estimate, λn and λn+1 are the 
nth and (n + 1)th iteration values for the regularization 
parameter λ, and N is the number of points in the time-
course. The preestimated noise level can be obtained as 
the median absolute deviation (MAD) of the fine-scale 
wavelet coefficients (Daubechies, order 3) of the fMRI 
timecourse. The MAD criterion has been adopted in TA 
(33). Of note, similar formulations based on the MAD 
estimate have also been applied in PFM formulations 
(29,70).

Under this analysis formulation, total variation (TV), i.e., 
the ℓ1-norm of the derivative Ω(x) = λ ||Dx||1, is a powerful 
regularizer since it favors recovery of piecewise-constant 
signals (62). Going beyond, the approach of generalized 
TV introduces an additional differential operator DH in the 
regularizer that can be tailored as the inverse operator of 
a linear system (52), that is, Ω(x) = λ||DDHx||1. In the con-
text of hemodynamic deconvolution, TA is proposed for 
which the discrete operator DH is derived from the inverse 
of the continuous-domain linearized Balloon-Windkessel 
model (63,64). The interested reader is referred to 
(33,52,65) for a detailed description of this derivation.

Therefore, the solution of the TA problem

	 ˆ argmin
1
2

|| y x || ||DD ||
x 2

2
1x XHλ= − + � (6)

will yield the activity-related signal x for which the activ-
ity-inducing signal s = DHx and the so-called innovation 
signal u = Ds, i.e., the derivate of the activity-inducing 
signal, will also be available, as they are required for the  
regularization. We refer to modeling the activity-inducing  
signal based on the innovation signal as the block model. 
Nevertheless, even if TA was originally developed as 
a block model, its formulation in Eq. (6) can be made 
equivalent to the spike model as shown in Section 2.5.

Unifying Both Perspectives

PFM and TA are based on the synthesis- and analysis- 
based formulation of the deconvolution problem, re-
spectively. They are also tailored for the spike and block 
model, respectively. In the first case, the recovered de-
convolved signal is synthesized to be matched to the 
measurements, while in the second case, the recovered 
signal is directly matched to the measurements but 
needs to satisfy its analysis in terms of deconvolution. 
This also corresponds to using the forward or backward 
model of the hemodynamic system, respectively. Hence, 
it is possible to make both approaches equivalent (50).5

To start with, TA can be made equivalent to PFM by 
adapting it for the spike model; i.e., when removing the 
derivative operator D of the regularizer in Eq. (6), it can 
be readily verified that replacing in that case x = Hs leads 
to identical equations and thus both assume a spike 
model, since H and DH will cancel out each other (52).6

Conversely, the PFM spike model can also accommo-
date the TA block model by modifying Eq. (4) with the 
forward model y = HLu + e. Here, the activity-inducing 
signal s is rewritten in terms of the innovation signal u as 
s = Lu, where the matrix L is the first-order integration 
operator (34,66). This way, PFM can estimate the innova-
tion signal u as follows,

5  Without dwelling into technicalities, for total variation, this equivalence 
is correct up to the constant, which is in the null space of the derivative 
operator.
6  Again, this holds up to elements of the null space.
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Fig. 1.  Flowchart detailing the different steps of the fMRI signal and the deconvolution methods described. The orange arrows indicate the flow to estimate the 
innovation signals, i.e., the derivative of the activity-inducing signal. The blue box depicts the iterative modus operandi of the two algorithms used in this paper to solve 
the PFM and total activation (TA) deconvolution problems. The plot on the left shows the regularization path obtained with the least angle regression (LARS) algorithm, 
where the x-axis illustrates the different iterations of the algorithm, the y-axis represents points in time, and the color describes the amplitude of the estimated signal. 
The middle plot depicts the decreasing values of λ for each iteration of LARS as the regularization path is computed. The green and red dashed lines in both plots 
illustrate the Bayesian Information Criterion (BIC) and median absolute deviation (MAD) solutions, respectively. Comparatively, the changes in λ when the fast iterative 
shrinkage-thresholding algorithm (FISTA) method is made to converge to the MAD estimate of the noise are shown on the right. Likewise, the λ corresponding to the 
BIC and MAD solutions are shown with dashed lines.

METHODS

Simulated Data

To compare the two methods while controlling for their 
correct performance, we created a simulation scenario 
that can be found in the GitHub repository shared in 
Section 6. For the sake of illustration, we describe here 
the simulations corresponding to a timecourse with a 
duration of 400 seconds (TR = 2 s) where the activity- 
inducing signal includes 5 events, which are convolved 
with the canonical HRF. Different noise sources (physio-
logical, thermal, and motion related) were also added, 
and we simulated three different scenarios with varying 
signal-to-noise ratios (SNR = 20, 10, 3 dB) that represent 
high, medium, and low contrast-to-noise ratios as shown 
in Figure 2A. Noise was created following the procedure 
in (30) as the sum of uncorrelated Gaussian noise and 
sinusoidal signals to simulate a realistic noise model 
with thermal noise, cardiac and respiratory physiological 
fluctuations, respectively. The physiological signals were 
generated as

	 f t f t
1

2
(sin(2 ) sin(2 )),i i r i r i c i c i1

2
1 , , , ,π φ π φ∑ + + += − � (9)

with up to second-order harmonics per cardiac (fc,i) and 
respiratory (fr,i) component that were randomly generat-
ed following normal distributions with variance 0.04 and 
mean ifr and ifc, for i = [1, 2]. We set the fundamental 
frequencies to fr = 0.3 Hz for the respiratory compo-
nent (71) and fc = 1.1 Hz for the cardiac component (72). 

The phases of each harmonic ϕ were randomly selected 
from a uniform distribution between 0 and 2π radians. 
To simulate physiological noise that is proportional to 
the change in BOLD signal, a variable ratio between the 
physiological (σp) and the thermal (σ0) noise was mod-
eled as σp/σ0 = a(tSNR)b + c, where a = 5.01 × 10−6,  
b = 2.81, and c = 0.397, following the experimental mea-
sures available in table 3 from (73).

Experimental Data

To compare the performance of the two approaches as 
well as illustrate their operation, we employ two repre-
sentative experimental data sets.

Motor task data set: One healthy subject was 
scanned in a 3T MR scanner (Siemens) under a Basque 
Center on Cognition, Brain and Language Review Board-
approved protocol. T2*-weighted multi-echo fMRI data 
was acquired with a simultaneous-multislice multi-echo 
gradient echo-planar imaging sequence, kindly pro-
vided by the Center of Magnetic Resonance Research 
(University of Minnesota, USA) (74–76), with the following  
parameters: 340 time frames, 52 slices, partial Fourier = 
6/8, voxel size = 2.4 × 2.4 × 3 mm3, TR = 1.5 s, TEs = 
10.6/28.69/46.78/64.87/82.96 ms, flip angle = 70°, multi-
band factor = 4, GRAPPA = 2.

During the fMRI acquisition, the subject performed a 
motor task consisting of five different movements (left-
hand finger-tapping, right-hand finger-tapping, moving 
the left toes, moving the right toes, and moving the 
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Fig. 2.  (A) Simulated signal with different SNRs (20, 10, and 3 dB) and ground truth given in signal 
percentage change (SPC). (B) Canonical HRF models typically used by PFM (solid line) and TA (dashed 
line) at TR = 0.5 s (blue), TR = 1 s (green), and TR = 2 s (black). Without loss of generality, the waveforms 
are scaled to unit amplitude for visualization. (C) Representation of shifted HRFs at TR = 2 s that build the 
design matrix for PFM when the HRF model has been matched to that in TA. The red line corresponds 
to one of the columns of the HRF matrix.

tongue) that were visually cued through a mirror located 
on the head coil. These conditions were randomly inter-
mixed every 16 seconds and were only repeated once 
the entire set of stimuli was presented. Data preprocess-
ing consisted of, first, discarding the first 10 volumes of 
the functional data to achieve a steady state of magne-
tization. Then, image realignment to the skull-stripped 
single-band reference image (SBRef) was computed on 
the first echo, and the estimated rigid-body spatial trans-
formation was applied to all other echoes (77,78). A brain 
mask obtained from the SBRef volume was applied to 
all the echoes, and the different echo time-series were 
optimally combined (OC) voxelwise by weighting each 
time-series contribution by its T2* value (79). AFNI (80) 
was employed for a detrending of up to fourth-order 
Legendre polynomials, within-brain spatial smoothing  
(3 mm FWHM) and voxelwise signal normalization to per-
centage change. Finally, distortion field correction was 
performed on the OC volume with Topup (81), using the 
pair of spin-echo EPI images with reversed phase encod-
ing acquired before the ME-EPI acquisition (82).

Resting-state data sets: One healthy subject was 
scanned in a 3T MR scanner (Siemens) under a Basque 

Center on Cognition, Brain and Language Review Board-
approved protocol. Two runs of T2*-weighted fMRI data 
were acquired during resting state, each with 10 min 
duration, with (1) a standard gradient-echo echo-planar 
imaging sequence (monoband) (TR = 2000 ms, TE = 29 
ms, flip angle = 78°, matrix size = 64 × 64, voxel size = 
3 × 3 × 3 mm3, 33 axial slices with interleaved acquisi-
tion, slice gap = 0.6 mm) and (2) a simultaneous-multis-
lice gradient-echo echo-planar imaging sequence (mul-
tiband factor = 3, TR = 800 ms, TE = 29 ms, flip angle = 
60°, matrix size = 64 × 64, voxel size = 3 × 3 × 3 mm3, 
42 axial slices with interleaved acquisition, no slice gap). 
Single-band reference images were also collected in 
both resting-state acquisitions for head motion realign-
ment. Field maps were also obtained to correct for field 
distortions.

During both acquisitions, participants were instructed 
to keep their eyes open, fixating a white cross that they 
saw through a mirror located on the head coil, and not 
to think about anything specific. The data were prepro-
cessed using AFNI (80). First, volumes corresponding 
to the initial 10 seconds were removed to allow for a 
steady-state magnetization. Then, the voxel time-series 
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in terms of the estimation of the activity-inducing signal 
ŝ using the spike model described in (4) and the block 
model based on the innovation signal û in (7).

For selection based on the BIC, LARS was initially per-
formed with the PFM deconvolution model to obtain the 
solution for every possible A in the regularization path. 
Then, the values of A corresponding to the BIC optimum 
were adopted to solve the TA deconvolution model by 
means of FISTA.

For a selection based on the MAD estimate of the 
noise, we apply the temporal regularization in its original 
form for TA, whereas for PFM the selected A corresponds 
to the solution whose residuals have the closest standard 
deviation to the estimated noise level of the data σ̂ .

Analyses in Experimental fMRI Data

Difference between approaches: To assess the discrep-
ancies between both approaches when applied on ex-
perimental fMRI data, we calculate the square root of the 
sum of squares of the differences (RSSD) between the 
activity-inducing signals estimated with PFM and TA on 
the three experimental data sets as

	 = ∑ −=N
s k s kRSSD

1
( ˆ [ ] ˆ [ ]) ,k

N
1 PFM TA

2
� (10)

where N is the number of time-points of the acquisi-
tion. The RSSD of the innovation signals û was computed 
equally.

Task fMRI data: In the analysis of the motor task data, 
we evaluate the performance of PFM and TA in compar-
ison with a conventional general linear model analysis 
(3dDeconvolve in AFNI) that takes advantage of the in-
formation about the duration and onsets of the motor 
trials. Given the block design of the motor task, we only 
make this comparison with the block model.

Resting-state fMRI data: We also illustrate the use-
fulness of deconvolution approaches in the analysis of 
resting-state data where information about the timings 
of neuronal-related BOLD activity cannot be predicted. 
Apart from being able to explore individual maps of 
deconvolved activity (i.e., innovation signals, activity- 
inducing signals, or hemodynamic signals) at the tem-
poral resolution of the acquisition (or deconvolution), 
here we calculate the average extreme points of the 
activity-inducing and innovation maps (given that these 
examples do not have a sufficient number of scans to 
perform a clustering step) and illustrate how popular ap-
proaches like coactivation patterns (CAPs) (85,86) and in-
novation-driven coactivation patterns (iCAPs) (18) can be 
applied on the deconvolved signals to reveal patterns of 
coordinated brain activity. To achieve this, we calculate 
the average time-series in a seed of 9 voxels located in 
the precuneus, supramarginal gyrus, and occipital gyri 
independently and solve the deconvolution problem to 
find the activity-inducing and innovation signals in the 

were despiked to reduce large-amplitude deviations and 
slice-time corrected. Inhomogeneities caused by mag-
netic susceptibility were corrected with FUGUE (FSL) 
using the field map images (77). Next, functional imag-
es were realigned to a base volume (monoband: volume 
with the lowest head motion; multiband: single-band ref-
erence image). Finally, a simultaneous nuisance regres-
sion step was performed comprising up to sixth-order 
Legendre polynomials, low-pass filtering with a cutoff 
frequency of 0.25 Hz (only on multiband data to match 
the frequency content of the monoband), 6 realignment 
parameters plus temporal derivatives, 5 principal com-
ponents of white matter (WM), 5 principal components 
of lateral ventricle voxels (anatomical CompCor) (83), 
and 5 principal components of the brain’s edge voxels 
(84). WM, CSF, and brain’s edge-voxel masks were ob-
tained from Freesurfer tissue and brain segmentations. 
In addition, scans with potential artifacts were identified 
and censored when the Euclidean norm of the temporal 
derivative of the realignment parameters (ENORM) was 
larger than 0.4 and the proportion of voxels adjusted in 
the despiking step exceeded 10%.

Selection of the Hemodynamic Response 
Function

In their original formulations, PFM and TA specify the 
discrete-time HRF in different ways. For PFM, the con-
tinuous-domain specification of the canonical dou-
ble-gamma HRF (57) is sampled at the TR and then put 
as shifted impulse responses to build the matrix H. In the 
case of TA, however, the continuous-domain linearized 
version of the Balloon-Windkessel model is discretized 
to build the linear differential operator in DH. While the 
TR only changes the resolution of the HRF shape for PFM, 
the impact of an equivalent impulse response of the 
discretized differential operator at different TR is more 
pronounced. As shown in Figure 2B, longer TR leads to 
equivalent impulse responses of TA that are shifted in 
time, provoking a lack of the initial baseline and rise of 
the response. We refer the reader to Figure S1 to see the 
differences in the estimation of the activity-inducing and 
innovation signals when both methods use the HRF in 
their original formulation. To avoid differences between 
PFM and TA based on their built-in HRF, we choose to 
build the synthesis operator H with shifted versions of 
the HRF given by the TA analysis operator (e.g., see 
Figure 2C for the TR = 2 s case).

Selection of the Regularization Parameter

We use the simulated data to compare the performance of 
the two deconvolution algorithms with both BIC and MAD 
criteria to set the regularization parameter A (see Section 
2.6). We also evaluate if the algorithms behave differently 



 : 2023, Volume 3	 - 8 -� CC By 4.0: © Uruñuela et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

seeds. We then apply a 95th percentile threshold and 
average the maps of the time frames that survive the 
threshold. Finally, we apply the same procedure to the 
original—i.e., non-deconvolved—signal in the seed and 
compare the results with the widely used seed correla-
tion approach.

RESULTS

Performance Based on the Regularization 
Parameter

Figure 3A shows the regularization paths of PFM and TA 
side by side obtained for the spike model of Eq. (4) for 
SNR = 3 dB. The solutions for all three SNR conditions are 
shown in Figures S2 and S3. Starting from the maximum 
λ corresponding to a null estimate and for decreasing 
values of λ, LARS computes a new estimate at the value 
of λ that reduces the sparsity promoted by the ℓ1-norm 
and causes a change in the active set of nonzero coef-
ficients of the estimate (i.e., a zero coefficient becomes 
nonzero or vice versa) as shown in the horizontal axis of 
the heatmaps. Vertical dashed lines depict the selection 
of the regularization parameter based on the BIC, and 
thus, the colored coefficients indicated by these depict 
the estimated activity-inducing signal ŝ. Figure 3B illus-
trates the resulting estimates of the activity-inducing and 
activity-related hemodynamic signals when basing the 
selection of λ on the BIC for SNR = 3 dB. Given that the 
regularization paths of both approaches are identical, it 
can be clearly observed that the BIC-based estimates are 
identical too for the corresponding λ. Thus, Figures 3A 
and B, S2, and S3 demonstrate that, regardless of the 
simulated SNR condition, the spike model of both de-
convolution algorithms produces identical regularization 
paths when the same HRF and regularization parameters 
are applied, and hence, identical estimates of the activity- 
inducing signal ŝ and neuronal-related hemodynamic 
signal x̂. Likewise, Figure 3C demonstrates that the reg-
ularization paths for the block model defined in Eqs. (6) 
and (7) also yield virtually identical estimates of the inno-
vation signals for both PFM and TA methods. Again, the 
BIC-based selection of λ is identical for both PFM and 
TA. As illustrated in Figure 3D, the estimates of the in-
novation signal u also show no distinguishable differenc-
es between the algorithms. Figure 3A–D demonstrates 
that both PFM and TA yield equivalent regularization 
paths and estimates of the innovation signal and activity- 
inducing signal regardless of the simulated SNR condi-
tion when applying the same HRF and regularization pa-
rameters with the block and spike models.

As for selecting λ with the MAD criterion defined in Eq. 
(8), Figure 3E depicts the estimated activity-inducing and 
activity-related signals for the simulated low-SNR setting 
using the spike model, while Figure 3F shows the esti-
mated signals corresponding to the block model. Both 

plots in Figure 3E and F depict nearly identical results 
between PFM and TA with both models. Given that the 
regularization paths of both techniques are identical, 
minor dissimilarities are owing to the slight differences in 
the selection of λ due to the quantization of the values 
returned by LARS.

Performance on Experimental Data

Figure 4 depicts the RSSD maps revealing differences be-
tween PFM and TA estimates for the spike (Figure 4A and 
C) and block (Figure 4B and D) models when applied to 
the three experimental fMRI data sets. The RSSD values 
are virtually negligible (i.e., depicted in yellow) in most of 
the within-brain voxels and lower than the amplitude of 
the estimates of the activity-inducing and innovation sig-
nals. Based on the maximum value of the range shown in 
each image, we observe that the similarity between both 
approaches is more evident for the spike model (with 
both selection criteria) and the block model with the BIC 
selection. However, given the different approaches used 
for the selection of the regularization parameter λ based 
on the MAD estimate of the noise (i.e., converging so 
that the residuals of FISTA are equal to the MAD esti-
mate of the noise for TA vs. finding the LARS residual that 
is closest to the MAD estimate of the noise), 319 higher 
RSSD values can be observed with the largest differenc-
es occurring in gray matter voxels. 320 These areas also 
correspond to low values of λ (see Figure S4) and MAD 
estimates of the noise 321 (see Figure S5), while the high-
est values are visible in regions with signal dropouts, ven-
tricles, 322 and white matter. These differences that arise 
from the differing methods to find the optimal regulariza-
tion parameter based on the MAD estimate of the noise 
can be clearly seen in the root sum of squares (RSS) of 
the estimates of the two methods (Figure S6). These dif-
ferences are also observable in the activation time-series 
(ATS) calculated from estimates obtained with the MAD 
selection as shown in Figure S9. However, the identical 
regularization paths shown in Figure S7 demonstrate 
that both methods perform equivalently on experimen-
tal data (see estimates of innovation signal obtained with 
an identical selection of λ in Figure S8). Hence, the high-
er RSSD values originate from the different methods to 
find the optimal regularization parameter based on the 
MAD estimate of the noise that yield different solutions 
as shown by the dashed vertical lines in Figure S7.

Figure 5 depicts the results of the analysis of the Motor 
data set with the PFM and TA algorithms using the BIC 
selection of λ (see Figure S9 for results with MAD selec-
tion), as well as a conventional GLM approach. The ATS 
(top left), calculated as the sum of squares of all voxel 
amplitudes (positive vs. negative) for a given moment 
in time, obtained with PFM and TA show nearly iden-
tical patterns. These ATS help to summarize the four- 
dimensional information available in the results across 
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Fig. 3.  (A) Heatmap of the regularization paths of the activity-inducing signals (spike model) estimated with PFM and TA as a function of λ for the simulated data 
with SNR = 3 dB (x-axis: increasing number of iterations or λ as given by LARS; y-axis: time; color: amplitude). Vertical lines denote iterations corresponding to the 
BIC (dashed line) and MAD (dotted line) selection of λ. (B) Estimated activity-inducing (blue) and activity-related (green) signals with a selection of λ based on the BIC. 
Orange and red lines depict the ground truth. (C) Heatmap of the regularization paths of the innovation signals (block model) estimated with PFM and TA as a function 
of λ for the simulated data with SNR = 3 dB. (D) Estimated innovation (blue), activity-inducing (darker blue), and activity-related (green) signals with a selection of λ based 
on the BIC. (E) Activity-inducing and activity-related (fit, x) signals estimated with PFM (top) and TA (bottom) when λ is selected based on the MAD method with the spike 
model, and (F) with the block model for the simulated data with SNR = 3 dB.

the spatial domain and identify instances of significant 
BOLD activity. The second to sixth rows show the voxel 
time-series and the corresponding activity-related,  
activity-inducing, and innovation signals obtained with 
PFM using the BIC criterion of representative vox-
els in the regions activated in each of the motor tasks.  
The TA-estimated time-series are not shown because 
they were virtually identical. The maps shown on the 
right correspond to statistical parametric maps obtained 
with the GLM for each motor condition (p < 0.001) as 
well as the maps of the PFM and TA estimates at the on-
sets of individual motor events (indicated with arrows in 

the timecourses). The estimated activity-related, activity- 
inducing, and innovation signals clearly reveal the activ-
ity patterns of each condition in the task, as they exhibit 
a BOLD response locked to the onset and duration of 
the conditions. Overall, activity maps of the innovation 
signal obtained with PFM and TA highly resemble those 
obtained with a GLM for individual events, with small dif-
ferences arising from the distinct specificity of the GLM 
and deconvolution analyses. Notice that the differences 
observed with the different approaches to select λ based 
on the MAD estimate shown in Figure 4 are reflected on 
the ATS shown in Figure S9 as well.
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Fig. 4.  Square root of the sum of squared differences (RSSD) between the estimates obtained with PFM and TA for (A) spike model (activity-inducing signal) and 
BIC selection of λ, (B) block model (innovation signal) and BIC selection, (C) spike model (activity-inducing signal) and MAD selection, (D) block model (innovation 
signal) and MAD selection. RSSD maps are shown for the three experimental fMRI data sets: the motor task (Motor), the monoband resting state (Mono), and the 
multiband resting state (Multi).

As an illustration of the insights that deconvolution 
methods can provide in the analysis of resting-state data, 
Figure 6 depicts the average activity-inducing and inno-
vation maps of common resting-state networks obtained 
from thresholding and averaging the activity-inducing 
and innovation signals, respectively, estimated from the 
resting-state multiband data using PFM with a selection 
of λ based on the BIC. The average activity-inducing 
maps obtained via deconvolution show spatial patterns 
of the default mode network (DMN), dorsal attention net-
work (DAN), and visual network (VIS) that highly resemble 
the maps obtained with conventional seed correlation 
analysis using Pearson’s correlation and the average 
maps of extreme points of the signal (i.e., with no de-
convolution). With deconvolution, the average activity- 
inducing maps seem to depict more accurate spatial 
delineation (i.e., less smoothness) than those obtained 
from the original data, while maintaining the structure 
of the networks. The BIC-informed selection of λ yields 
spatial patterns of average activity-inducing and inno-
vation maps that are more sparse than those obtained 
with a selection of λ based on the MAD estimate (see 
Figure S10). Furthermore, the spatial patterns of the av-
erage innovation maps based on the innovation signals 
using the block model yield complementary information 
to those obtained with the activity-inducing signal since 

iCAPs allow to reveal regions with synchronous innova-
tions, i.e., with the same upregulating and downregu-
lating events. For instance, it is interesting to observe 
that the structure of the visual network nearly disappears 
in its corresponding average innovation maps, suggest-
ing the existence of different temporal neuronal pat-
terns across voxels in the primary and secondary visual 
cortices.

DISCUSSION AND CONCLUSION

Hemodynamic deconvolution can be formulated using a 
synthesis- and analysis-based approach as proposed by 
PFM and TA, respectively. This work demonstrates that 
the theoretical equivalence of both approaches is con-
firmed in practice given virtually identical results when 
the same HRF model and equivalent regularization pa-
rameters are employed. Hence, we argue that previously 
observed differences in performance can be explained 
by specific settings, such as the HRF model and selection 
of the regularization parameter (as shown in Figures 4, 
S6, and S7), convergence thresholds, as well as the addi-
tion of a spatial regularization term in the spatiotemporal 
TA formulation (33). For instance, the use of PFM with 
the spike model in (23) was seen not to be ideal due to 
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Fig. 5.  Activity maps of the motor task using a selection of λ based on the BIC estimate. Row 1: Activation time-series (ATS) of the innovation signals estimated by 
PFM (in blue) or TA (in red) calculated as the sum of squares of all voxels at every time-point. Positive-valued and negative-valued contributions were separated into 
two distinct timecourses. Color bands indicate the onset and duration of each condition in the task (green: tongue motion, purple: left-hand finger-tapping, blue: right-
hand finger-tapping, red: left-foot toes motion, orange: right-foot toes motion). Rows 2–6: time-series of a representative voxel for each task with the PFM-estimated 
innovation (blue), PFM-estimated activity-inducing (green), and activity-related (i.e., fitted, orange) signals, with their corresponding GLM, PFM, and TA maps on the 
right (representative voxels indicated with green arrows). Amplitudes are given in signal percentage change (SPC). The maps shown on the right are sampled at the 
time-points labeled with the red arrows and display the innovation signals at these moments across the whole brain.

the prolonged trials in the paradigm, which better fit the 
block model as described here (7). However, given the 
equivalence of the temporal deconvolution, incorporat-
ing extra spatial or temporal regularization terms in the 
optimization problem should not modify this equivalence 
provided convex operators are employed. For a convex 
optimization problem, with a unique global solution, it-
erative shrinkage-thresholding procedures alternating 
between the different regularization terms guarantee 
convergence, e.g., the generalized forward-backward 
splitting (87) algorithm originally employed for TA. Our 
findings are also in line with the equivalence of analysis 

and synthesis methods in underdetermined cases (N ≤ V) 
demonstrated in (50) and (51). Still, we have shown that 
a slight difference in the selection of the regularization 
parameter can lead to small differences in the estimat-
ed signals when employing the block model with the 
MAD selection of λ. However, since their regularization 
paths are equivalent, the algorithms can easily be forced 
to converge to the same selection of λ, thus resulting in 
identical estimated signals.

Nevertheless, the different formulations of analysis 
and synthesis deconvolution models bring along differ-
ent kinds of flexibility. One notable advantage of PFM is 
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for calcium imaging deconvolution (88,89) and that have 
been applied for offline calcium deconvolution (90).

Deconvolution techniques can be used before more 
downstream analysis of brain activity in terms of func-
tional network organization as they estimate interactions 
between voxels or brain regions that occur at the activity- 
inducing level and are thus less affected by the slowness 
of the hemodynamic response compared to when the 
BOLD signals are analyzed directly. In addition, decon-
volution approaches hold a close parallelism to recent 
methodologies aiming to understand the dynamics of 
neuronal activations and interactions at short temporal 
resolution and that focus on extreme events of the fMRI 
signal (91). As an illustration, Figure 6 shows that the inno-
vation- or activity-inducing CAPs computed from decon-
volved events in a single resting-state fMRI data set closely 
resemble the conventional CAPs computed directly from 
extreme events of the fMRI signal (85,86,92–99). Similarly, 
we hypothesize that these extreme events will also show 
a close resemblance to intrinsic ignition events (100,101). 
As shown in the maps, deconvolution approaches can 
offer a more straightforward interpretability of the activa-
tion events and resulting functional connectivity patterns. 
Here, CAPs were computed as the average of spatial 
maps corresponding to the events of a single data set. 
Beyond simple averaging, clustering algorithms (e.g., 
K-means and consensus clustering) can be employed to 
discern multiple CAPs or iCAPs at the whole-brain level 

that it can readily incorporate any HRF as part of the syn-
thesis operator (50), only requiring the sampled HRF at 
the desired temporal resolution, which is typically equal 
to the TR of the acquisition. Conversely, TA relies upon 
the specification of the discrete differential operator that 
inverts the HRF, which needs to be derived either by the 
inverse solution of the sampled HRF impulse response, 
or by discretizing a continuous-domain differential op-
erator motivated by a biophysical model. The more ver-
satile structure of PFM allows for instance an elegant 
extension of the algorithm to multi-echo fMRI data (31) 
where multiple measurements relate to a common un-
derlying signal. Therefore, the one-to-many synthesis 
scenario (i.e., from activity-inducing to several activity- 
related signals) is more cumbersome to express using 
TA; i.e., a set of differential operators should be defined 
and the differences between their outputs constrained. 
Conversely, the one-to-many analysis scenario (i.e., from 
the measurements to several regularizing signals) is more 
convenient to be expressed by TA, e.g., combining spike 
and block regularizers. While the specification of the dif-
ferential operator in TA only indirectly controls the HRF, 
the use of the derivative operator to enforce the block 
model, instead of the integrator in PFM, impacts pos-
itively the stability and rate of the convergence of the 
optimization algorithms. Moreover, analysis formula-
tions can be more suitable for online applications that 
are still to be explored in fMRI data but are employed 

Fig. 6.  Average activity-inducing (left) and innovation (right) maps obtained from PFM-estimated activity-inducing and innovation signals, respectively, using a BIC-
based selection of λ. Time-points selected with a 95th percentile threshold (horizontal lines) are shown over the average time-series (blue) in the seed region (white 
cross) and the deconvolved signals, i.e., activity-inducing (left) and innovation (right) signals (orange). Average maps of extreme points and seed correlation maps are 
illustrated in the center.
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for a large number of subjects. Previous findings based 
on iCAPs have for instance revealed organizational prin-
ciples of brain function during rest (18) and sleep (102) in 
healthy controls, next to alterations in 22q11ds (103) and 
multiple sclerosis (104). Next to CAPs-inspired approach-
es, dynamic functional connectivity has recently been 
investigated with the use of cofluctuations and edge- 
centric techniques (105–109). The ATS shown in Figure 5 
aim to provide equivalent information to the root of sum 
of squares timecourses used in edge-centric approach-
es, where timecourses with peaks delineate instances 
of significant brain activity. Future work could address 
which type of information is redundant or distinct across 
these frameworks. In summary, these examples illustrate 
that deconvolution techniques can be employed prior to 
other computational approaches and could serve as an 
effective way of denoising the fMRI data. We foresee an 
increase in the number of studies that take advantage of 
the potential benefits of using deconvolution methods 
prior to functional connectivity analyses.

In sum, hemodynamic deconvolution approaches 
using sparsity-driven regularization are valuable tools 
to complete the fMRI processing pipeline. Although the 
two approaches examined in detail here provide alter-
native representations of the BOLD signals in terms of 
innovation and activity-inducing signals, their current 
implementations have certain limitations, calling for fur-
ther developments or more elaborate models, where 
some of them have been initially addressed in the lit-
erature. One relevant focus is to account for the vari-
ability in HRF that can be observed in different regions 
of the brain. First, variability in the temporal character-
istics of the HRF can arise from differences in stimulus 
intensity and patterns, as well as with short interevent 
intervals like in fast cognitive processes or experimental 
designs (110–113). Similarly, the HRF shape at rest might 
differ from the canonical HRF commonly used for task-
based fMRI data analysis. A wide variety of HRF patterns 
could be elicited across the whole brain and possible 
detected with sufficiently large signal-to-noise ratio; 
e.g., (114) showed two gamma-shaped responses at the 
onset and the end of the evoked trial, respectively. This 
unique HRF shape would be deconvolved as two sepa-
rate events with the conventional deconvolution tech-
niques. The impact of HRF variability could be reduced 
using structured regularization terms along with multiple 
basis functions (29) or procedures that estimate the HRF 
shape in an adaptive fashion in both analysis (115) and 
synthesis formulations (116).

Another avenue of research consists in leveraging spa-
tial information by adopting multivariate deconvolution 
approaches that operate at the whole-brain level, instead 
of working voxelwise and beyond regional regularization 
terms (e.g., as proposed in 33). Operating at the whole-
brain level would open the way for methods that consider 
shared neuronal activity using mixed norm regularization 

terms (117) or can capture long-range neuronal cofluctu-
ations using low-rank decompositions (118). For exam-
ple, multivariate deconvolution approaches could yield 
better localized activity patterns while reducing the ef-
fect of global fluctuations such as respiratory artifacts, 
which cannot be modeled at the voxel level (119).

Similar to solving other inverse problems by means of 
regularized estimators, the selection of the regularization 
parameter is critical to correctly estimate the neuronal- 
related signal. Hence, methods that take advantage of 
a more robust selection of the regularization parameter 
could considerably yield more reliable estimates of the 
neuronal-related signal. For instance, the stability selection 
(65,120) procedure could be included to the deconvolu-
tion problem to ensure that the estimated coefficients are 
obtained with high probability. Furthermore, an import-
ant issue of regularized estimation is that the estimates 
are biased with respect to the true value. In that sense, 
the use of nonconvex ℓp,q-norm regularization terms (e.g.,  
p < 1) can reduce this bias while maintaining the sparsity 
constraint, at the cost of potentially converging to a local 
minima of the regularized estimation problem. In practice, 
these approaches could avoid the optional debiasing step 
that overcomes the shrinkage of the estimates and ob-
tain a more accurate and less biased fit of the fMRI signal 
(30,31). Finally, cutting-edge developments on physics- 
informed deep learning techniques for inverse problems 
(118,121–123) could be transferred for deconvolution by 
considering the biophysical model of the hemodynam-
ic system and could potentially offer algorithms with re-
duced computational time and more flexibility.

CODE AND DATA AVAILABILITY

The code and materials used in this work can be found 
in the following GitHub repository: https://github.com/
eurunuela/pfm_vs_ta. We encourage the reader to ex-
plore the parameters (e.g., SNR, varying HRF options 
and mismatch between algorithms, TR, number of 
events, onsets, and durations) in the provided Jupyter 
notebooks. Likewise, the data used to produce the fig-
ures can be found in https://osf.io/f3ryg/.
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SUPPLEMENTARY MATERIAL FOR HEMODYNAMIC 850 DECONVOLUTION DEMYSTIFIED: 
SPARSITY-DRIVEN REGULARIZATION AT WORK

Fig. S1.  Activity-inducing (A) and innovation (B) signals estimated with PFM (red) and TA (blue) using their built-in HRF as opposed to using the same. The black line 
depicts the simulated signal, while the green lines indicate the onsets of the simulated neuronal events. X-axis shows time in TRs.



 : 2023, Volume 3	 - 18 -� CC By 4.0: © Uruñuela et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

Fig. S2.  Spike model simulations. (Left) Heatmap of the regularization paths of the activity-inducing signal estimated with PFM and TA as a function of λ (increas-
ing number of iterations in x-axis), whereas each row in the y-axis shows one time-point. Vertical lines denote iterations corresponding to the Akaike and Bayesian 
Information Criteria (AIC and BIC) optima. (Right) Estimated activity-inducing (blue) and activity-related (green) signals when set based on BIC. All estimates are identical, 
regardless of SNR.
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Fig. S3.  Block model simulations. (Left) Heatmap of the regularization paths of the innovation signal estimated with PFM and TA as a function of λ (increasing number 
of iterations in x-axis), whereas each row in the y-axis illustrates one time-point. Vertical lines denote iterations corresponding to the Akaike and Bayesian Information 
Criteria (AIC and BIC) optima. (Right) Estimated innovation (blue) and activity-related (green) signals when is set based on BIC. All the estimates are identical when com-
pared between the PFM and TA cases, regardless of SNR.
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Fig. S4.  Values of λ across the different voxels in the brain used to estimate (A) the activity-inducing signal (spike model) and (B) the innovation signal (block model) 
with the BIC selection, as well as (C) the activity-inducing signal (block model) and (D) the innovation signal (block model) with a MAD-based selection. The λ maps 
are shown for the three experimental fMRI data sets: the motor task (Motor), the monoband resting state (Mono), and the multiband resting state (Multi).

Fig. S5.  Values of the MAD estimate of standard deviation of the noise across the different voxels in the brain for the three experimental fMRI data sets: the motor 
task (Motor), the monoband resting state (Mono), and the multiband resting state (Multi).



 : 2023, Volume 3	 - 21 -� CC By 4.0: © Uruñuela et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

Fig. S6.  Root sum of squares (RSS) comparison between paradigm free mapping and total activation for the three experimental fMRI data sets: the motor task 
(Motor), the monoband resting state (Mono), and the multiband resting state (Multi). RSS maps are shown for the spike (left) and block (right) models solved with a 
selection of λ based on the BIC (top) and MAD (bottom) criteria.
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Fig. S7.  Regularization paths of the innovation signal estimated with PFM and TA as a function of λ (increasing number of iterations in x-axis, whereas each row in the 
y-axis shows one time-point) for the representative voxels of the motor task shown in Figure 5. Vertical lines denote selections of λ corresponding to the BIC (black), 
MAD based on LARS residuals (blue), and MAD based on FISTA residuals (green) optima.
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Fig. S8.  Estimated innovation signal (blue) and activity-related signal (green) for the representative voxels of the motor task shown in Figure 5 with the MAD selec-
tion of λ made by TA, i.e., employing the same λ with both PFM and TA.
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Fig. S9.  Activity maps of the motor task using a selection of λ based on the MAD estimate. Row 1: Activation time-series of the innovation signals estimated by 
PFM (in blue) or TA (in red) calculated as the sum of squares of all voxels at every time-point. Positive-valued and negative-valued contributions were separated into 
two distinct timecourses. Color bands indicate the onset and duration of each condition in the task (green: tongue, purple: left-hand finger-tapping, blue: right-hand 
finger-tapping, red: left-foot toes, orange: right-foot toes). Rows 2–6: Time-series of a representative voxel for each task with the PFM-estimated innovation (blue), PFM-
estimated activity-inducing (green), and activity-related (i.e., fitted, orange) signals, with their corresponding GLM, PFM, and TA maps on the right. The maps shown on 
the right are sampled at the time-point labeled with the red arrows and display the innovation signals at that moment across the whole brain.
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Fig. S10.  Activity-inducing CAPs (left) and innovation CAPs (right) obtained with the PFM-estimated activity-inducing and innovation signals respectively, using a 
MAD-based selection of λ. Time-points selected with a 95th percentile threshold are shown over the average time-series (blue) in the seed region (white cross) and the 
deconvolved signal (orange). CAPs and seed correlation maps are illustrated in the center.


