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Abstract 
 
Older adults with Type II Diabetes Mellitus (DM) experience mild cognitive impairment, specifically in 
the domain of recall/working memory. No consistent causative structural cortical deficits have been 
identified in persons with DM (PwDM). Memory deficits may be exacerbated in older adult females, who 
are at the highest risk of cardiovascular decline due to DM. The focus of the current study was to evaluate 
functional cortical hemodynamic activity during memory tasks in postmenopausal PwDM. 
Functional Near Infrared Spectroscopy (fNIRS) was used to monitor oxyhemoglobin (HbO) and 
deoxyhemoglobin (HbR) during memory-based tasks in a cross-sectional sample of postmenopausal women 
with DM. Twenty-one community-dwelling DM females (age=65±6 years) and twenty-one age- and sex-
matched healthy controls (age=66±6 years) were evaluated. Working memory performance (via N-back) was 
evaluated while study participants donned cortical fNIRS. Health state, metabolic data, and menopausal status 
data were also collected. Deficits in working memory accuracy were found in the DM group as compared to 
controls. Differences in HbO responses emerged in the DM group. The DM group exhibited altered PFC 
activity magnitudes and increased functional cortical activity across ROIs compared to controls. HbO and 
HbR responses were not associated with worsened health state measures. These data indicate a shift in cortical 
activity patterns with memory deficits in postmenopausal PwDM. This DM-specific shift of HbO is a novel 
finding that is unlikely to be detected by fMRI. This underscores the value of using non-MRI-based 
neuroimaging techniques to evaluate cortical hemodynamic function to detect early mild cognitive 
impairment.  
 
Key Words: fNIRS, cortical oxygenation, cognition, brain, neuroimaging, dementia   
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Introduction 

Over 14.3 million individuals in the United States aged 60+ are living with either diagnosed or 
undiagnosed Type II Diabetes Mellitus (DM) (Centers for Disease Control and Prevention 2020). DM and 
cardiovascular disease are hypothesized to share an underlying constellation of causes, referred to as the 
'common soil' hypothesis (Lebovitz 2006). With advanced age, persons with DM (PwDM) exhibit losses 
in several functional abilities; including development of mild cognitive impairment (MCI), amnesiac mild 
cognitive impairment (aMCI), and sensorimotor dysfunction (van den Berg et al. 2008; Christman et al. 
2009; Janoutová et al. 2015; Gorniak et al. 2019a, b).  Patients are not self-aware of these losses (Gorniak 
et al. 2014) which are typical precursors to development of dementias such as Alzheimer’s disease or 
vascular dementia.  

Emerging evidence reveals differences in presentation of DM and its complications between the 
sexes with advanced age (Seghieri et al. 2017; Campesi et al. 2017b; Centers for Disease Control and 
Prevention 2020). Older adult women are significantly more negatively impacted by risks, complications, 
and comorbidities associated with DM, including development of dementia (Campesi et al. 2017a).  

Female participants have been largely excluded from biomedical science for decades, as estrus 
has been perceived to render females more physiologically variable than males (Beery and Zucker 2011; 
Prendergast et al. 2014; Vitale et al. 2017). However, sex-based differences in DM presentation and its 
complications, including cognitive impairment, is an emerging area of interest. Sex-based differences in 
DM in animal models have not translated well to humans (Campesi et al. 2017b), which has significantly 
complicated attempts to understand DM-related complications.  

Cognitive impairment in memory adversely affects the ability to manage complex daily DM self-
management tasks such as meal preparation, taking medications, and exercise (Christman et al. 2009; 
Vance et al. 2011; Gold 2012). Many of these self-care tasks involve the use of one or both upper 
extremities in tasks which may require more cognitive resources for successful task completion. Our prior 
work has found that inclusion of a motor task while performing memory-based cognitive tasks (known as 
dual-tasking) may lead to reduced accuracy in both cognitive and motor tasks (Gorniak et al. 2019a, b); 
however, the cortical roots of these deficits are underexplored. 

Traditional neuroimaging approaches (i.e., magnetic resonance imaging (MRI)) have been used to 
search for structural cortical roots of DM-related complications such as MCI and sensorimotor 
dysfunction (Manschot et al. 2006; Harten et al. 2006; van Harten et al. 2007; Christman et al. 2010; 
Brundel et al. 2012; Biessels and Reijmer 2014). Inconclusive structural evidence of cortical damage via 
MRI in individuals with DM has led to investigation of cortical activation differences using functional 
MRI (fMRI). This is in line with the assumption that altered hemodynamic responses due to micro- and 
macro-vascular changes are the most likely source of global behavioral changes in individuals with DM 
(Zochodne 2007). However, inconsistent fMRI evidence of cortical dysfunction in individuals with DM 
has been reported (Manschot et al. 2006; Harten et al. 2006; van Harten et al. 2007; Christman et al. 2010; 
Brundel et al. 2012).  The blood oxygenation level dependent (known as BOLD) response of fMRI is 
based on measured changes in one aspect of the hemodynamic response—deoxygenated hemoglobin 
(HbR) (Buxton 2013). fMRI is only sensitive to HbR (due to its strong paramagnetization (Huettel et al. 
2014)), whereas the oxygenated hemoglobin (HbO) aspect of the hemodynamic response is diamagnetic 
and undetected by fMRI approaches. Acknowledging this shortcoming of fMRI, alternative functional 
cortical investigations using technologies such as functional near infrared spectroscopy (fNIRS) has 
revealed altered HbO concurrent with sensorimotor dysfunction in postmenopausal women with DM 
(Gorniak et al. 2020).  

Our overarching hypothesis is that altered hemodynamic function of the cortex leads to DM-
complications including cognitive and sensorimotor impairments. In particular, postmenopausal women 
likely experience significant deterioration of both hemodynamic function and overt behaviors (e.g., 
cognitive function) given their disproportionate risk of cardiovascular complications as compared to men 
with DM and individuals without DM (Kautzky-Willer et al. 2016; Raparelli et al. 2017). The focus of 
this study was to evaluate changes in cortical oxygenation indices of postmenopausal women both with 
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and without DM during memory-based cognitive single- and dual-tasks via fNIRS.  
In line with our previous work (Gorniak et al. 2019a, b), we expected to see between-group 

differences in cognitive function, with impaired memory/recall in the DM group (Hypothesis #1). 
Concurrent with impaired cognitive function, we expected between-group differences in cortical 
oxygenation indices of oxygenated hemoglobin (HbO) and deoxygenated/reduced hemoglobin (HbR) 
(Hypothesis #2) across regions of the cortex involving memory and sensorimotor function during tasks 
involving cognitive components. No specific hypotheses regarding changes in cortical hemodynamic 
function with disease state were developed a priori, as multiple mechanistic pathways have been 
suggested with different levels of support in the evidence base (e.g., high A1c, hypertension, etc.). To 
examine our two hypotheses, cortical hemodynamic activity was measured with functional near infrared 
spectroscopy (fNIRS) during performance of cognitive tasks. The goal of the study was to evaluate the 
relationship between cortical hemodynamic activity and cognitive function in persons with DM versus 
controls. 
 
Materials and Methods 

Participants 

Twenty-one postmenopausal women with DM and twenty-one age- and sex-matched healthy 
controls volunteered to participate in this case control study, see Table 1 for demographics. Handedness 
was assessed by the Edinburgh Inventory (Oldfield 1971), ranging from a laterality quotient (LQ) of –100 
(strong left-handedness) to +100 (strong right-handedness). Participants had an LQ average of +88 and 
had no previous history of trauma to the upper limbs. Both the DM and control groups included women 
from self-identified underrepresented racial and ethnic minority groups (n = 24/42 (57%)). Study 
participants were excluded if they reported a history of neurological and/or musculoskeletal disorders 
(Parkinson disease, Huntington’s disease, polio, multiple sclerosis, stroke, traumatic brain injury, carpal 
tunnel syndrome, rheumatoid arthritis, Monoclonal Gammopathy of Undetermined Significance (MGUS), 
Paraproteinaemic Demyelinating Neuropathy (PDN), Myasthenia Gravis), a history of amputation, a 
history of major surgical intervention to the upper extremity, or hereditary or compression neuropathies. 
In accordance with the Declaration of Helsinki, participants provided informed consent according to the 
regulations established by the Institutional Review Board at the University of Houston (protocol #15615-
01). Data collection processes failed on five participants (e.g., a reliable fNIRS signal was not detected 
(control participants #2, #7, and #10; DM participants #9 and #19)). Data from those participants have 
been excluded from fNIRS analyses but not behavioral data for completeness of reporting. 

 
< Table 1 here > 

 
Health Status Data 

 Blood pressure, cholesterol, and glycated hemoglobin (A1c) values were assessed for all study 
participants onsite at the onset of each session. Cholesterol and A1c values were assessed using a 
commercially available point of care evaluation kit (Cardiocheck+ and A1c Now+ kits, PTS Diagnostics, 
Indianapolis, IN, USA). Blood pressure was measured using a commercially available device (Omron 
Intellisense 10 series Blood Pressure Monitor, Model BP785, Bannockburn, IL, USA). The presence of 
peripheral neuropathy (PN status) was determined by abnormalities on either clinical examination or 
EMG/NCV testing (per physician). A brief menopause questionnaire was also administered regarding 
several aspects of menopausal characteristics (e.g., age at onset of menopause, hormone replacement 
therapy history, etc.).  All study participants declared themselves to be postmenopausal; with 11 
participants claiming a history of hormone replacement therapy (5 with a history of Prempro use). Of the 
11 participants with a history of hormone replacement therapy, 4 were in the control group and 7 were in 
the DM group. 
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Baseline Cognitive Evaluation  

Montreal Cognitive Assessment (MoCA) 

 Cognitive function of each participant was screened using the Montreal Cognitive Assessment 
(MoCA) (Nasreddine et al. 2005). This is a brief examination of the cognitive domains: attention and 
concentration, executive functions, working memory/recall, language, visuo-constructional skills, 
conceptual thinking, calculations, and orientation. The number of years of patient education is accounted 
for within the MoCA scoring structure. This evaluation was performed prior to placement of the fNIRS 
cap. 

Experimental tasks 

Working Memory (N-Back) Evaluation (single-task) 

Working memory of each participant was probed using the working memory (N-back) evaluation 
while wearing the fNIRS device. Working memory was assessed while participants were seated in a quiet 
location. This test required participants to repeat the “Nth” word back in a list of random words presented 
as auditory stimuli, consistent with our prior work (Gorniak et al. 2019a, b). The difficulty level is 
controlled by requiring participants to remember words further back in the series. Three conditions of the 
N-back task were assigned to each subject (easiest to most difficult: 0-, 1-, and 2-back conditions) in a 
block randomized manner. Participants wore a headset with headphone and microphone capabilities 
(Plantronics Inc., Santa Cruz, California), through which they heard a randomized sequence of words via 
audio provided by E-prime 2.0 (Psychology Software Tools, Inc., Sharpsburg, PA). The software program 
generated randomized words through the headphones at an interval of 2s per word. Participants were 
instructed to verbally repeat the words into the headset in the correct sequence for a task duration of 30s. 
The rate of correct responses and verbal reaction time were recorded by the E-prime software and 
extracted to evaluate performance. Three trials were collected in each of the N-back conditions. N-back 
conditions were block randomized across all participants. 

Working Memory (N-Back) + Motor Task Evaluation (dual-task) 

Working memory function was probed at a baseline (single-task) as well as during motor function 
evaluations (dual-task). All single-tasks occurred prior to dual-tasks to avoid subject confusion. Each 
subject was asked to perform a series of working memory + motor task (dual-task) interleaved by 30s 
periods of rest, see Fig. 1 for details. Presentation of visual stimuli, timing, and synchronization TTL 
signals were controlled via E-prime 2.0 (Psychology Software Tools, Inc., Sharpsburg, PA). Three trials 
were collected in each of the N-back conditions for dual-task evaluation. N-back conditions were block 
randomized across all participants in dual-task conditions. 

During the working memory + motor task, participants used a precision pinch grip to exert an 
isometric force against a set of force transducers. Participants were instructed to match their pinch force 
to the target force line as accurately as possible. Two different force levels were tested for the dominant 
(right) hand (15% MVC and 40% MVC). Three trials of 30s each, were performed with at 30s of 
rest/washout periods between each block. Force level order (15% or 40% MVC) was block randomized. 

The motor task involved using digits 1 and 2 in a precision pinch grip to produce a constant level 
of pinch force, with feedback from a computer screen.  All forces and moments of force produced were 
recorded simultaneously using 2 identical 6-component force-moment transducers (Nano-25 transducers; 
ATI Industrial Automation, Garner, NC, USA). Instrument details have been published previously 
(Gorniak et al. 2014; Ochoa and Gorniak 2014).  
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Figure 1.  Illustration of experimental stimuli during the N-back single task and N-back + motor performance 
(dual-task) during fNIRS testing.  Subjects viewed a fixation cross during N-back single task blocks; they viewed 

real-time feedback on their force production during N-back + motor performance (dual-task) blocks.  The order of 
N-back presentation was block randomized within each testing type.  N-back single task tasks always occurred prior 

to N-back + motor performance dual-tasks. 
 
 
Cortical Hemodynamics Measurements 

Cortical hemodynamics were measured with a continuous-wave functional near infrared 
spectroscopy instrument (NIRScout, NIRx Technologies, Glen Head, NY, USA) via 16 optical emitters 
and 16 optical detectors. Each emitter consisted in a dual-wavelength LED (central wavelengths: 760 nm 
and 850nm) directly coupled to the scalp, while each detector was a silicon photodiode collecting 
backscattered light from the scalp via an optical fiber. The geometrical layout of optical emitters and 
detectors (collectively referred to as optodes) is shown in Fig. 2A, alongside the corresponding sensitivity 
map of the optical probing on the cerebral cortex (Fig. 2B) estimated with Monte Carlo-based simulation 
of photon migration in AtlasViewer (Aasted et al. 2015). We ensured reproducibility of placement to the 
best of our ability by fitting the standard 10-10 headset (EasyCap, Germany) with reference to anatomical 
landmarks (nasion Nz, inion Iz, vertex Cz, preauricular points LPA and RPA), to achieve an optode 
landing according to the layout depicted in Fig. 2A. We also digitized the spatial location of all optodes 
and registered such position to a scalp-brain atlas (Colin 27) to ensure placement accuracy within 
reasonable range (10 mm from standard EEG labels).  Regarding the association between optode 
placements and cortical regions, we inferred cortical areas interrogated by each group of optical channels 
(ROIs) from the sensitivity map projected onto a Colin 27 model computed with photon migration 
simulations using AtlasViewer. Although Fig. 2B shows the sensitivity map of the entire probe, we 
displayed the projections of each ROIs separately and denoted cortical regions accordingly. This 
configuration resulted in 28 optical channels (i.e., emitter-detector pairings) that interrogated the 
prefrontal, motor, and somatosensory cortices bilaterally. The geometrical distance between optode 
pairings ranged from 26 to 37 mm, ensuring the interrogation of the cerebral cortex in all optical channels 
(Strangman et al. 2013). Proper scalp-optode coupling was ensured by using the PHOEBE toolbox 
(Pollonini et al. 2016). 

Raw optical signals were collected continuously throughout the N-back portions of the 
experiment at the frequency of 3.91 Hz from all channels at both wavelengths, and were subsequently 
converted to optical density (i.e., logarithm of the raw intensity) and then to concentration changes of 
oxygenated (HbO) and deoxygenated hemoglobin (HbR) compared to a zeroed baseline according to the 
modified Beer-Lambert Law (Cope and Delpy 1988; Delpy et al. 1988). For each channel, HbO and HbR 
measurements were analyzed separately with a general linear model approach that estimated the scalar 
weight coefficient (a.k.a., beta weight (Barker et al. 2013)) of the canonical hemodynamic response that 
best fitted the measured hemodynamic response. The general linear model approach is described in detail 
in (Santosa et al. 2018). We did not apply particular preprocessing steps to fNIRS data, since 
autoregressive pre-whitening approach using iteratively reweighted least-squares (AR-IRLS) can deal 
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with data outliers produced by motion artifacts and extracerebral and physiological responses (Santosa et 
al. 2018). For each subject, we considered channels as hemodynamically active if their weight coefficient 
was statistically different from zero at the significance level of 5%.  

At the group level, we used a mixed linear model to estimate the weighting coefficient of all 
channels to determine which of them were hemodynamically active at a statistically significant level. We 
considered the interaction between the experimental condition (N-back condition) and the group (DM vs. 
control) as the fixed effect contributing to the weight coefficient, while the magnitude of the coefficient of 
individual subjects were considered as a random effect. 

We grouped optical channels into ten bilateral (right and left) regions of interest (ROIs), namely 
the prefrontal cortex (PFC), supplementary motor area (SMA), primary motor cortex (M1), primary 
sensory cortex (S1), and Brodmann Area 40 (B40) as depicted in Fig. 2A. We computed individual-level 
ROI-level statistics (weight coefficient, t-value, p-value). Positive HbO values and negative HbR values 
each indicate cortical activity, respectively. Some ROIs did not produce significant t-scores in HbO or 
HbR.  Those data are shown as zeroes in mean and standard error (SE) values in figures within the results 
section.  

 
 

Figure 2.  Cortical fNIRS layout and sensitivity map. A: Geometrical layout of sources (red) and detectors (blue) 
with respect to the international 10-10 EEG system (Oostenveld and Praamstra 2001). Bold black ovals denote the 
regions of interest (ROIs), which are subsequently labeled nearby in purple boldface.  ROIs included: prefrontal 
cortex (PFC), supplementary motor area (SMA), primary motor cortex (M1), primary sensory cortex (S1), and 

Broadmann Area 40 (B40). Hemisphere side as well as anterior and posterior of the cranium are noted. B: 
Correspondent sensitivity map overlaid onto the Colin27 brain model. Sensitivity computed and displayed with 

AtlasViewer (Aasted et al. 2015). 
 

 
Statistical Analysis 

The data are presented as means ± SE. For HbO and HbR, statistically significant individual-level 
ROI t-scores were compared between Groups using mixed model analyses of covariance (ANCOVAs) 
via SPSS 25 (IBM Corporation, Armonk, NY, USA).  Between-subject primary factors were Group (two 
levels: DM vs. controls). Within-subject factors included Hemisphere (two levels for the cortex: left and 
right) and ROI (five levels: 1 = PFC, 2 = SMA, 3 = M1, 4 = S1, and 5 = B40). For N-back data, main 
factors included: Group, Task Type (two levels: one level each for single- and dual-tasks), and Condition 
(three levels: 0-back, 1-back, and 2-back). Evaluation of health state covariates was done to control for 
health state variability both within and across the two sample groups. Covariates were selected via 
Automatic Linear Modeling (ALM) using forward stepwise selection functions in SPSS. ALM was 
utilized to reduce the potential for expectation biases that may occur when hand-selecting potential 
statistical models. In the event of significant covariates determined via ALM and ANCOVA, follow-up 
correlation analyses were performed between the health state or performance covariate and the measured 
behavior.  ANCOVAs included health state covariates of: A1c, systolic and diastolic blood pressures, total 
cholesterol, high-density lipoprotein (HDL) cholesterol, disease duration, menopausal age, body mass 
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index (BMI), PN status (via indicator variable), history of hormone replacement therapy (via indicator 
variable), history of treatment with Prempro (conjugated estrogens/medroxyprogesterone acetate; via 
indicator variable), and working memory performance variables of response time and accuracy (in HbO 
and HbR analyses). Specific attention to use of Prempro in our work is warranted as long-term use of 
Prempro is associated with development of cardiovascular disease and potential cognitive complications 
(Wells and Herrington 1999; Grady et al. 2002; Cagnacci and Venier 2019; Manson et al. 2020). Prempro 
use was largely abandoned in the early 2000’s; however, patients with a history of Prempro use are still 
alive. In multiple comparison situations, Bonferroni corrected posthocs were used.  Significant 
differences are denoted by the following in figures: * at p < 0.05, ** at p < 0.001, *** at p < 0.005, and 
**** at p < 0.001. 

 
Results 

Cognitive Evaluation 

Montreal Cognitive Assessment (MoCA) 

Via ALM, the MoCA data show a significant Group difference (F1,42 = 6.45, p < 0.05) in which 
the average total MoCA scores were lower in the DM group as compared to controls, Fig 3A.  Further 
analyses of the individual MoCA domains indicated Group differences in working memory/recall (F1,19 = 
7.27, p < 0.05), such that working memory/recall scores in the DM group were lower as compared to 
controls. MoCA data scores can be found in Fig. 3B.  

 

 
Figure 3.  Group mean and standard error (SE) for MoCA and working memory data. White bars indicate data 

from the control group, gray bars indicate data from the DM group. Significant differences between Groups at p < 
0.05 (*) and p < 0.001 (****) are shown. A: Total MoCA scores. B: Domain specific MoCA scores. C:  Correct 

response rates (accuracy) in N-back evaluations. D: Response times in N-back evaluations. 
 

Working Memory (N-Back) Evaluations: Accuracy 

 Differences between single- and dual-task accuracy rates were not found via ALM; subsequent 
analyses of N-back data were performed collapsed across both single- and dual-task conditions. 
Significant Group differences in N-back accuracy were found (F1, 230 = 46.73, p < 0.001); such that the 
DM group was less accurate than controls (Fig. 3C). Condition (F2, 230 = 142.61, p < 0.001) and Group x 
Condition (F2, 230 = 6.29, p < 0.005) effects were found such that accuracy declined as the Condition 
became more difficult; however, the decline in accuracy was more dramatic in the DM group (Fig. 3C). 
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When health state covariates were included in statistical analyses, the Condition (F2,123 = 170.39, p < 
0.001) effect remained significant. However, health state covariates of Total Cholesterol (F1,123 = 9.95, p < 
0.005), Menopausal Age (F1,123 = 14.47, p < 0.001), and Prempro Use (F1,123 = 13.86, p < 0.001) replaced 
the Group effect. These health state covariates were positively correlated with accuracy (Total 
Cholesterol: r264 = 0.277, p < 0.001; Menopausal Age:  r252= 0.219, p < 0.001; Prempro Use: r252= 0.137, 
p < 0.05). 

Working Memory (N-Back) Evaluations: Response Time 

Differences between single- and dual-task response times were not found via ALM; subsequent 
analyses of N-back data were performed collapsed across both single- and dual-task conditions. Group 
differences in N-back response times were found (F1, 217 = 21.20, p < 0.001); such that the DM group had 
longer response times than controls (Fig. 3D). Significant Condition (F2, 217 = 4.72, p < 0.05) and Group x 
Condition (F2, 217 = 3.44, p < 0.05) effects were found such that response times were generally flat in the 
control Group but were significantly higher in the 1-back condition for DM group as compared to all 
other Conditions (Fig. 3D). When health state covariates were included in statistical analyses, the main 
effects of Group and Condition disappeared.  Instead, Total Cholesterol (F1,90 = 16.92, p < 0.001) 
dominated the model and was negatively correlated with response time (r240 = -0.257, p < 0.001). 

Cortical Hemodynamic Responses 

Cortical Hemodynamic Responses During Working Memory (N-Back) Evaluation 

ALM analyses indicated significant differences in Task in the HbO data, but not the HbR data. In 
the following paragraphs, we present the HbO data first with results presented in the single-task separate 
from the dual-task.  Afterwards, we present the HbR data collapsed across Task, as Task was not found to 
be a significant factor for HbR.  

 
HbO data, single-task 

During the single-task working memory evaluation, significant effects of Group (F1,76 = 4.07, p < 
0.05), ROI (F4,76 = 5.40, p < 0.001), and Condition (F2,76 = 5.77, p < 0.001) were found in HbO t-scores via 
ALM. Overall, the data show significantly larger average HbO t-scores in the DM Group as compared to 
controls; this is particularly noticeable in PFC (between Group differences are denoted in Fig. 4A). As the 
N-back Condition became more difficult (0-back vs. 2-back), HbO t-scores decreased significantly on 
average across ROIs except for PFC and SMA, denoted in Fig. 5.  HbO t-scores in PFC were significantly 
different from S1 and M1 as N-back Condition difficulty increased (shown in Fig. 5), supported by a near 
significant interaction in Condition x ROI (F8,76 = 1.77, p = 0.096). No health state covariates were found 
impact to HbO t-scores in the single-task condition. 
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Figure 4.  fNIRS t-scores for HbO during single-task and dual-task evaluations for each Group, depicted by ROI 
and Hemisphere. Mean and standard error (SE) values are shown. Significant at p < 0.01 (**), p < 0.005 (***), p < 

0.001 (****) are shown. White bars indicate right hemisphere, gray bars indicated left hemisphere 

 

 

Figure 5.  fNIRS t-scores for HbO during N-back single-task evaluations (0-, 1-, and 2-back Conditions), depicted 
by ROI and Hemisphere.  Data are averaged across Group. Mean and standard error (SE) values are shown. 
Significant differences between N-back Conditions at p < 0.001 (****) are shown. White bars indicate right 

hemisphere, black bars indicated left hemisphere. 

HbO data, dual-task 

During the dual-task working memory evaluation, a significant interaction effect in HbO of 
Group x Side x ROI (F13,170 = 1.971, p < 0.05), shown in Fig. 4B, was found when response time and 
accuracy were included as covariates within the statistical model via ALM. Posthoc analysis of this data 
show significantly higher HbO t-scores by the DM Group in the left hemisphere in the dual-task (most 
notably in B40 as compared to PFC and M1), denoted in Fig. 4B.  No health state covariates were found 
impact to HbO t-scores in the dual-task condition. 
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HbR data, collapsed across Task 

With respect to HbR, a significant effect of ROI (F4,187 = 2.60, p < 0.05) was found along with a 
significant Side x ROI interaction (F4,187 = 3.93, p < 0.005) via ALM, as indicated in Fig. 6. HbR t-scores 
showed significant asymmetry in the PFC region, as well as significant differences between PFC and M1 
activation in both hemispheres (supported by posthoc testing). No health state covariates were found 
impact HbR t-scores. 
 

 
Figure 6.  fNIRS t-scores for HbR collapsed across all Tasks and Conditions, depicted by ROI and Hemisphere. 
Mean and standard error (SE) values are shown. Significant differences at p < 0.005 (***) and p < 0.001 (****) 

are shown. White bars indicate right hemisphere, black bars indicated left hemisphere. 
 
Discussion 

The purpose of the current study was to evaluate changes in cortical oxygenation indices of 
postmenopausal women both with and without DM during cognitive tasks. The data support each of our 
hypotheses. In support of Hypothesis #1, cognitive impairment in memory/recall was observed in 
postmenopausal women with DM as compared to controls. Impaired memory function appeared as 
reduced accuracy and did not differ if the task was performed alone or coupled with a simultaneous motor 
task. In support of Hypothesis #2, HbO values differed between groups during memory/recall tasks; in 
some ROIs, differences in HbO were magnified in the DM group, suggesting changes in memory 
activation patterns with increased functional activity of non-PFC regions in PwDM. With respect to our 
exploratory arm of the study, there is an influence of poor health state and earlier menopausal age on poor 
memory function; however, no influence of health state was found to impact HbO or HbR. In the 
following paragraphs, we discuss the results of this study regarding cortical oxygenation, functional 
neuroimaging, the impact of health state markers, and menopause in assessment of both behavior and 
cortical hemodynamic function. 
 
DM-Changes in Hemodynamic Response & Use of fNIRS 

 The data indicate a significant difference in the use of HbO concurrent with impaired memory 
function, such that the DM group exhibited differences in PFC HbO activity during dual-tasks and 
dedifferentiation of functional brain activity across remaining ROIs as compared to controls. Functional 
activity changes concurrent with deficits in working memory in the DM group indicate a functional root 
for memory deficits in persons with DM that is linked to HbO.  This is consistent with our recent finding 
of altered cortical HbO use in PwDM in sensorimotor tasks (Gorniak et al. 2020). Together, these data 
indicate that it is a problem with the hemodynamic response that leads to behavioral deficits in DM. This 
supports use of behavioral monitoring along with fNIRS to detect early MCI development since 
techniques such as fMRI rely on the paramagnetism of HbR, thereby not fully measuring cortical 
hemodynamic activity which involves both HbO and HbR. Increased HbO use during dual-tasks is 
notable in the DM group, as HbO use is not indicated by other functional imaging techniques—including 
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fMRI.  By its nature, HbO is diamagnetic and not attracted to any magnetic field. Use of (f)MRI also 
limits the possible sample for study participants, as implanted devices (e.g., stents, pacemakers, etc.) 
commonly used to treat cardiovascular comorbidities of DM are an exclusion criterion for (f)MRI 
(Manschot et al. 2006; Harten et al. 2006; van Harten et al. 2007; Christman et al. 2010; Brundel et al. 
2012). Techniques such as fNIRS offer better insight into cortical activity using a more inclusive 
approach that may better reflect early markers of MCI during realistic tasks similar to activities of daily 
living in populations at high risk of developing dementia (Pinti et al. 2020). Aberrations in cortical 
activity may be a potential biomarker for tracking changes in cognitive decline in DM using wearable 
technology such as fNIRS ahead of development of dementias such as Alzheimer’s disease. Detection of 
cortical activity differences via fNIRS provides an inclusive approach and expands monitoring eligibility 
for persons with implanted devices (e.g., stents, pacemakers, etc.). This is consistent with other work done 
in fNIRS supporting its use in investigating cognitive function with respect to both advanced age and 
disease (Sato et al. 2013; Bonetti et al. 2019; Beishon et al. 2021; Koo et al. 2022; St George et al. 2022; 
Hou et al.).  
 Significantly different use of HbO in the cortex in DM may indicate reduced bioavailability of 
oxygen in DM; consistent with evidence of behavioral impairment in DM (Gorniak et al. 2020). However, 
the change in HbO use in the DM group during dual-tasks was not accompanied by improved memory, as 
accuracy and response time did not differ in either group in the single- and dual-task conditions. DM is 
associated with increased hemoglobin-oxygen affinity, which is responsible for lower oxygen delivery 
rates to tissue (Pu et al. 2012). DM is also associated with impaired hyperemic response, endothelial 
dysfunction, and microvascular dysfunction (Meyer et al. 2008; Petrofsky 2011; Barwick et al. 2016; 
Pollonini et al. 2020).  However, the increased use of HbO in the DM group within the current data set 
indicate that increased hemoglobin-oxygen affinity does not contribute to the observed memory deficits; 
rather the impairment in vascular function drives memory deficits in DM. 
 
Impaired Memory Function & Cortical Activity Changes in DM 

 The DM group exhibited significant bilateral PFC activation via HbO in dual-tasks as compared to 
controls, despite memory error rates not improving with increased PFC activity.  These activity differences 
co-occurred with activation of non-PFC cortical areas involved in movement, priming for movement, 
phonological processing, and emotional responses (M1, SMA, and B40 respectively). This DM-specific 
shift in HbO use is a novel finding that cannot be detected by fMRI. An increase of HbO along with higher 
HbO values in other measured ROIs suggests distributed cortical HbO activity in DM to compensate for 
memory deficits. This change in HbO was not accompanied by Group differences in HbR use, suggesting 
that altered HbO use across the cortex is the driver of memory deficits in DM. Changes in HbO in the DM 
group are supported by evidence of increased HbO use in the primary visual cortex in PwDM during visual 
stimulation (Aitchison et al. 2018), and may suggest an increased sympathetic drive in the autonomic 
nervous system in postmenopausal women (Barnes et al. 2014). These differences may also suggest 
potential advanced aging of the brain via cortical dedifferentiation in PwDM beyond what is to be expected 
with healthy aging (Koen et al. 2020; Seider et al. 2021; Rabipour et al. 2021).  
 Changes in PFC activity in HbO use are consistent with reports of hypothalamic-pituitary-adrenal 
axis (HPA) dysfunction, insulin signaling aberrations, and pathological changes in hippocampal functions 
all associated with DM (Sullivan and Gratton 2002; Eichenbaum 2017; Soto et al. 2019). The PFC-
hippocampus interaction is known to be important for episodic memory (Eichenbaum 2017). Metabolic 
disruption of PFC-hippocampus via endocrine dysfunction in DM impacts memory and behavior (Sullivan 
and Gratton 2002; Ho et al. 2013). Aberrations in PFC activity spurred by changes in the HPA axis in DM 
are consistent with impaired stress coping ability and symptoms of cognitive decline (Sullivan and Gratton 
2002; Ho et al. 2013)—in line with our observations of impaired working memory in DM (Gorniak et al. 
2019a, b).  
 
Influence of Health State Variables and Menopause  
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Reports of the link between metabolic syndrome and cognitive impairment abound in the evidence 
base (Yaffe et al. 2004). This is supported by our findings of some health state markers (e.g., lipidemia) 
being associated with impaired memory function in DM (Gorniak et al. 2019a, b), such that PwDM on 
statins for lipidemia exhibit lower total cholesterol scores but impaired memory function as compared to 
controls with higher total cholesterol scores. No significant influences of health state variables on cortical 
activity were found in the current study.  Our prior work on sensorimotor function indicated that health state 
variables clarified functional cortical activity deficits in DM.  The lack of similar result in the current data 
indicate that hemodynamic response of some cortical regions may not be moderated by commonly 
measured health state variables (e.g., cholesterol). Cortical regions closely linked to the limbic system, such 
as PFC and B40, may be more significantly impacted by disruptions to the neuroendocrine system instead. 
Such disruption may impact cortical activity by blunting both neurovascular and hemodynamic responses 
(Drew 2019).  

Consistent with (Grady et al. 2002), working memory data was impacted by menopausal age and 
use of specific hormone replacement therapies (HRT). Increased menopausal age (resulting in a shorter time 
between menopause and participation in the current study) and Prempro use were associated with higher 
working memory accuracy. Menopausal age was significantly different between the DM (43 ± 11 years) 
and control (50 ± 7 years) groups (t40 = 2.85, p < 0.05); however, DM-related deficits in accuracy persisted 
once menopausal age was considered in our statistical models.  In contrast, no significant influences of 
menopause or HRT were found on cortical activity. The lack of a specific impact of menopausal age on 
cortical hemodynamic response during memory tasks is an intriguing outcome, as menopause is associated 
with impaired hemodynamic responses of the cortex and skeletal muscle during sensorimotor tasks 
(Pollonini et al. 2020; Gorniak et al. 2020). There is some evidence that HRT improves hemodynamic 
responses in postmenopausal females (Peterson et al. 2000; Fadel et al. 2004); however, it is unclear if HRT 
is also protective against deficits induced by a combination of DM and menopause. It is also unclear if and 
how HRT during a certain time window (e.g., early) during menopause may protect both cardiovascular and 
cognitive function (Grady et al. 2002; Cagnacci and Venier 2019; Manson et al. 2020). A complex interplay 
among menopause, menopausal symptoms, sex-hormones, and cognitive decline has been suggested (Maki 
2015; Cagnacci and Venier 2019; Manson et al. 2020; Maki and Thurston 2020); however, further work is 
needed to assess what features of menopause may truly underlie memory decline in women, particularly 
women with DM. 
 
Conclusion 
 
 Deficits in working memory accuracy were found in the DM group as compared to controls. 
Differences in HbO responses occurred such that the DM group exhibited altered PFC activity 
magnitudes and evidence of increased of functional cortical activity across remaining ROIs. HbO 
responses in the DM group were not associated with worsened health state measures (e.g., lipidemia). 
These data indicate a shift in cortical activity regarding memory use in DM concurrent with poor 
memory. This DM-specific shift of HbO use is a novel finding that cannot be detected by fMRI and is 
consistent with HPA dysfunction. This work underscores the value of using wearable non-MRI-based 
neuroimaging technology to monitor functional deficits to detect mild cognitive impairment using a more 
inclusive approach. 
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Table 1. Demographic and Clinical Characteristics of DM Participants.  

Participant 
# 

Age 
(years) 

Menopausal 
Age  

(years) 

BMI 
(kg/m2) 

DM 
Duration 
(months) 

A1c 
(%) 

Total 
Cholesterol 

(mg/dL) 

Systole 
(mmHg) 

Diastole 
(mmHg) 

         

1 63 50 27.4 60 6.7 -- 151 81 
2 79 45 28.3 144 7.9 -- 155 75 

3* 65 50 40.7 120 7.1 -- 145 97 
4‡ 66 50 29.3 186 8.7 199 111 62 
5* 64 40 44.1 60 6.2 109 180 91 
6 60 50 37.5 387 10.4 224 161 78 

7* 60 55 33.7 245 8 143 130 70 
8 57 49 36.9 41 8.6 176 130 88 
9^ 73 60 25.3 201 6.8 125 167 78 
10 68 23 31.8 168 5.7 219 164 89 
11 70 45 26.9 200 6.1 266 130 71 
12 62 38 32.4 36 6.2 189 124 70 
13 67 45 30.2 1 8 144 158 97 

14*‡ 66 45 31.4 262 6.3 175 142 75 
15* 69 55 42.3 298 8.4 185 139 63 
16 58 51 32.8 95 7.4 143 153 89 
17* 55 27 38.6 385 7.4 126 133 68 
18 67 25 30.5 1 7.7 183 148 73 

19*^ 71 52 42.9 196 8.5 173 105 60 
20 69 27 36.3 149 8.7 187 202 100 
21 60 37 30.1 1 6.7 183 179 111 

         

Mean 65 43 33.8 154 7.5 175 148 80 
SD 6 11 5.6 117 1.2 39 23 14 

         

Controls 67 ± 6 50 ± 7  24.1 ± 4.5 N/A 5.3 ± 0.3 200 ± 43 147 ± 21 86 ± 14 

 
*Indicates a clinical diagnosis of diabetic peripheral neuropathy; ‡ Indicates a history of Prempro Rx (in 
addition to 3 control participants); --, Indicates lipid data collection failure; SD, standard deviation; ^ 
indicates omitted fNIRS data due to lack of reliable signal  
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