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Abstract: Background: The declaration of the COVID-19 pandemic triggered global efforts to control
and manage the virus impact. Scientists and researchers have been strongly involved in developing
effective strategies that can help policy makers and healthcare systems both to monitor the spread and
to mitigate the impact of the COVID-19 pandemic. Machine Learning (ML) and Artificial Intelligence
(AI) have been applied in several fronts of the fight. Foremost is diagnostic assistance, encompassing
patient triage, prediction of ICU admission and mortality, identification of mortality risk factors,
and discovering treatment drugs and vaccines. Objective: This systematic review aims to identify
original research studies involving actual patient data to construct ML- and AI-based models for
clinical decision support for early response during the pandemic years. Methods: Following the
PRISMA methodology, two large academic research publication indexing databases were searched
to investigate the use of ML-based technologies and their applications in healthcare to combat the
COVID-19 pandemic. Results: The literature search returned more than 1000 papers; 220 were
selected according to specific criteria. The selected studies illustrate the usefulness of ML with
respect to supporting healthcare professionals for (1) triage of patients depending on disease severity,
(2) predicting admission to hospital or Intensive Care Units (ICUs), (3) search for new or repurposed
treatments and (4) the identification of mortality risk factors. Conclusion: The ML/AI research
community was able to propose and develop a wide variety of solutions for predicting mortality,
hospitalizations and treatment recommendations for patients with COVID-19 diagnostic, opening
the door for further integration of ML in clinical practices fighting this and forecoming pandemics.
However, the translation to the clinical practice is impeded by the heterogeneity of both the datasets
and the methodological and computational approaches. The literature lacks robust model validations
supporting this desired translation.

Keywords: COVID-19; machine learning; artificial intelligence; mortality; prediction; risk factors;
drug repurposing; drug

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported
in Wuhan in December 2019 with common clinical symptoms, such as fever, cough, muscle
or body aches, fatigue, congestion or runny nose. The virus was declared a potential
health hazard for people with background diseases as it affects the upper-lower respiratory
system and can cause lung infections and chronic lung obstruction. The World Health
Organization (WHO) declared a pandemic crisis on 11 March 2020. An early estimation
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of the SARS-CoV-2 average reproduction rate (i.e., the average number of cases of infec-
tion caused by an identified infected individual) was 3.28 [1], explaining the perceived
exponential growth of cases at the very beginning of the pandemic. The potential for
health complications and the rapid spread of the virus induced governments around the
world to dictate strict population control measures to prevent the spread of the virus.
As a result of the panicked global response, demand for innovative healthcare resources
increased dramatically. Over the course of this pandemic, intense research has addressed
designing Artificial Intelligence (AI), Machine Learning (ML) and robotic solutions to
improve diagnostic services, risk assessment, monitoring, and tele-assistance, aiming to
reduce significantly the workload of front-line healthcare workers. Such pressure on the
scientific community has generated a real tsunami of publications. A search under the term
COVID-19 returns over four-hundred-thousand references in PubMed; this figure gives
a good impression of the magnitude of the task of any review effort. In this setting, it is
proposed that ML and AI can supplement data analysis, for instance collating candidate
drug relationships, looking for pharmaceutical targets in the midst of massive amounts
of data, finding biomarkers and simulating the reaction of main compounds, greatly ac-
celerating the speed of research and improving quality and efficacy [2]. Hence, ML and
AI promised great potential with respect to data-driven solutions to help humankind deal
with COVID-19 [3].

Even after the declaration of the end of the pandemic by the WHO on 6 May 2023,
COVID-19 is not a fully understood disease, with multiple biological and clinical mani-
festations. New symptoms of the disease continue to be reported [4], and the guidelines
concerning which patients should be considered Persons Under Investigation (PUIs) for
COVID-19 or tested for SARS-CoV-2 infection have been continually evolving during the
pandemic years. Indeed, clinical needs are revised frequently [5]. One of the salient features
of COVID-19 that has unfolded after several years into the pandemic is the evolution of the
symptoms of the disease [6], often attributed to the evolution of the underlying virus [7],
accompanied by the changes and uncertainties associated with the detection and testing
methods [8]. This uncertainty in the case labeling seriously compromises the extrapola-
tion of the results of Machine Learning (ML) algorithms (i.e., generalization or external
validation) to different periods and sites of the pandemic. On the other hand, some risks
factors were identified early on and remain as such through the evolution of the pandemic.
Paramount risks are obesity [9–11] and age [12,13].

Previous reviews of the use of ML or AI tools in the context of COVID-19 are either
very broad or deal with narrow issues. Broad reviews [14–16] tackle a wide variety of
techniques and issues that are sometimes unrelated to clinical decision issues in COVID-19
patients, such as the epidemiological model of disease transmission [16]. Others deal with
the problem of disease diagnosis in general [17]. Narrow reviews deal with specific aspects,
such as the effects of age [12,13], obesity [10,18], drug repurposing [19], cardio-vascular
risks [20], analysis of medical images [21,22], and testing devices [8].

This state of the art has been reviewed following research questions that had been
raised previously in order to create a pathway for the realization of a specific study and
not only to create a review of a specific topic [17,21,22]. This paper presents a systematic
review of ML approaches that have been proposed in the early pandemic response to deal
with relevant clinical decision issues: patient triage at admittance, prediction of intensive
care unit (ICU) admittance, prediction of death outcome, and identification of mortality
risks. Additionally, we review AI-based approaches for treatment design, specifically a
search via AI tools for drugs targeting the COVID-19 pathogen, SARS-CoV-2.

2. Research Questions

The main aim of this paper is to review the diverse ML approaches that were proposed
as a first response to the COVID-19 pandemic in order to alleviate the cognitive and
administrative burden of healthcare providers. Most patients enter a hospital through the
Emergency Department (ED); hence, ML tools may have a great impact there with respect
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to managing the expected overload. However, it is imperative to assess the quality of the
studies from an ML methodological point of view in order to ascertain if these studies may
be (have been) transferred effectively and in a timely manner to the clinical practice as
actual support for the clinician.

This scientific objective is made concrete in the following Research Questions:

RQ1 Did studies follow open science standards? Specifically, have the data used been
published in open access?

RQ2 Which ML models have been most frequently proposed and validated?
RQ3 Which variables/features are taken into account and which are the most signifi-

cant risks found?
RQ4 Which validation protocols of ML models have been most frequently applied?
RQ5 Which performance measures are reported? Which are the performances achieved

according to these measures?

3. Methods
Search Strategy

A systematic literature search was conducted in accordance with the Preferred Re-
porting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Literature
searches were conducted in the Web of Science and IEEExplore sites. The search string
contained the following terms: “(COVID-19 OR SARS-CoV-2 OR coronavirus) AND (ma-
chine learning OR deep learning OR artificial intelligence)”. The JabRef reference database
manager was used to perform the literature search from January 2020 to June 2022. The se-
lection process is as follows: titles and abstracts of the papers retrieved via the search are
screened, removing those that do not meet the inclusion criteria (not duplicated, reporting
actual predictive performance results over a dataset collected in a clinical setting, not
being epidemiological studies based on aggregated data, giving a detailed specification of
recorded variables, giving detailed descriptions of ML and statistical methods). Selected
papers were analyzed according to the research questions enumerated above.

4. Results
4.1. Search Results

The bibliographic search yielded 2119 research papers. After screening titles and
abstracts, 1759 did not meet the inclusion criteria. A further 140 studies were excluded in the
next stage when the full texts of this set of articles were assessed, leaving 220 papers eligible
for analysis. Figure 1 illustrates the pipeline of the paper-selection process. Tables 1–3
summarize the salient details of the selected papers distributed into the following clinical
healthcare topics where ML has been proposed for decision assistance: (1) triage of patients
at admission, (2) risk of COVID-19-related ICU admission and (3) risk factors for COVID-19-
related death.
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Figure 1. Flowchart of the paper-selection process.
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Table 1. Studies reporting a patient triage system. Data segmentation (DS), Data Augmentation (DA), Dataset Source access (DSS), Training Dataset (Tr), Testing
Dataset (Te), Accuracy (AC), F1-score (F1), Sensitivity (Se), Specificity (Sp), Recall (R), Cross-Validation (CV), External Validation (EV), Internal Validation (IV).

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[23] Wuhan,
China RF

age, hypertension, cardiovascular
disease, gender and diabetes for the

clinical features modality
and dimerized plasmin fragment D,

N/A N/A Private 290 72 0.97 0.97 0.99 0.97 0.94 N/A N/A

[24] Beijing Lasso regression

Age, Temperature, HR, fever
classification; headache,

interleukin-6; systolic blood pressure;
monocyte ratio; platelet count;

diastolic blood pressure

N/A Random
oversampling Private 105 27 N/A 0.57 N/A 0.84 0.727 1.00 10-fold CV

[25] N/A XGBoost
Top 60 important features consisting

of 19 proteins, 11 metabolites,
7 lipids, and 23 mRNAs

N/A N/A Private 108 27 N/A N/A N/A 0.93 N/A N/A 5-fold CV

[26] China RF and SVM

28 features (age, gender, white blood
cell, neutrophil percentage,

lymphocyte percentage, monocyte
percentage, . . . )

N/A Bootstrap
resampling N/A 40 11 0.9 N/A 0.88 N/A 0.9 N/A 10-fold CV

[27] N/A BN, NB, MLP,
LWL and RF

age and gender, blood or tissue
sample results, the period of the

illness, symptoms and lab results,
and risk factors

N/A N/A N/A 880 587 0.99
(MLP) N/A N/A N/A N/A 0.99

(MLP) N/A

[28] Salamanca,
Spain

RF, xgboost
and LR

demographic variables,
comorbidities, clinical characteristics,

physical examination parameters
and biochemical parameters

available at hospital admission

N/A N/A N/A 734 184 N/A N/A 0.9 0.83 0.52 N/A

10-stratified
fold CV

scheme with
10 repetitions

[29] China DL

clinicians to estimate an individual
COVID-19 patient risk and make
decisions based on availability of
resources for critical patients and

patient overload

N/A N/A N/A 752 188 N/A N/A 0.95 0.894 0.95 0.44 N/A

[30] Oxford LR, RF and
XGBoost

presentation blood tests, blood gas
testing, vital signs, and results of

PCR testing for respiratory viruses
N/A N/A N/A 303 77 N/A N/A 0.774 0.939 0.948 N/A 10-fold CV

[31] Madrid,
Spain

x-means
clustering

10 Vital signs, 29 laboratory tests and
168 ICD-10 codes N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

[32] China RF, GB, SVM, NB,
KNN, LR

Demographic data, comorbidities,
outpatient medications, vital signs

and laboratory values
N/A N/A N/A 80% 20% 0.9 N/A N/A N/A N/A N/A N/A

[33] N/A XGBoost 24 features (after PCA) N/A N/A Private 102 25 0.97 0.96 N/A 1 N/A 0.95 EV

[33,34] Brazil N/A features of routine blood analysis N/A smote N/A N/A N/A 0.91 0.87 0.83 0.74 0.91 0.83 EV
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Table 1. Cont.

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[35] Pavia ResNet50

age, SBP, DBP, RT, SPO2, temperature,
hemogoblin, white blood cell,

lymphocytes, Platelets, C-reactive
protein and Lactate dehydrogenase

N/A

Image noise,
Colour

jittering, flip,
centre cropping

N/A 337 45 0.9872 0.9922 N/A 0.9997 N/A 98.62 15% dataset

[36] N/A Ada Boost, RF,
XGBoost, CatBoost

age, sex, respiratory parameters
(SPO2, RR), cardiovascular

parameters, body temperature,
symptoms, associated comorbidities,

full blood count,
biochemical parameters

N/A

brightness
changes,
contrast

adjustment
and parallel

shifting

Private 380 95 0.9859 N/A 0.9793 N/A 0.9897 N/A 5-fold CV

[37] Mexico NN, LR, SVM,
KNN

APACHE II score, white blood cell
count, time from symptoms to

admission, SPO2 and blood
lymphocytes count

N/A N/A Public 301,421 64,590 0.81–
0.931 N/A 0.83–

0.961 N/A 0.8–0.92 N/A 15% of dataset

[38]

Cheikh
Zaid

Hospital,
Morocco

X_GBoost,
AdaBoost, RF
and ExtraTrees

Sex. Age. Platelet, Lymphocyte, PLR,
ALT, AST, LDH, D-dimers,
C_reactive protein, Weight,

Comorbidities

N/A N/A Private 225 97 1 N/A 1 1 1 N/A N/A

[39]
JinYinTan
Hospital,

China
RF, SVM, LR

chest computed tomography, fever,
malignant tumor, HR, SBP,
hemoglobin concentration,

neutrophil-to-lymphocyte ratio

N/A N/A Private N/A N/A 0.845–
0.885 N/A 0.923–

0.967
0.928–
0.970

0.695–
0.79 N/A 10-fold CV

[40] N/A
RF, XGBoost,

KNN, MLP, LR,
J48, NB

Gender, age, length of
hospitalization, Smoking, ICU

admission, hypertension, pneumonia,
diabetes, cardiac disease, symptoms,

BUN, WBC, C-reactive protein,
hypersensitive troponin, glucose,
erythrocyte sedimentation rate,
creatinine, alkaline phosphatase

N/A SMOTE N/A 1350 150 0.9503 N/A 0.907 0.9902 0.951 N/A 10-fold CV

[41] N/A DL X-rays, radiology reports and
RT-PCR data N/A N/A private 11,599 800 0.77 N/A 0.683 0.925 0.966 N/A

internally
(Brown-April)
and externally
(External and

Xiangya-
February)
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Table 1. Cont.

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[42] Turkey

LR, SVM, Voted
Perceptron, KNN,
K star, LWL, NB,

SGD, DT,
Hoeffding DT, RF

age, data, lymphocytes count (LYM),
neutrophils count (NEU), white

blood cells (WBC), mean corpuscular
volume (MCV), mean platelet

volume (MPV) and erythrocyte
distribution width (RDW),

eosinophils count (EOS), monocytes
count (MONO), red blood cells count
(RBC), hematocrit, hemoglobin and
(mean corpuscolar hemoglobin con-

centration (MCVC)

N/A N/A private 3362 840 0.8762–
0.9786

0.9271–
0.988

0.9107–
0.9920

0.8810–
0.9786

0.8762–
0.9786 N/A 10-fold CV

[43] N/A EfficientNet CXR images N/A N/A public/
private 455 150 0.8667 0.7865–

0.9174 N/A 0.95 N/A 0.7–1 IV

[44] China LR
Age, Sex, Comorbidity, primary

symptons, outcomes,
laboratory indicators

lung
images seg-
mentation

N/A N/A 628 158 N/A N/A 0.833 0.732 0.781 N/A 5-fold CV

[45] China LR

CK-MB, neutrophils, PCT, α-HBDH,
D-dimer, LDH, glucose, PT, APTT,

RDW (SD and CV), fibrinogen
and AST

N/A N/A private N/A N/A N/A N/A N/A 0.83 N/A N/A EV

[46] South
Korea XGB

body temperature, pulse rate, RR,
blood pressure, any symptoms, and

past medical history
N/A N/A private 119,576 29,895 0.923 0.861 N/A 0.95 0.933 0.807 N/A

[47] UK RF

Age, Gender, BMI, Smoking Status,
SPO2, Temperature, comorbidities,

Albumin, White Blood Count, Blood
Urea Nitrogen, Lymphocyte Count

N/A N/A private 1196 299 0.76 0.67 0.78 0.83 0.75 N/A 5-fold CV

[48] Korea LGBM, ORL

AGE and SEX and BMI, HR,
temperature, SBP, DBP, chronic
cardiac disease, asthma, chronic
obstructive pulmonary disease,

hemoglobin, platelets, WBC

N/A N/A private 3,940 1688 0.85–0.88 0.49–0.57 N/A N/A N/A 0.44–
0.56 10-fold CV

[49] Israel Multistate Cox
regression

Age, sex, patient being in
1 to 3 clinical states N/A N/A N/A 297 33 N/A N/A N/A 0.88 N/A N/A

8-fold CV
repeated
8 times

[50] Philippines DT Sex, Age, Region, N/A Random un-
dersampling N/A 197,164 N/A 0.8142 0.1674 0.8165 0.876 0.8141 N/A 5-fold CV
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Table 2. Studies predicting the transfer to ICU and Length of Stay (LoS) in for COVID-19 patients. Data segmentation (DS), Data Augmentation (DA), Dataset Source
access (DSS), Training Dataset (Tr), Testing Dataset (Te), Accuracy (AC), F1-score (F1), Sensitivity (Se), Specificity (Sp), Recall (R), Cross-Validation (CV), External
Validation (EV), Internal Validation (IV).

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[51] Germany
Explainable

Boosting
Machine

49 variables N/A N/A N/A 949 237 0.73 N/A N/A 0.69 N/A N/A 5-fold CV

[52] Galicia,
Spain

MLP.
DeepNetwork,
RF, AB,SVM,

KNN, LR

Age, gender, diabetes, hypertrophy,
hydrocele, pneumonia, frequent

urination, therapeutic advice, white
blood cells, heart failure

N/A Smote, adasyn N/A 110,454 N/A N/A N/A N/A 0.761 N/A N/A 10-fold CV

[53] Brazil RF, XGB, LR 67 attributes N/A N/A N/A 5644 N/A 0.94 0.91 N/A 0.9 0.95 0.92 10-fold CV

[54] Wuhan,
China N/A 194 variables N/A N/A N/A 586 147 N/A N/A >0.571 >0.622 >0.353 N/A 3-fold CV

[55] South Asia RF, KNN, SVM
Alcoholic beverages, animal

products, cereals excluding beer,
meat, vegetal products

N/A N/A N/A N/A N/A >0.77 N/A N/A N/A N/A N/A N/A

[56] Dubai,
UAE DT Age, gender, nationality,

blood group, BMI N/A N/A N/A 1513 504 0.96 N/A 0.965 N/A 0.878 N/A 10-fold CV

[57] USA XGBoost Age, gender, acute diagnoses N/A N/A N/A 2313 N/A N/A N/A 0.9 N/A 0.58 N/A N/A

[58] Wuhan,
China XGBoost

lymphocyte percentage, prothrombin
time, lactate dehydrogenase, total
bilirubin, eosinophil percentage

N/A N/A N/A 98 25 N/A N/A 0.8 0.92 0.9 N/A 5-fold CV

[59] NY, USA RF 31 variables N/A N/A N/A 1375 612 N/A 0.762 0.728 0.79 0.763 N/A 10-fold CV

[60] Denmark RF
Age, sex, BMI, comorbidities,

smoking, lab tests and temporal
features

N/A N/A N/A 42,526 N/A N/A N/A N/A 0.995 N/A N/A N/A

[61] NY, USA LR, DT, RF,
GBDT

RT-PCR results, routine laboratory
testing results and patient
demographic information

N/A N/A N/A N/A N/A N/A N/A 0.761 0.854 0.808 N/A 5-fold CV

[62] Iran LR, NN, C5.0, RF,
XGBoost

demographic characteristics,
patient’s background, disease

symptoms and a target variable
N/A N/A N/A 318 80 0.7901–

0.852 N/A 0.9091–
0.9273 N/A 0.5385–

0.7308 N/A 10-fold CV

[63]

Philadelphia,
PA

and Provi-
dence, RI,

USA

RF

demographic, clinical and laboratory
variables taken on admission to the
ICU including age, sex, temperature,

SpO2, WBC, absolute lymphocyte
count, serum creatinine

concentration, CRP
and comorbidities

chest X-rays
were

segmented
N/A Private 546 108 0.727 0.707 0.714 0.732 0.746 N/A 5-fold CV
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Table 2. Cont.

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[64]
Kingdom
of Saudi
Arabia

DL

The dataset contains demographic
features, laboratory results from

complete blood count CBC
and radiological findings

and comorbidity

Chest X-ray
segmenta-

tion
SMOTE Private 1210 303 0.904 N/A 0.86 0.875 0.84 N/A 10-fold CV

[65] N/A XGBoost
Sex, Marital status, Age, number of

admissions, type of admissions,
hospitalization data, comorbidities

N/A N/A N/A 5212 579 0.917 0.918 0.916 0.91 0.913 N/A 10-fold CV

[66] N/A Gaussian mixture
mode breathing frequency (BF) and (SpO2) N/A N/A N/A N/A N/A 0.878 N/A N/A 0.94 N/A N/A N/A

[67]

Tel-Aviv
Sourasky
Medical
Center,
Israel

CatBoost demographics, background disease,
vital signs and lab measurements N/A N/A Private 20,029 5007 0.8 N/A N/A 0.76 N/A 0.7

20-fold CV and
EV on data

from a
different
hospital

[68] USA DL

condition, procedure, measurement,
observation, drug, devices, payer,

visit, health providers, medical sites
and personal information

N/A N/A Public 9545 200 N/A N/A N/A 0.9 N/A N/A

10 times by
randomly
splitting

training and
validation data

[69] Saudi
Arabia J48

demographics, comorbidities, signs
and symptoms of COVID-19 illness,

laboratory values,
mechanical ventilation

N/A N/A Private 1101 367 0.731 N/A N/A 0.7542 N/A N/A 10-fold CV

[70] Saudi
Arabia RF

Age, gender, Weight, career, Heart
disease, Hypertension, Diabetes

mellitus, Stroke, Vascular disease,
lymphocyte absolute value

N/A N/A private 115 - 0.9416 0.9414 N/A N/A N/A 0.9416 29 samples for
validation

[71] Tokyo,
Japan LR

Age, gender, comorbidities, smoing
status, temperature, RR, SBP, DBP,

HR, SpO2
N/A N/A Private N/A N/A 0.9 0.695 N/A 0.875 0.976 0.513 No validation

[65] N/A XGBoost
Sex, Marital status, Age, number of

admissions, type of admissions,
hospitalization data, comorbidities

N/A N/A N/A 5212 579 0.917 0.918 0.916 0.91 0.913 N/A 10-fold CV

[72] London,
UK

LR, RF and
XGBoost 64 clinical features N/A N/A private 299 145 N/A 0.42–0.60 N/A 0.76–0.87 N/A 0.48 3-fold CV

[73]
Basque

Country,
Spain

CatBoost

pressure of oxygen, platelets,
lymphocytes, monocytes and

eosinophils and the highest values
for CRP, age, procalcitonin,

urea, LDH

N/A N/A Private N/A N/A N/A N/A 0.99 N/A 0.95 N/A EV

[74] Lombardy;
Italy LR

age, gender, home medications,
comorbidities and ventilation

parameters from the first 24 h in ICU
N/A SMOTE Private N/A N/A 0.7–0.76 0.71–0.75 N/A 0.77–0.8 N/A 0.72–

0.75 10-fold CV
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Table 2. Cont.

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[75] Iran
water wave

optimization
(WWO)

Demographic data, clinical
manifestation, comorbidities,

laboratory test, Radiological factors
and Treatment

N/A SMOTE Private N/A N/A 0.9705 0.9795 N/A 0.9729 0.9259 0.9869 10-fold CV

[76] Detroit GBoost 60 features N/A SMOTE Private 2641 660 0.85 N/A 0.88 0.93 N/A 0.92 10-fold CV

[77] Netherlands behavioural AI
technology

Clinical frailty score, age, cognitive
comorbidity, admission capacity N/A N/A N/A N/A N/A N/A N/A N/A 0.95 N/A N/A N/A

Table 3. Studies predicting mortality and identifying risk factors in patients. Data segmentation (DS), Data Augmentation (DA), Dataset Source access (DSS),
Training Dataset (Tr), Testing Dataset (Te), Accuracy (AC), F1-score (F1), Sensitivity (Se), Specificity (Sp), Recall (R), Cross-Validation (CV), External Validation (EV),
Internal Validation (IV).

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[78] Italy naïve Bayes

age, mean corpuscular
hemoglobin concentration,

PaO2/FiO2 ratio,
temperature, previous

stroke and gender

N/A N/A private 596 256 0.67 0.67 0.88 0.78 0.55 N/A EV

[79] China 3D densely
connected CNN

clinical information and
image features

automatic lung
segmentation N/A private 246 120 0.88 N/A 1 0.95 0.81 N/A N/A

[80] Iran SVM SPO2 and age
and laboratory biomarkers N/A N/A private N/A N/A N/A N/A 0.81 0.92 0.91 N/A 10% hold

out CV

[81]

Kragujevac,
Serbia and

Rijeka,
Croatia

XGBoost demographic data,
symptons, blood analysis N/A N/A private N/A N/A 0.94 0.96 0.97 N/A 0.93 0.95 10-fold CV

[82] Nine
countries MLP

Average age, Average
weather temperature, BCG

vaccination,
Malaria treatment

N/A N/A public N/A N/A N/A N/A N/A N/A N/A N/A N/A

[83] Slovenia NB+NN
demographic, medical

history and clinical and
laboratory findings

N/A N/A public 520 94 0.8 N/A 0.8 0.86 0.8 N/A 10-fold CV

[84] Turkey

K-means, gray
relational, fuzzy

c-means,
hierarchical
clustering

number of cases,
population density, average

age, air pollution
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Calinski-
Harabasz

index, Dunn
index

[85] Shangai LR age, LDH, CRP N/A N/A private N/A N/A 0.847 N/A 0.861 0.9 0.8 N/A 10-fold CV
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Table 3. Cont.

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[86]
Nizhniy

Novgorod,
Russia

LR

LDH, IL-6, monokine
induced by gamma

interferon (MIG), D-dimer,
fibrinogen and glucose

N/A N/A N/A N/A N/A 0.83 N/A N/A N/A N/A N/A leave-one-out
CV approach

[87] N/A GBT 370 variables N/A N/A public 84 9 0.9698 0.9375 90.91 N/A 0.9798 N/A 10-fold CV

[88]
HM

hospitals,
Spain

DT, KNN, LR,
MLP, Gaussian

NB, RF and SVM

Age, Sex and Outcome,
Clinical laboratory values N/A N/A N/A N/A N/A 0.94 0.76 N/A 0.97 N/A N/A 10-fold CV

[89] Italy 30 models

LDH, D-dimer,
neutr/lymph, neutrophils,

fibrinogen, CRP, Brescia
chest X-ray, lymphocytes,

ferritin, monocytes

N/A SMOTE N/A 1947 835 N/A N/A >0.8 >0.52 >0.26 N/A 10-fold CV

[90] Brazil XGBoost
clinical data,

socio-geographic data and
structural hospital- level

N/A N/A private 184,889 46,223 N/A N/A 0.8 0.813 0.8 N/A 10-fold CV

[91] Italy RF
patients’ demographics,
laboratory test results,

historical data
N/A N/A N/A 2725 1169 0.834 0.904 0.952 N/A 0.308 N/A 10-fold CV

[92] Veneto
region, Italy

Recursive
partition tree,

SVM, GBM, RF

Gender, Age, Smoking,
Duration of hospitalization,

comorbidities
N/A N/A N/A 341 N/A N/A N/A >0.33 >0.64 >0.52 N/A N/A

[93] China DL
demographic, clinical

characteristics and
laboratory findings

DL automatic
segmentation

system
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

[94] China MLP
age, sex, CT scans,

hypertension, fever,
RR, WBC,

N/A

random
horizontal flips

and random
rotations

N/A 832 208 0.877 N/A 0.891 0.920 0.873 N/A EV

[95] Wuhan,
China XGBoost disease severity, age, CRP,

LDH, ferritin and IL-10 N/A N/A N/A 689 295 >0.9 0.993 >0.85 0.921 N/A 0.993 IV, EV

[96] MN, USA 18 ML algorithms 54 variables N/A N/A N/A 11,807 2372 0.78 N/A N/A 0.8938 N/A 0.85 10-fold CV

[97]
Bern,

Switzer-
land

COSA score, LR,
DT, RF, AdaBoost,
SVM, KNN, MLP

demographic data, medical
history and

laboratory values
N/A N/A N/A 159 39 N/A N/A 1 0.94 1 N/A N/A

[98] Wuhan,
China DNN

Demographics,
comorbidities, vital signs,

symptoms and
laboratory tests

N/A N/A N/A 154 27 N/A N/A N/A 0.968 N/A N/A 5-fold CV
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Table 3. Cont.

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[99] Wuhan,
China

Gradient boosting
DT (GBDT)

Demographic, clinical,
laboratory, radiological

characteristics, and
treatment and
outcomes data

N/A N/A N/A 2339 585 0.889 N/A 0.899 0.941 0.889 N/A 5-fold CV

[100]
Hubei

Province,
China

LR, XGB, NN
demographics, signs,

symptoms, comorbidities
and blood test results

lung
segmentation

(R231CovidWeb)
SMOTE N/A 346 116 N/A 0.668 0.845 0.960 0.929 N/A 5-fold CV

[101] Sao Paulo,
Brazil

Artificial NNs, DT
and KNN N/A N/A N/A public 390 167 0.98 N/A 0.97 N/A 0.99 N/A leave-one-out

CV

[102] Texas, USA SVM

c-reactive protein, blood
urea nitrogen, serum

calcium, serum albumin,
and lactic acid

N/A N/A N/A 318 80 N/A N/A 0.91 0.93 0.91 N/A N/A

[103] Leishenshan,
China LR

albumin, saturation of
pulse oxygen at admission,
alanine aminotransferase

and percentage
of neutrophils

N/A N/A N/A 1507 503 0.98 0.98 N/A N/A N/A 0.98 N/A

[104] Wuhan,
China RF

Age, high-sensitivity
C-reactive protein level,
lymphocyte count and

d-dimer level

N/A N/A public N/A N/A N/A N/A 0.914 0.922 0.760 N/A 10-fold CV

[105] Taizhou,
China SVM

oxygenation index,
basophil counts, AST,

gender, Mg, SPO2, body
temperature and days

of symptom

N/A N/A private 228 130 0.98 N/A 0.9 0.98 0.99 N/A 10-fold CV

[106] Wenzhou,
China ECPA-KELM

AGE, Alanine
aminotransferase, Albumin,

Globulin ratio, AST
and LDH

N/A N/A private 35 16 0.905 N/A 0.922 N/A 0.896 N/A 10-fold CV

[107]

urban
multi-
center
health
system

RF

saturation values,
laboratory values,

comorbidities,
radiological values

N/A N/A private 210 91 0.74 to
0.68

0.62 to
0.55

0.72 to
0.66

0.81 to
0.76

0.76 to
0.71 N/A 10-fold CV

[108]

Wuxi Fifth
People’s
Hospital,

China

XGBoost

CRP, age, neutrophil count
(Neuc), hemoglobin,

neutrophils, and platelet
distribution width

N/A N/A private N/A N/A 0.919 N/A 0.966 0.978 0.909 N/A N/A
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Table 3. Cont.

Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[109] Aragon,
Spain MLP, RF, XGBoost

165 variables,
demographics, comorbidity,

chronic drugs, vital signs
and laboratory data

N/A N/A N/A 2717 453 N/A N/A 0.71 0.821 0.78 N/A EV with 12.5%
of data

[110] UK RF

detailed anthropometry,
acute renal failure, urinary

tract infection
and pneumonias

N/A N/A public N/A N/A N/A N/A N/A 0.91 N/A N/A leave-one-out
(LOO) CV

[111] Wuhan,
China EDRnet 28 biomakers, age

and gender N/A N/A N/A 375 106 0.92 N/A 1 N/A 0.91 N/A
10-repetition

10-fold
stratified CV

[112]

HM
Hospitals,
Madrid,
Spain

LR, DT, RF, NB 29 variables N/A N/A public N/A N/A N/A N/A 0.69–0.87 0.77–0.9 0.76–
0.83 N/A 10-fold CV

[113] USA RF CRP, Procalcitonin,
d-Dimer, SpO2 and RR N/A N/A private 127 85 N/A N/A 0.73 0.8 0.74 N/A 5-fold CV

[114] 141
countries

RF, DT, GBM,
XGB, SVM
and LGBM

age, sex, travel history
and the commonly

occurring comorbidities
N/A N/A public 914 229 0.83–0.9 0.88–0.93 N/A 0.76–

0.89 N/A 0.91–
0.94 Not done

[115] China LR, SVM, GBDT,
NN, KNN and RF

sex, sputum, BUN, RR, D
dimer, comorbidities, age,

fever, albumin [ALB], SpO2,
lymphocyte and chronic

kidney disease

N/A N/A private 2160 360 0.871–
0.955 0.46–0.69 0.316–

0.607 N/A 0.946–
0.996 N/A IV

[116] Michigan,
USA

XGBoost and
CatBoost

Age, Sex, Race, BMI;
comorbidities, vital signs,
LOS and treatment data

N/A N/A private 810 202 0.803 N/A N/A 0.89 N/A N/A k-fold CV

[117] Iran LR, RF, AdaBoost,
NB, MLP

CT image and
Clinical outcomes

lung
segmentations

performed
by DL

N/A private 9612 4119 N/A N/A 0.83 N/A 0.72 N/A 10 strategies

[118] Martin,
Slovakia RF

age, SPO2, CRP, gamma
glutamyltransferase,

AST, Bilirubin
N/A N/A N/A N/A N/A N/A N/A >0.9 0.799 >0.9 N/A Out-Of-Bag

[119] UK RF regressor and
xGboost

Hypertension, diabetes,
coronary heart disease,

obesity, asthma
N/A N/A public N/A N/A N/A N/A N/A N/A R2 =

0.88 N/A CV

[120] UK SVM, RF, J48, NB,
LR, Bagging

demographic, ethnic,
socioeconomic and clinical

risk factors
N/A SMOTE public 408 174 0.7402–

0.8355 N/A N/A N/A N/A N/A CV
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Ref. Region Model Features DS DA DSS Tr Te AC F1 Se AUC Sp R Validation

[121]
Mokdong
Hospital,

South Korea

XGBoost, LGBM,
RF, KNN, SVM,

DL and Ensemble
model

sex, age, medical history,
vital signs, chief complaints,

review of systems,
mortality and

laboratory data

N/A N/A private N/A N/A 0.85 0.77 N/A 0.8811 N/A 0.75 5-fold CV

[122] UK DNN, RF, XGB,
SVM

Age, Death, Gender, Height,
Weight, BMI, smoker,

vascular problems,
alcohol consumption

N/A SMOTE public 9521 2975 N/A N/A N/A 0.81-
0.86 N/A N/A 5-fold CV

[123] UK GBDT

Gender, comorbidities, BMI,
vit D, haemoglobin A1c,
high-density lipoprotein

and low-density lipoprotein

N/A N/A public 3157 1353 0.56 N/A N/A 0.57 0.56 0.56 10-fold CV

[124] Italia RF
age, SPO2, PaO2/FiO2,
creatinine clearance and

elevated troponin
N/A N/A Private 561 140 N/A N/A 0.88 0.78 N/A N/A N/A

[125] Valencia,
Spain

SVM, LR, KNN,
DT, NB, RF, MLP,

GP, AdaBoost

data from the EHR system,
including demographics,

comorbidities and
outpatient data

N/A N/A Private 20,183 5046 0.8416 0.6762 0.8333 0.871 0.8429 N/A 5-fold CV

[126] N/A Siamese NN
(SNN)

gender, age, location, offset
time period, severity of

COVID-19 and radiology
N/A N/A Private 490 140 0.876 0.871 N/A 0.951 N/A N/A 5-fold CV

[127] Mariland,
USA DT, RF

B cell, CD4+ T cell, CD8+ T
cell, monocytes,

and NK cell
N/A SMOTE Public N/A N/A N/A 0.76–0.91 N/A N/A N/A N/A 10-fold CV

[128] Wuhan,
China

KNN, DT, LR,
SVM, RF, SGD,

bagging,
AdaBoost

Age, Gender admission to
ICU, LD, CRP, Lymphocyte,

Leukocytes
N/A SMOTENC N/A 80% 20% 0.7697–

0.9163 N/A 0.82-0.98 N/A 0.72–
0.85 N/A 10-fold CV

[129] N/A CatBoost
chest Xray images and

patient meta-data
(age and sex)

N/A N/A Public 95 41 0.93 0.93 N/A 0.95 N/A 0.93 N/A

[130]
Milan,

Lombardy,
Italy

LR age, comorbidities, vital
signs and comorbidities N/A SMOTE private 760 327 0.841610 0.827546 0.789 N/A 0.972 0.823369 CV
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Geographical Distribution of the Authors

The corresponding authors of the articles came from 29 different countries. The
authors from the United States and China produced the largest published output, with
n = 24 (24.74%) and n = 14 (14.43%) articles, respectively. Authors from Asia (n = 46),
Europe (n = 31) and America (n = 19) constituted 47.42%, 31.97% and 19.59% of the
articles, respectively.

The map shown in Figure 2 reveals that authorship was distributed across much of the
world, preferably in the Northern Hemisphere. The majority of the studies from Asia focus
largely on data collected in the region of Wuhan in China, where SARS-CoV-2 was first
reported, reflecting the growing interest of researchers in understanding the beginnings of
the health crisis. On the other hand, there are few studies from the Southern Hemisphere.
Specifically, the selection does not include studies from Oceania and Africa matching our
criteria for inclusion, while there are a few studies from Brazil.

Figure 2. Country distribution of the corresponding authors of the 220 papers that have been selected
for this review. Frequency of country appearance is represented by the color and size of the dot in
the figure.

4.2. RQ 1: Characteristics of Dataset Specifications

Sample size is one of the major limitations of the reviewed studies. A large percentage
of papers (25%) did not report clearly the size of the dataset. Another large set of papers
(40%) reported relatively small datasets with less than 500 subjects included in the study.
The studies with dataset sizes in the range 1000 to 5000 samples make up 17% of the papers.
Another 15% of the papers reported datasets in the range of 2000 to 10,000 samples. Finally,
only 3% of the papers reported datasets with more than 40,000 samples.

Regarding the open access to the data supporting the studies, only 16% of the studies
have published the data in open access repositories. Open data access is a cornerstone for
open science [131], allowing reproducibility and independent validation of claimed results.
In matters of public health, open access to data should be mandatory, also when published
results may frame public health policies. However, 40% of the studies indicate that data
cannot be shared for various reasons. Finally, the remaining 44% of papers did not give any
comment on data availability.

Another critical issue relating datasets to ML training and validation is the class
balance. Some studies reported heavily imbalanced datasets (17%). The majority of these
works employed SMOTE in order to obtain balanced training data (13%). Some works
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applied random oversampling (3%), and 1% of papers applied other techniques such as
bootstrap resampling. The remaining 83% of studies did report balanced datasets.

4.3. RQ 2: Machine Learning Algorithms

A majority of the selected studies have benchmarked models in order to achieve the
highest accuracy and best performance according to the proposed casuistry. The most
frequently used algorithms were Random Forest (RF), Logistic Regression (LR), Gradient
Booster (XGB) and Support Vector Machines (SVM) with 18.88%, 13.29%, 9.84% and 7.71%
frequency, respectively. These models are also the ones that have achieved the highest
overall precision in comparison to the remaining ones. The frequency of appearance of ML
algorithms over the selected papers is represented in Figure 3. Many papers did try several
algorithms, so that these numbers include overlapping studies.

Figure 3. Number of selected papers reporting results for specific ML algorithms. Acronyms:
RF Random Forest, LR Logistic regression, GBM, LGBM, GBDT, XGB, XGBoost and CatBoost are
competing implementations of gradient boosting, Adaboost Adaptive Boosting, DT and J48 are
implementations of decision trees in R and Weka, respectively, SVM support vector machines, KNN k-
nearest neighboor, DL and DeepNN are deep learning implementations, MLP multi-layer perceptron,
NB naive Bayes and NN neural network.

Among the reported models, the LR approach is the most deeply rooted in classical
statistics. It is a linear regression of a logistic function that can be interpreted as a posterior
probability of the positive class; therefore, it allows one to assess the importance of each
input variable as an odd ratio and the direction of the influence of the variables, i.e., if rising
values increase or decrease the risk. For this reason, many studies applied only LR, also
if the aim of the study was to assess the risks of specific factors like age, gender or others.
The remaining approaches are ML approaches, which can provide some information on
the influence or importance of input variables, but often they cannot provide the direction
of the of the influence. The most popular ML algorithm is the well known RF which
often provides the best accuracy results and variable importance based on the Gini index
for data splits in the tree leaves. Another classical approach is the SVM that has been
extensively used in medical studies for predictive model construction. However, it is not
easy to assess variable importance from SVM, so this aspect is often omitted in studies
exploiting SVMs. Boosting approaches such as Adaboost and diverse flavors of Gradient
Boosting have also been popular in COVID-19 studies about clinical decision assistance,
reporting sometimes optimal performances but lacking the explanatory ability of variable
importance assessment. It is important to notice that diverse ML platforms, such as R
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packages, Python, Weka or Matlab toolboxes, provide slightly different implementations
of the same models that may even appear with different names. In this review, we have
not delved into this level of detail, but an exhaustive work of comparison should assess
the differences of reported results of diverse implementations over the same datasets.
Artificial Neural Networks (ANN), such as the popular Multi Layer Perceptron (MLP) offer
a wide spectrum of potential models with many potential differences in hyperparameters
and training algorithms. In this study, we found few Deep Learning (DL) approaches
because datasets are often small relative to the large datasets required by DL training.
Another inconvenience of ANNs is their reduced explainability. Variable importance in
ANNs is rather difficult to estimate. In this review, it is not possible to conclude that any of
the ML approaches found in the reviewed papers is superior and should be recommended
over the remaining approaches.

4.4. RQ 3: Features

In some studies, the number of predictors is very high, while others give only the
number of predictors without more specifics. Some studies, which have gathered many
variables, decided to consider ML approaches to estimate the importance of the vari-
ables and thus reduce the dimensionality by some feature-extraction or -selection process.
Nonetheless, for the articles that specify the variables employed, their majority did use
a common core set of variables. Other variables were usually context-dependent. Age,
gender, white blood cell counting, comorbidities and blood oxygen saturation are the most
frequently considered predictive variables. The most commonly used features and their
respective frequencies of appearance in the studies are presented in Figure 4.

Figure 4. Distribution of discriminant features over the selected papers.
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4.5. RQ 4: Internal and External Validation

Data are often split into two or three datasets (train, validation and test) when it comes
to validation of an ML predictive model. In most of the surveyed studies, 70–90% of the
data were used to train the models including hyperparameter selection, while the rest
served for external testing. Unfortunately, 16% of the studies did not give any information
about the validation procedure followed. Although using a third partition of the dataset
for internal validation and model hyperparameter selection was predominant, external
validation was explicitly mentioned only in ten studies. The most commonly used method
for internal validation was k-fold cross validation. Regarding the number of folds, over 60%
of the studies reported k = 10, almost 26% of the others reported k = 5, setting k = 20, k = 8
and k = 3 was reported by 2% each and the remaining 9% of studies reported the use of
cross validation but did not specify the number of folds used.

4.6. RQ 5: Evaluation Metrics

The metrics used to evaluate the performance of the model were collected and are
compared in Tables 1–3. Accuracy, F1-score, sensitivity, AUC, specificity and recall were the
metrics reported in the studies. Most studies reported accuracy score and AUC, while the
least used metric was recall. There is strong variability in the reported results. For instance,
the minimum and maximum AUC values reported for models predicting mortality was
0.997 and 0.57, respectively, while accuracy values ranged in the interval [0.56, 0.99].

5. Review of Surveyed Approaches

In this section, we provide a discourse review of the main approaches dealing with the
identified critical clinical issues. Tables 1–3 provide summary details of the main characteris-
tics of the papers for triage at hospital admission, admission to ICU and death, respectively.

5.1. Patient Triage Methods

The identification of telltale COVID-19 symptoms [132–134] and the early warning
of COVID-19-positive cases [61,135–137] were the first steps towards the management of
the disease [138–140]; classifying patients according to their severity is the next critical
step. Numerous studies have presented models using ML techniques to predict patient
outcomes [141] and severity assessment [142,143] in SARS-CoV-2-infected patients in
different regions of the world [46,47], preventing severe disease progression while aiming to
minimize costs for the patient, the healthcare system and society at large. It was shown that
it is possible to discriminate between three states of the patients’ disease evolution and that
it is possible to make accurate predictions of a patient’s hospital workload based on statistics
concerning age, gender and daily clinical status (critical, severe or moderate) [32,49].

Thus, one of the primary research goals is guiding hospital staff with validated ev-
idence giving advice on the optimal assignment of limited resources while improving
patient outcomes [28,50]. Therefore, ML and AI tools have been proposed for the creation
of triage assistant systems helping to speed up the decision of the admittance of patients
into COVID-19 restricted areas and to determine which patients will require either standard
or intensive care [25,37,144,145]. In this spirit, online calculation tools for early patient
triage were proposed [29]. Some applications of an ML-based classifier aided in excluding
patients regarding their severity within 1 h of hospital admission [30] on the basis of routine
information. Some papers [38] reported the extensive comparison of several ML models,
such as XGBoost, AdaBoost, RF and ExtraTrees. Some authors reduced the triage problem
to a classification of patients into critically ill and non-critically ill in order to prioritize
those in immediate need of urgent care [146], some proposing RF models [23] be fed with
multimodal data or a variety of algorithms be tested (tree-based, function algorithms and
lazy learning algorithms) for this task [42].

Classification of COVID-19 severity into triage categories has was also carried out
on clinical data and laboratory tests obtained during patient examination in ED [31] and
26 blood routine indicators and several demographic features [26] using a specifically
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developed RF-SMA-SVM model. A novel SV-LAR model was exhibited for triage based on
blood sample routine data [34], in line with other approaches exploiting blood sample test
data for early triage [48]

Some other studies also focused on the differential diagnosis of COVID-19 from other
similar diseases or to detect patients with high risk of future lung diseases, such as a
diagnostic model to aid in the early identification of suspected COVID-19 pneumonia
patients [24] on admission in fever clinics. Others classified the diagnosis of the patients
into three categories: COVID-19 pneumonia, non-COVID-19 pneumonia and the healthy
ones [43]. Still, another approach [35] proposed a DL-based system for the classification of
the severity of pneumonia considering two severity scales. Additional works discriminated
between influenza H1N1 and COVID-19 patients [27] using an MLP algorithm.

Many authors work with models predicting severe COVID-19 based on proteomics
data [39,40]; in this line of work, C-reactive protein [147,148], LDH [149–151], platelets [152,153]
and D-dimer [45,154,155] were found to be most associated with predicting the severity
of COVID-19.

Another line of research tried to detect different levels of severity risk for COVID-19
patients based on X-ray imaging [33,36,156]. Some authors concluded that using radiologi-
cal features in conjunction with blood tests, early identification of patients with COVID-19,
who are at risk of disease progression, can be achieved on admission to hospital [44]. Fur-
thermore, a prognostic model using imaging data [41] not only predicts the severity of a
patient’s illness, but also the time until the patient encounters his or her first critical event.

5.2. Prediction of ICU Admission, Progression and Length of Stay

The coronavirus disease took its toll on healthcare systems around the world, with some
patients requiring lengthy general and intensive care. Under the pressure of an unprece-
dented burden on healthcare systems, there is a need for tools helping decision makers
to plan resource allocation at the unit, hospital and national levels, which can be tackled
with ML methods [157]. In essence, clinicians will be interested in ML approaches that
are able to predict whether patients diagnosed with COVID-19 will require different levels
of hospital care (transfer from the basic hospital to ICU) [52,53,158]. For instance, it is
desirable to reliably prioritize patients with COVID-19 who are at risk of needing transfer
to the ICU within the next 24 h, which has broad implications and utility for clinical practice
and hospital operations, on the basis of risks of respiratory failure, shock, inflammation
and renal failure in the progression of COVID-19 [59]. Dealing with children [159] is even
more difficult, because the very low prevalence of severe COVID-19 means very scarce
data. Despite these drawbacks, some researchers demonstrated a DL approach using a
large feature set to predict both the risk of hospitalization of infected children and the risk
of serious complications in hospitalized pediatric patients [68]. Another line of research
deals with the prediction of ICU workload over a short-term time horizon [60] in order to
attain optimal resource management.

Extensive evaluations of ML algorithms belonging to nine categories have been re-
ported for prediction of clinical outcomes such as ICU admission or mortality, using data
available from the initial COVID-19 detection [160]. Specifically, ICU admission has been
predicted on the basis of demographic data [161] and comorbidities [162] and some early
symptoms [163]. Accurate assessment of ICU admission, ICU length of stay and mortality
of COVID-19 patients for optimal allocation of ICU resources has also been reported [54].
The Explainable Boosting Machine analysis [51] enables one to perform predictive modeling
of COVID-19 in the ICU as well as the identification of risk factors. Large and exhaustive
clinical databases extracted from the Electronic Health Records (EHR) allow the application
of DL approaches to predict the probability of ICU admission and mortality [164]. In a
quite different setting, behavioral AI techniques have been also applied to assist intensivists
in dealing with the decisions concerning ICU eligibility [77] in Denmark.

ML methods can be used to gain knowledge about complex clinical situations anticipat-
ing future complications [74]. In this regard, optimally predicting mortality for COVID-19
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patients in the ICU has been reported with DL techniques [63] and ML [58], while decision
support tools applicable to critically ill patients with COVID-19 at high risk of 28-day
mortality in the ICU allowed assistance in critical decisions such as end-of-life decisions
and bed allocation in cases of limited ICU capacity [69]. Furthermore, supervised binary
prediction classification using a time-sliding window-based approach to predict the risk of
intubation 72 h from the end of the 24 h sampling period has been reported [165]. Multiple
studies suggested that adopting early measures to treat patients at risk of deterioration
could prevent or decrease status worsening and the need for mechanical ventilation; in this
way, reference [67] reports a model that predicts the risk of deterioration for each hour,
while the goal of the study in [73] was to monitor patient progression to a score of 5 or
more on the WHO Clinical Progression Scale before they require mechanical ventilation.

COVID-19 hospital readmission has been another subject of research interest, due to
its impact on the optimal management of hospital services. ML models can successfully
predict COVID-19 readmission [65,75,166]. Considering risk factors, these works also
categorized cases with a high risk of reinfection in order to classify patients, making the
utilization of hospital resources more efficient. Alternatively, other works [55] focused the
recovery of COVID-19 patients on dietary adaptation by performing an analysis of the
energy intake of different food categories from different countries, comparing several ML
algorithms to predict the recovery rate.

Alternatively, the monitoring of patients in need of respiratory support would provide
goal-oriented tools for patient risk stratification and an alert system for self-care patients, de-
tecting highly distressing states when resources are possibly constrained. Burdick et al. [57]
focused on an ML algorithm to help efficient triage of patients and resource allocation by
assessing ventilation needs among COVID-19 patients, achieving a precise prediction of
the mechanical ventilation resource needs within 24 h. Bolourani et al. [167] proposed an
ML model that predicts respiratory failure within 48 h of ED admission. Izadi et al. [168]
aimed to identify patients who may be at increased risk of severe COVID-19 outcomes due
to the onset of acute respiratory distress syndrome.

Based primarily on patient age and measures of oxygenation status during the ED stay,
it was possible to identify patients with high risk of poor outcomes, i.e., those requiring
intensive care, those requiring mechanical ventilation and those with high in-hospital
mortality risk [72]. The study of Saadatmand et al. [62] predicted the requirement for
oxygen-based treatment for hospitalized COVID-19 patients. Similarly, Aslam [64] iden-
tified the impact of particular attributes on the prediction of mortality and mechanical
ventilation support [66] in COVID-19 patients. Igarashi et al. [71] introduced a model that
can be implemented as a triage tool to detect the need for supplemental oxygen.

Finally, understanding that COVID-19 hospitalization times are often long and may
vary substantially from patient to patient, some works [56,70,76] aimed to develop a reliable
prediction model of ED length of stay for COVID-19 patients and to identify clinical factors,
such as age and comorbidities, associated with ED length of stay. AI techniques have been
shown also to predict hospital occupancy [169] and ICU admission [170].

5.3. Mortality Prediction

In the heat of the pandemic years, healthcare professionals often complained of their
limitations with respect to determining with some precision the prognosis of patients with
COVID-19 from the moment of admission through to subsequent phases. It has been
reported that the course of COVID-19 sufferers unexpected changes so that apparently
stable patients suddenly worsen. In these situations, even the most experienced clinicians
may be unable to adjust and respond in a timely manner to the new situation. Thus, ML
and AI models were proposed for clinical decision-making, helping detect complex patterns
in large datasets [20,92,171,172]. Several studies have shown the capability of ML-based
models to predict mortality at the level of individual patients [108,115,119,121], and the
aggregate level of cities [119]. Routine clinical variables have been shown to provide
enough predictive power for patient mortality [105,173], while other studies have shown a
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capacity to predict the mortality of new virus variants [174] or the effect of comorbidities
in COVID-19 mortality [120].

Application of AI tools, namely DL architectures, to medical imaging, specifically
CT scans, which are the ones more often done on patients with pneumonia complica-
tions, have been shown to be useful for the diagnosis and prognosis of diverse lung
affections [175–177]. This approach also has value as a preliminary screening tool aiming to
diminish the workload on hospital staff and reduce the rate of misdiagnosis of patients with
COVID-19 [178–180]. The enhanced prediction of disease severity via AI on CT images al-
lows improved mortality prediction [126,129,181–187] and discrimination from other forms
of pneumonia not due to SARS-CoV-2 [188–190]. Some works [79,117] created a radiomics-
and DL-based model showing the robustness of the approach on data from several sites.
Moreover, AI allows one to efficiently combine medical imaging information with other
sources of clinical and laboratory information [100,106,191]. For instance, Lu et al. [192]
demonstrated over CT scan characteristics obtained via AI analysis that there is a positive
correlation between blood glucose level on admission and lung lesions.

COVID-19 mortality has also been predicted on the basis of proteomics data. Yasar et al. [87]
reported an association of variations in blood proteins with the severity of the patient’s
condition. Additionally, Chen et al. [127] developed an ML procedure to find biomarkers
that determine disease severity in individual immune cells.

Other approaches use heterogeneous variable selection from several clinical domains.
Aznar-Gimeno et al. [109] created an easy-to-use web application that supports rapid
decision-making in clinical practice through the construction of a prediction model from
a large amount of data from several pandemic waves that predicts ICU admittance and
mortality. Garrafa et al. [89] focused on an early warning model based on demographic
and clinical variables to predict in-hospital mortality of patients with COVID-19 in the
ED. Laino et al. [130] applied ML techniques to guide the management of patients with
COVID-19 by developing an accurate in-hospital mortality risk score for COVID-19 based
on ten variables. Vezzoli et al. [124] presented a risk score for in-hospital mortality where
more severe patients were older, had a lower blood oxygenation, lower creatinine clearance
levels and higher prevalence of elevated troponin.

Domínguez-Olmedo et al. [88] developed a model able to predict mortality in patients
with COVID-19, which allows one to assess mortality from laboratory values with high
precision using the XGBoost model. Sankaranarayanan et al. [96] presented an approach
using GRU-D external NN, providing an alert system to flag mortality of COVID-19-
positive patients using clinical variables and laboratory results in a 72 h period after the
first positive PCR test result. Halasz et al. [78] developed an ML-based score for 30-day
mortality prediction in patients with COVID-19 pneumonia. Ko et al. [111] developed an
AI model, EDRnet, that forecasts the mortality rate of COVID-19 patients based on 28 blood
biomarkers and patient age and sex. Vepa et al. [193] obtained data including age, gender,
ethnicity, SPO2, RR, temperature, obesity [18], asthma, diabetes and hypertension, among
others, for a period of almost two months. The results suggest that low albumin, elevated
(CRP) and older age all correlate with mortality in hospitalized patients.

Some researchers have considered studying the geographic and demographic differ-
ences influencing both spread and mortality across geographical locations. Fidan et al. [84]
employed clustering techniques to determine cities with similar risk levels, analyzing the
incidence of cases and environmental parameters. Guzmán-Torres et al. [194] pointed
out that conditions in each country may differ depending on different factors such as the
general health status of the people, reporting that the main causes of death in Mexico are
related to age, poor eating habits, chronic diseases and contact with infected people who
do not have adequate care. Zawbaa et al. [82] proposed a comparison of the spread of
the disease among nine different countries, revealing that average young age, hot climate,
prevalence of Bacillus Calmette–Guérin (BCG) vaccine and malaria treatment are crucial
elements decreasing the mortality impact of the virus.
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5.4. Identification of Mortality Risk Factors

Casiraghi et al. [107] reported a system primarily designed to extract the most rel-
evant radiological, clinical and laboratory variables to improve patient risk prediction
and subsequently provide decision criteria to clinicians to support patient risk assessment.
Dabbah et al. [110] documented several new and significant predictors of mortality in
COVID-19; these included detailed anthropometry, acute renal failure, urinary tract infec-
tion and pneumonia. In contrast, Baqui et al. [90] considered demographic variables as the
most relevant ones, namely the state of residence and its development index, the distance
to the hospital (especially for rural and less developed areas), the level of education and
the financing model of the hospital, and strain. The model presented by Hu et al. [104]
could be valuable for clinicians who have to identify patients at high risk of death, based
on age, high-sensitivity C-reactive protein level, lymphocyte count and dimer level, so that
interventions can be taken at an earlier stage to reduce the risk of mortality in these patients.

For Sotoudeh et al. [83], the most important features in terms of prediction capacity,
out of the many, were SPO2 (LDH), age, BUN, base excess, creatinine and WBC. Mah-
davi et al. [80] reported promising results based on a reduced number of features such as
SPO2, age and cardiovascular disorders utilizing SVM. The relevance of LDH is also found
in the work of Krysko et al. [86], where high levels of LDH, IL-6, IGM, D-dimer, fibrinogen
and glucose strongly influences the severity of cases.

Similar to Wang et al. [93] in their finding that lymphocyte and neutrophil levels in
peripheral blood could represent prognostic markers indicating early warning implications,
Li et al. [99] reported GBDT was revealed as the most effective model in terms of perfor-
mance whereby leukomonocytes, urea, age and SPO2 turned out to be the most significant
predictors. Liptak et al. [118] identified the elevated AST as the most important predictor
for COVID-19-related hospitalizations.

Blagojevic et al. [81] focused on detecting the top 10 blood test characteristics that are
strongly correlated with patient condition and based on these characteristics predicting the
severity and clinical status. Additionally, recent studies have indicated that ferritin level
is considered a strong biomarker for the prognosis of SARS-CoV-2 mortality [101], along
with other severe respiratory diseases. Another frequently employed variable is the level
of blood saturation [112,113,116].

The study of Zhao et al. [103] showed that, combined with the percentage of neu-
trophils, alanine aminotransferase, gender and albumin would be associated with survival
in patients with COVID-19. Age [122,128] and gender [123] appear to be the most signif-
icant predictors of mortality [195], but in terms of symptom–comorbidity combinations,
Pneumonia–Hypertension, Pneumonia–Diabetes and Acute Respiratory Distress Syndrome
(ARDS)–Hypertension showed the most significant associations with COVID-19 mortal-
ity [114]. The study by Reina et al. [125] examined the hypothesis that pre-existing condi-
tions (comorbidities) of patients may increase the severity of patients due to SARS-CoV-2.

The C-reactive protein has been consistently implicated in numerous studies as a
significant indicator for patient outcome [95,97,98]. This parameter was also taken into
consideration by Booth et al. [102], in conjunction with blood urea nitrogen, serum cal-
cium, serum albumin and lactic acid for the prediction of mortality in patients up to
48 h prior to death. Fang et al. [94] crucially considered yroponin, brain natriuretic pep-
tide, white blood cell count, aspartate aminotransferase and creatinine, together with the
above-mentioned protein as indicators contributing to malignant progression. The com-
bination of C-reactive protein and advanced age, for example, were the main factors for
Di Castelnuovo et al. [91].

5.5. Treatments and Drugs

Given the high cost in time and resources for drug discovery, ML and AI
proposed [196–198] to accelerate the drug-discovery process by using information about
the biological, chemical and spatial properties of compounds and their potential targets;
specifically, COVID-19 DL has been studied [199–201]. Thus, the COVID-19 pandemic is
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an opportunity for biotech, pharmaceutical and AI companies to cooperate in accelerating
their research and development to identify new and rare drug molecules as well as person-
alized medicine [202]. Gawriljuk et al. [203] proposed a process of multiple iterations of ML
models as a prioritization tool for discovery programs of antiviral drugs against COVID-19.
Proteomics analysis of plasma from COVID-19 patients versus controls led via SVM feature
selection to the identification of biomarkers, which can be useful for drug targeting and
repurposing via in silico protein docking [204]. Some works use indirect information about
the drug’s effect, such as features of the images of cells treated with specific drugs [205], so
clustering these images may reveal similarities in the mode of action of the drugs. Other
indirect information used is the construction of a graph representation of the biological
network of COVID-19 that relates to the targets of the virus, making it easy to select the
essential proteins in the biological network. In this approach, ref. [206] found five groups
of suitable drugs that contain some candidates as potential treatments for COVID-19.

DL approaches have been deployed [207,208] to train the molecular descriptor dataset
for robust drug discovery and feature extraction to combat COVID-19. Early on in the
pandemic, some research teams focused on building the infrastructure for a global effort in
this direction [209,210]. The application of DL approaches over chemical information allows
one to obtain high-level representations of instances from a public drug bank database
as well as SARS-CoV-2 amino acid sequences predicting affinity scores that agree with
the SARS-CoV-2 inhibitors under evaluation at the time of writing the paper [211]. Other
authors propose to resort to atomic-level simulation in order to obtain the input for DL
approaches [212].

Repurposing is the use of an existing drug, usually a generic and low-cost one, for the
treatment of a new disease or a disease different from the one the drug has been approved
for. Repurposing current drugs for the treatment of COVID-19 provides a very rapid
pathway for potentially effective treatment development [19,213–215], both because new
drugs are not required to be developed and because, for many existing drugs, safety and
efficacy has already been established based on previous trials. For instance, some authors
claim that Naive Bayes achieved relatively high accuracy (72%) predicting the efficacy of
repurposing drugs for COVID-19 [216]. The analysis was conducted in silico, based on the
published sequences of some proteins of the SARS-CoV-2 virus. Thus, they do not take into
account the evolution of the virus and the potential for changes in the target proteins. This
is a general issue of AI approaches with respect to drug repurposing for COVID-19.

Some authors have compared prediction models of Drug Target Interactions (DTIs),
exploiting the public Drugbank database and successfully identify interactions between
drugs and proteins in the human cell [217,218]. Jin et al. [219] developed a DL approach
using ComboNet for the prediction of chemical synergy against SARS-CoV-2, achieving
a test ROC-AUC of 0.82, consisting of an NN architecture that jointly learns drug–target
interactions and drug–drug synergy.

Burdick et al. [220] focused on precision medicines, as they may be useful in identifying
a sub-population of COVID-19 patients most likely to benefit from hydroxychloroquine
treatment in a clinical trial. Zeng et al. [221] utilized a network-based deep-learning
methodology for drug repurposing, connecting drugs, diseases, proteins and pathways.
The lack of reliable data about the effect of a drug on a new disease was resolved in [208]
via a novel data-augmentation approach that exploits results from failed experiments
that feed a graph neural network. Su et al. [222] applied multiple nonnegative matrix
factorization approaches for feature extraction of virus–drug association, drug chemical
structures and virus genome sequences as a preprocessing step for graph neural network
processing that obtains drug–virus affinities. A similar matrix-factorization process for
feature extraction coupled with graph neural representations was proposed by [223]. Other
researchers applied a transfer learning approach [224,225] using a pre-trained DL-based
drug–target interaction model to identify commercially available drugs that could act
on SARS-CoV-2 viral proteins. Ke et al. [226] proposed a comparison of two models to
detect drugs with potential antiviral effects, showing that adequate combination with
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other drugs at a lower dose of gemcitabine can overcome adverse pulmonary effects while
simultaneously inhibiting SARS-CoV-2. Yang et al. [227] reported that Cathepsin L (CTSL)
is a protease that can activate the protein that leads to SARS-CoV-2; nevertheless, as there
is still a lack of clinically available CTSL inhibitors, they developed a DNN approach to
identify small molecules and FDA-approved drugs that can block CTSL activity for drug
development and repurposing for COVID-19.

Mekni et al. [228] focused on SVM methodology for the prediction of inhibitory activity
of novel chemo-types against SARS-CoV-2, showing an accuracy of 0.88 for later utilization
to predict the inhibitory activity of compounds commercially available. Kowalewski et al. [229]
identified nasal cavity and respiratory tract conditions as a bottleneck for this infection,
trained ML models to predict inhibitory activity and screened over 100,000 approved drugs
and more than 14 million purchasable chemicals for potential candidates for new inhaled
therapies. Alternatively, Pinto et al. [230] used multivariate statistical methods to select the
most suitable candidates to inhibit the disease.

Finally, further clinical trials may depend on biomedical information obtained from
existing data and find patterns and signatures in the underlying molecular biology of the
COVID-19 mechanism and ML may have a prominent role in the design of new trials [231].

6. Discussion

DQ1. Are predictive models capable of supporting a COVID-19 outbreak and how?

ML algorithms can neither be adequately trained nor validated without a large and
well curated clinical dataset. In the early stages of an emerging infectious disease, collected
data will often be noisy and incomplete. Although there may not be a large historical
dataset of patients suffering from this disease, existing databases, assuming they have
been properly mined, and patterns based on these data can contribute significantly to the
choice of the most appropriate behaviour to adopt in each situation [232]. Many studies
report the potential of the application of Big Data and AI technology to contribute to
prevention, diagnosis, treatment and decision making concerning acute infectious public
health events in the future. According to some authors, the COVID-19 pandemic has
provided an excellent opportunity to integrate AI tools in clinical care, already introducing
changes in hospital practices [233] in some advanced countries.

DQ2. Are there demographic and cultural factors influencing the development of predic-
tive methods to confront or address COVID-19?

Although most of the articles added to this study deal with data from Asian patients,
there are several articles from European and American countries. In comparing these
studies, while many utilise similar variables, cultural or demographic factors have been re-
vealed to significantly affect the detection or increase in disease contraction, demonstrating
the importance of these factors in the COVID-19 outbreak [173]. In addition, key genetic
markers may serve as potential targets in the clinical prognosis and treatment of COVID-19.

DQ3. Are there models with good performance capable of categorizing patients according
to severity?

ML has proven its importance in nearly all domains and its techniques are being
actively used against COVID-19 by researchers with satisfactory results [234]. Among all
the articles collected in this study, various studies with very promising results have been
reported. Most of the selected studies employed predictive referenced models to achieve
the highest accuracy and best performance according to the proposed casuistry. Among all
reported metrics with successful results, there are several studies that have achieved
accuracy and AUC above 0.99 [27,35,60], showing high sensitivity values so that the most
severe cases may not easily go unnoticed and can be detected in time. These are studies
that use MLP, ResNet50 or RF models and obtain very good results with demographic and
clinical variables, without the need for laboratory tests or CT images, which are variable
and more difficult to obtain and collect.
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DQ4. Is translation possible from scientific research to clinical practice with the current
data on the disease obtained during the pandemic?

Datasets used for diagnosis, prediction and prevention of COVID-19 are essentially
classified into medical imaging datasets, speech-based datasets and textual datasets. On the
one hand, medical imaging datasets, i.e., CT images, are mainly analyzed for automatic
diagnosis, segmentation and augmentation of COVID-19. On the other hand, textual data
support prediction and analysis of COVID-19 cases, surveying patient status, interventions
and treatments.

Based on the study, developed models addressing COVID-19 through intelligent
approaches generate reliable performance results if high fidelity and abundant data are
involved. It is clear that large datasets are not typically used for the majority of the use
cases previously specified. Despite the fact that some public datasets are available to
work with this type of caseload, given the recent emergence of the disease and the lack of
many years of study, the size of these datasets is limited compared to the requirements of
ML approaches.

Data accessibility and openness is considered a critical bottleneck in COVID-19 re-
search as a result of the rapid spread. Being able to apply such applications in the real world
will only be possible with the availability of more open source data. This is considered one
of the limitations to be addressed in order to further improve COVID-19 research.

This limitation primarily stems from the segregation of data at national, regional,
hospital and departmental levels. Hence, the development of a central and uniform
platform for investigators for sharing and accessing data would be a promising starting
point. In addition to having erroneous or unstructured data, the datasets have a lot of noise
and null values. Therefore, filtering, cleaning and noise reduction are other key challenges
for the successful implementation of models developed using intelligent approaches.

A further consideration that must be addressed is the establishment of certain protocols
or standards for data collection in healthcare facilities. As well as having erroneous or
unstructured data, the datasets have a lot of noise and missing values. Therefore, filtering,
cleaning and noise reduction are other important challenges to be considered for the
creation of applications using intelligent approaches.

7. Insights into ML/AI Advances, Research Directions and Challenges

At the request of reviewers, we introduce here some thoughts about the future of
ML/AI applications in clinical decision support for COVID-19 and other future pandemics.
Modern ML and AI techniques are data driven; thus, the main and foremost issue in the
usefulness of ML/AI techniques is the availability of large high-quality datasets. It is impos-
sible to over-stress the importance of good data-gathering practices for the development of
ML/AI support to the response to forthcoming pandemics. In contrast, the price to be paid
by complacency and missing opportunities for implementation of strong data-gathering
protocols will be a greater economic disruption and poorer health outcomes, i.e., more
deaths. Current Electronic Health Record (EHR) systems are dispersed and do not interop-
erate outside some small clusters developed by the same company. Hence, international
standards for EHR should be enforced as well as data-gathering protocols and open access
to data in order to allow for cooperative analysis of data in order to raise alarms and to
produce timely predictive models and risk assessments. Data access should not be blocked
by commercial interests in the name of data privacy when it is most needed for democratic
public health management. With the exception of some prominent personages, health data
are easily anonymized to a level that impedes spurious uses.

Regarding ML/AI models, we think that LR will remain one of the most used models
in the future, because its foundations are well understood and it has high explanatory
value. Medical practitioners are well acquainted with the technique and they accept it
with critical appraisal. Other statistical ML models, such as RF, SVM or gradient boosting
approaches, do not provide a similar degree of explanations. They can be of value in some
specific problems in order to provide more accurate predictions once the risk assessment
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has been well established. The availability of large datasets may allow the training of large
neural network models, i.e., deep learning (DL) architectures, but still the explanatory
capabilities of these approaches are limited and need to be improved. DL approaches
seem better suited to signal processing and medical image processing, but their integration
with clinical models requires additional research to achieve translation into the clinical
practice. The recent large language models (LLMs) may provide such a link between
the image-processing DL models and the clinical practice by producing explanations of
findings that can be used by clinicians. In the emergence of a pandemic, this automated
fast-track analysis of multi-source multi-modal data should provide a fast response to the
new characteristics of healthcare needed for the pandemic. Well curated EHRs should be an
invaluable source of data and qualitative information to train such models in the detection
of new alarms and the generation of innovative solutions to face them.

8. Conclusions

Our review can lead to the conclusion that there is not a definitive ML approach
for COVID-19 clinical decision assistance and that translation to clinical practice has not
been demonstrated. Supporting this conclusion are the following facts: (a) there was a
large variability in the methodological specifics for validation, with almost no intersite
data considered; (b) the majority of studies treated small local datasets, which were not
publicly available for reproducibility assessment; (c) findings and conclusions were often
in contradiction when comparing studies, so that no solid grounds were laid after so
much work; (d) there is extensive bias of selection in the studies as a major cause of the
previous fact; (e) there is growing evidence of high variability in how the disease was
diagnosed, treated and followed up on, which induces great uncertainties in the definition
of the target variables; specifically, death with or by COVID-19 appears to need careful
revision; (f) the disease presentation has been evolving in time; thus, predictive models
can quickly become obsolete; (g) the actual code of the models is often not shared, even if
the underlying tools are fairly standard; the lack of hyperparameter values may obscure
reproducibility; (h) there is a high variability between studies of the considered predictive
variables, leading to a wide diversity of biomarkers, though some like age are (almost)
universally recognized.

Moreover, many of the reviewed studies dealt with sensitive personal data, which,
even during a pandemic, must be carefully handled [235]. Therefore, this emergency
situation has been a precious opportunity to behave in a more ethical and more responsible
manner [232]. A limitation of our review is that it is almost impossible to cover all the
(still) continuously appearing publications, which range in the tens of thousands. Most of
the studies reviewed did include the gender variable in the data collection, often as the
male/female dichotomy; however, there was not a systematic assessment of the gender
effects of the pandemic or differential risks due to gender. A large epidemiological study
should tackle this issue, which has only been raised partially in some papers.

As the concluding message from this review, the COVID-19 pandemic has shown that
there is a strong need to standardize medical data gathering and statistical methodology,
including both clinicians and policy makers in the loop, because data have been found in
most of the studies to be sketchy and noisy, to the extent that such low quality of data may
be considered one of the main limitations to the translation of existing ML and AI models
to clinical practice. Moreover, methodological inconsistencies also impede the integration
of ML approaches needed for this translation.
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Nomenclature
Acronym Definition
ML Machine Learning
AI Artificial Intelligence
DL Deep learning
ICU Intensive Care Unit
ED Emergency Department
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analysis
XGB Extreme Gradient Boosting
MLP Multilayer Perceptron
RF Random Forest
LR Logistic Regression
KNN K-Nearest neighbor
GBDT Gradient Boosting Decision Tree
NN Neural Network
DNN Deep Neural Network
DT Decision Tree
NB Naive Bayes
SVM Support Vector Machine
SGD Stochastic Gradient Descent
LGBM Light GB Machine
SGD Stochastic Gradient Descent
ORL Ordinal Logistic Regression
LWL Locally Weighted Learning
AUC Area Under Curve
LDH lactate dehydrogenase
CTSL Cathepsin L
DTI Drug–target interaction
IPD inpatient mortality probabilities
CRP C-Reactive Protein
PCR Polymerase Chain Reaction
PUI persons under investigation
CT Computerized tomography
AST aspartate transaminase
BUN blood urea nitrogen
WBC white blood cell
IGM gamma interferon-induced monokine
SPO2 Oxygen saturation
RR Respiratory Rate
SBP Systolic Blood pressure
DBP Diastolic Blood Pressure
IL-6 Interleukin 6
LOS Length of Stay
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