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A B ST R A C T

Life is a journey sometimes interrupted in a sudden and unex-
pected way.

In 40% of sudden out-of-hospital cardiac arrest (OHCA) cases
the initially recorded heart rhythm is ventricular fibrillation (VF).
The only effective way to treat VF is by procuring a defibrillating
electrical shock to the heart. In an out-of-hospital setting, the shock
is delivered using an automated external defibrillator (AED), a
device capable of analyzing the victim’s electrocardiogram (ECG)
to detect if a shockable rhythm is present. Survival from OHCA
depends largely on two factors: early defibrillation and early car-
diopulmonary resuscitation (CPR), which prolongs the window
of opportunity for defibrillation. CPR must be stopped for a reli-
able AED rhythm analysis because chest compressions introduce
artifacts in the ECG. Unfortunately, interrupting CPR adversely
affects defibrillation success.

The use of AEDs in 1 to 8 year olds was approved in 2003.
AEDs, which were originally designed for adult patients, must
accurately discriminate pediatric arrhythmias to be safely used
in children. Several AEDs have been adapted for pediatric use,
either by demonstrating that existing adult algorithms accurately
diagnose pediatric arrhythmias or by creating specific algorithms
to diagnose pediatric arrhythmias.

This thesis presents a new AED algorithm designed for adult
and pediatric patients together. The algorithm is thoroughly tested
using pediatric and adult arrhythmia databases compliant with
the American Heart Association (AHA) statements, and on real
resuscitation data with and without CPR artifacts.

The work started with a long experimental phase in which 1090
pediatric rhythms were retrospectively collected and classified to
create a comprehensive database of pediatric arrhythmias. Ad-
ditionally, an existing adult database was revised and 928 new
adult rhythms were collected and classified. The complete dataset
is composed of 2782 registers, 1270 were used to develop the
algorithm and 1512 to test it.

Then, a new AED shock advice algorithm composed of four sub-
algorithms was designed. These sub-algorithms are based on a set
of new arrhythmia detection features derived from several signal
domains such as time, frequency, slope or the autocorrelation
function. The algorithm exceeded the AHA performance goals for
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the detection of shockable and non-shockable rhythms both on
adult and pediatric arrhythmias.

The work concluded with the analysis of the performance of
the algorithm for real resuscitation data extracted from a compre-
hensive database of OHCA episodes. All AHA performance goals
were met for artifact-free OHCA rhythms. Then, the performance
of the algorithm during chest compressions was assessed, before
and after the suppression of the CPR artifact. The CPR artifact
was suppressed using a new methodology developed as part of
this thesis work. Although shockable rhythms were accurately
identified after filtering, non-shockable rhythms were not.
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L A B U R P E N A

Bizitza bidaia da, batzuetan bat-batean eta ezustean eteten den
bidaia.

Ospitaletik kanpo gertatzen diren bat-bateko bihotz-biriketako
geldiketa-kasuen % 40an lehendabizi grabatutako bihotz-erritmoa
fibrilazio bentrikularra (FB) da. Bihotzean desfibrilazioa eragingo
duen deskarga elektrikoa ematea da FBa tratatzeko modu eragin-
kor bakarra. Ospitaletik at, kanpoko desfibrilagailu automatikoa
(KDA) erabiltzen da deskarga emateko, pazientearen elektrokar-
diograma (EKG) aztertu eta desfibrilagarriak diren erritmoak
detektatzeko gaitasuna duen aparagailua, alegia. Kasu horietan,
biziraupena bi faktore hauen menpekoa da: desfibrilazio goiz-
tiarraren menpekoa eta bihotz-biriketako berpizte (BBB) goizti-
arraren menpekoa (desfibrilazioa emateko aukera-lehioa luzatzen
duena). BBBan ematen diren bular-sakadek interferentzia sortzen
dute EKGan; ondorioz, BBBa gelditu behar da KDAk bihotz
erritmoa egokiro azter dezan. Tamalez, geldiketa horiek desfibri-
lazioaren arrakasta maila txikiagotzen dute.

KDA-aren erabilera 1 eta 8 urte bitarteko umeekin 2003an
onartu zen. Ordura arte paziente helduak tratatzeko diseinatu-
tako KDAk modu zehatzean identifikatu behar dituzte arritmia
pediatrikoak, umeekin erabili ahal izateko. Zenbait KDA umeekin
erabiltzeko egokitu dira, bi eratara: helduekin erabiltzen diren
algoritmoak umeekin ere zehatzak direla frogatuz, eta umeen
arritmiak identikatzeko algoritmo bereziak erabiliz.

Tesi honetan KDA algoritmo berri bat garatu da, diseinua
paziente heldu eta pediatrikoekin batera eginez. Algoritmoa sakon
egiaztatu da. Batetik, American Heart Association (AHA) erakun-
deak ezarritako baldintzak betetzen dituzten helduen eta umeen
arritmia datu-baseak erabiliz, eta, bestetik, bihotz-geldiketetan
grabatutako arritmiak erabiliz, BBB interferentziaz kutsatutako
eta interferentziarik gabeko kasuetan.

Tesi-lana atal experimental luze batekin hasi zen. Fase horre-
tan 1090 arritmia pediatriko bildu eta klasifikatu ziren, arritmia
pediatrikoen datu-base zabal bat sortuz. Horrez gain, helduen
datu-base oso bat berraztertu eta 928 helduen arritmia berri bildu
eta klasifikatu ziren. Datu-base osoak 2782 erregistro ditu: 1270 al-
goritmoa garatzeko erabili ziren eta 1512 algoritmoa egiaztatzeko.

Ondoren, lau azpialgoritmoz osatutako algoritmo berria garatu
zen. Azpialgoritmoek seinalearen zebait eremutan kalkulatutako
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parametro berriak erabiltzen dituzte arritmiak detektatzeko; adi-
bidez, denbora, maiztasuna, pendiza edo autokorrelazio-funtzioa.
Algoritmo berriak AHAk ezarritako mailak gainditzen ditu erritmo
desfibrilagarri eta ez-desfibrilagarriak detektatzeko, paziente pe-
diatriko zein helduekin.

Lanaren azken atalean, algoritmo berriak bihotz-geldiketan
grabatutako erregistroak identifikatzeko duen ahalmena aztertu
zen. BBB interferentziarik gabeko erritmoetan, algoritmoak AHAk
ezarritako mailak gainditzen ditu. Ondoren, erritmoak aztertu
ziren bular-sakadak ematen ziren bitartean, BBB interferentzia
ezabatu aurretik eta ezabatu ondoren. Interferentzia ezabatzeko,
tesian zehar garatutako metodo berri bat erabili zen. BBB inter-
ferentzia ezabatu ondoren, erritmo desfibrilagarriak modu zeha-
tzean identifikatu ziren; erritmo ez-desfibrilagarriak, ez.
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R E S U M E N

La vida es un viaje que a veces se interrumpe de forma súbita e
inesperada.

La fibrilación ventricular (VF) es el primer ritmo registrado
en el 40 % de las muertes súbitas por paro cardiorrespiratorio
extrahospitalario (PCRE). El único tratamiento eficaz para la FV
es la desfibrilación mediante una descarga eléctrica. Fuera del
hospital, la descarga se administra mediante un desfibrilador
externo automático (DEA), que previamente analiza el electrocar-
diograma (ECG) del paciente y comprueba si presenta un ritmo
desfibrilable. La supervivencia en un caso de PCRE depende fun-
damentalmente de dos factores: la desfibrilación temprana y la
resucitación cardiopulmonar (RCP) temprana, que prolonga la FV
y por lo tanto la oportunidad de desfibrilación. Para un correcto
análisis del ritmo cardiaco es necesario interrumpir la RCP, ya que,
debido a las compresiones torácicas, la RCP introduce artefactos
en el ECG. Desafortunadamente, la interrupción de la RCP afecta
negativamente al éxito en la desfibrilación.

En 2003 se aprobó el uso del DEA en pacientes entre 1 y 8 años.
Los DEA, que originalmente se diseñaron para pacientes adultos,
deben discriminar de forma precisa las arritmias pediátricas para
que su uso en niños sea seguro. Varios DEAs se han adaptado para
uso pediátrico, bien demostrando la precisión de los algoritmos
para adultos con arritmias pediátricas, o bien mediante algoritmos
específicos para arritmias pediátricas.

Esta tesis presenta un nuevo algoritmo DEA diseñado conjun-
tamente para pacientes adultos y pediátricos. El algoritmo se ha
probado exhaustivamente en bases de datos acordes a los requi-
sitos de la American Heart Association (AHA), y en registros de
resucitación con y sin artefacto RCP.

El trabajo comenzó con una larga fase experimental en la que
se recopilaron y clasificaron retrospectivamente un total de 1090
ritmos pediátricos. Además, se revisó una base de arritmias de
adultos y se añadieron 928 nuevos ritmos de adultos. La base de
datos final contiene 2782 registros, 1270 se usaron para diseñar el
algoritmo y 1512 para validarlo.

A continuación, se diseñó un nuevo algoritmo DEA compuesto
de cuatro subalgoritmos. Estos subalgoritmos están basados en
un conjunto de nuevos parámetros para la detección de arritmias,
calculados en diversos dominios de la señal, como el tiempo,
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la frecuencia, la pendiente o la función de autocorrelación. El
algoritmo cumple las exigencias de la AHA para la detección de
ritmos desfibrilables y no-desfibrilables tanto en pacientes adultos
como en pediátricos.

El trabajo concluyó con el análisis del comportamiento del
algoritmo con episodios reales de resucitación. En los ritmos
que no contenían artefacto RCP se cumplieron las exigencias de
la AHA. Posteriormente, se estudió la precisión del algoritmo
durante las compresiones torácicas, antes y después de filtrar
el artefacto RCP. Para suprimir el artefacto se utilizó un nuevo
método desarrollado a lo largo de la tesis. Los ritmos desfibrilables
se detectaron de forma precisa tras el filtrado, los no-desfibrilables
sin embargo no.
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Life is a journey not a destination.

— Ralph Waldo Emerson
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Defibrillators are for hearts too good to die.

— Claude S Beck
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1 I N T R O D U C T I O N

1.1 The ECG signal
The heart is a hollow muscular organ that pumps blood through
the blood vessels by repeated and rhythmic contractions. The
human heart has four chambers: the two on the right pump blood
to the lungs to pick up oxygen, and the two on the left pump the
oxygenated blood to the body. On each side, there is an upper low-
pressure chamber called the atrium, and a lower high-pressure
chamber called the ventricle that provides the main pumping
function.

The cardiac cycle consists of two phases: a filling phase called
diastole and a contracting or pumping phase called systole. To
pump blood effectively, the cardiac muscle must contract in a
highly synchronized way. This contraction is triggered by an elec-
tric impulse automatically generated in the heart and propagated
through an elaborate conduction system, shown in Figure 1.1.
This is possible because the myocardium, the heart’s muscular

Right Bundle Branch

Purkinje
Fibers

Atrioventricular (AV) Node

Posterior
Internodal
Tract

Middle
Internodal
Tract

Anterior
Internodal
Tract

Sinoatrial (SA)
Node

Bachmann’s Bundle

Left Bundle Branch

Bundle of His

Figure 1.1: The electrical system of the heart. Downloaded and adapted
from www.ohsuhealth.com.
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2 INTRODUCTION

wall, contains specialized cells with the capacity to generate and
conduct an electrical impulse.†

In a healthy heart, the initiation of the cardiac cycle occurs
in a cluster of pacemaker cells, called sinoatrial (SA) node, lo-
cated in the right atrium. Acting as the natural pacemaker of
the heart, the SA node initiates the impulse at regular intervals
60 to 100 times per minute. The electrical impulse propagates
through the internodal pathways, activating — depolarizing —
the atria. This causes the atria to contract; thus, pumping blood
into the ventricles. The atrioventricular (AV) node collects and
delays the impulse, allowing the ventricles time to finish filling
with blood. The impulse then traverses the wall between the ven-
tricles through the bundle of His and divides into the right and
left bundle branches, and further into a network of conducting
fibers called the Purkinje fibers. The impulse propagates rapidly
through this network, depolarizing the ventricles and producing a
unified contraction. The cardiac cells then return to their original
state — repolarize — following a refractory period, during which
they cannot be depolarized again. The refractory period prevents
the impulse from traveling back to the atria.

The electrical activity of the heart recorded by electrodes placed
on the body surface is called an electrocardiogram or ECG. Fig-
ure 1.2 shows an ECG record of a normal beat of the heart, called

QT intervalPR interval

QRS complex

PR segment ST segment

Ventricular
depolarization

Ventricular
repolarization

Atrial
depolarization

P

Q

R

S

T

Figure 1.2: A typical ECG recording of a normal sinus rhythm.

† The myocardium is primarily composed of contractile muscle cells.
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the normal sinus rhythm. It consists of a P wave, a QRS com-
plex, and a T wave, caused by atrial depolarization, ventricular
depolarization, and ventricular repolarization, respectively. Atrial
repolarization is masked by the QRS complex and is not visible in
the ECG.

1.2 Sudden cardiac death
The sudden cessation of the mechanical activity of the heart,
confirmed by the absence of signs of circulation, is called sudden
cardiac arrest (SCA).69 Death resulting from SCA is called sudden
cardiac death (SCD) and is usually defined as the unexpected
natural death from a cardiac cause within a short time, generally
less than one hour from the onset of the symptoms.152

SCD is the single most important cause of death in the adult
population of the industrialized world. The precise incidence of
SCD is not known. Estimates of the annual incidence among the
United States (US) adult population range from 184 000 to 450 000,
depending on the definition of SCD and the inclusion criteria
used in each study.35,151 The most widely accepted estimate of
300 000 annual deaths accounts for an average of 100 to 200 deaths
per 100 000 adults over 35 years of age and represents 50% of all
heart-related deaths.104

The most frequent cause of SCD is fatal ventricular arrhythmias:
ventricular fibrillation (VF) and ventricular tachycardia (VT).40

In fact, VT degenerating to VF appears to be the mechanism
for the large majority of cardiac arrests.97 During VF, the ven-
tricles rapidly depolarize and repolarize, and the heart loses its
coordinated function and stops pumping blood efficiently. The
only effective way to terminate VF and to restore a perfusing
cardiac rhythm is defibrillation, procured through the delivery of
an electrical shock to the heart.23

One of the highest priorities in cardiovascular research today is
the prediction and prevention of the occurrence of SCD. Currently,
the most predictive risk factors for the occurrence of SCD are
the presence and severity of an underlying heart disease. Unfor-
tunately, at least two thirds of all SCDs occur as a first clinical
event or among subgroups of patients thought to be at relatively
low risk for SCD.105 Only 35–45% of the cases, the first three sub-
groups in Figure 1.3, present sufficient risk for effective preventive
strategies.104 This is why emphasis is put on the development of
safe, low-cost interventions that can be applied to the population
at large.
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Figure 1.3: Subgroups at risk for sudden cardiac death. At least two-
thirds of all SCDs occur as a first clinical event or among subgroups of
patients thought to be at relatively low risk for SCD. AP = Angina pectoris;
MI = Myocardial infarction. Derived from Myerburg and Castellanos.105

However, most SCDs occur out of hospital,151 and the emer-
gency medical services (EMS) only treat 60% of out of hospital
cardiac arrests (OHCA).30 In fact, the estimated annual incidence
of OHCA treated by EMS in the US is 55 per 100 000 population,
with VF as the initially recorded rhythm in 40% of those cases.116

Although many more victims present VF or VT at the time of
collapse, by the time the first ECG is recorded, their rhythm has de-
teriorated to asystole,135 characterized by the absence of electrical
activity.

The deterioration of the heart function in prolonged cardiac
arrest leads to lower survival rates. For instance, the estimated
survival rate in all cases of OHCA is a poor 8.4%, but rises to
17.7% when the victim presents VF as the initial rhythm.116 Con-
sequently, early intervention for victims of OHCA is critical for
survival and has led to the definition of the concept of the chain of
survival.

1.3 The chain of survival
In the early 1990s, the American Heart Association (AHA) estab-
lished the chain of survival metaphor to describe the sequence
of actions for a successful resuscitation in the event of an OHCA.
The chain of survival, depicted in Figure 1.4, consists of four
interdependent links.

1. Early access. The resuscitation chain starts with early ac-
cess, which includes all steps between the initiation of the
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EARLY

ACLS

EARLY

DEFIBRILLATION

EARLY

CPR

EARLY

ACCESS

Figure 1.4: The chain of survival and its four interdependent links: Early
Access, Early CPR, Early Defibrillation, and Early ACLS. Downloaded
and adapted from http://cprftlauderdale.com .

cardiac arrest and the arrival of EMS personnel. First, the
medical emergency is recognized either by the person with
symptoms or by a witness, and then the EMS are accessed
and activated. Finally, the responder reaches the scene and
locates the patient to provide adequate care.

2. Early cardiopulmonary resuscitation (CPR). Bystander CPR
is the second link in the chain of survival. CPR consists of
chest compressions and ventilations that maintain a minimal
blood flow to sustain a sufficient perfusion before the arrival
of the EMS personnel.

3. Early defibrillation. Most SCA victims are in VF, which can
only be restored to a perfusing rhythm through defibrillation.
In an out-of-hospital setting, defibrillation is normally ad-
ministered using an automated external defibrillator (AED).
The AED is a portable user-friendly device that analyzes
the victim’s ECG to determine whether a shockable rhythm
is present. When the AED detects a shockable rhythm, it
charges, then prompts the rescuer to press a shock button
to deliver a defibrillating shock.

4. Early advanced cardiac life support (ACLS). The last critical
link in the management of cardiac arrest is early ACLS, the
treatment provided by qualified health care personnel after
defibrillation. ACLS includes intubation and the administra-
tion of medication.

Although the four links in the chain of survival are impor-
tant, most differences in SCA survival rates are explained by two
variables: the time intervals from collapse to CPR and from col-
lapse to defibrillation.93,133 If no CPR is provided, survival rates

http://cprftlauderdale.com


i
i

i
i

i
i

i
i

6 INTRODUCTION

in VF cardiac arrest decrease by 7% to 10% with every minute
that defibrillation is delayed.93 On the contrary, when bystander
CPR is provided, the decrease is smaller: it averages 3% to 4%
for every minute from collapse to defibrillation.93,133 At most
time intervals to defibrillation, CPR can double93,133 or triple60

survival from witnessed SCA. The data shown in Table 1.1 best
summarize the importance of the interaction between bystander
CPR and defibrillation. Without CPR starting within 5 minutes
and defibrillation occurring within 10 minutes, the value of early
defibrillation degrades, and the value of early CPR is lost.

Immediate bystander CPR is important for two reasons: many
adults in VF survive with intact neurologic function if CPR is
performed and defibrillation administered within 5 minutes after
collapse,36,145 and CPR prolongs VF: that is, the window of op-
portunity for defibrillation.59,136 However, CPR alone is unlikely
to terminate VF. The restoration of an adequate perfusing rhythm
requires defibrillation.

When immediate access to defibrillation is available, the sur-
vival rates are very high. For instance, survival rates greater than
90% have been reported for patients defibrillated within the first
minute of collapse.98 However, in prolonged arrests (>5 min), sev-
eral studies suggest that administering CPR before defibrillation
may improve survival.36,145 When EMS personnel do not witness
the OHCA, the duration of the arrest is difficult to estimate, and
CPR as the initial treatment may be beneficial. The evidence was
not conclusive when the resuscitation guidelines were last revised
in 2005, and the decision on initial treatment (CPR/defibrillation)
was left to EMS directors.41

A current model of VF cardiac arrest explains the differences in
treatment.139 During the first or electrical phase of the arrest (<4
min), defibrillation is the crucial intervention. However, during
the second or circulatory phase (i. e., for prolonged arrests: 4–10
min), the generation of adequate cerebral and coronary perfusion

Collapse to defibrillation

Collapse to CPR < 10 min > 10 min

< 5 min 37% 7%

> 5 min 20% 0%

Table 1.1: Percentage of survival to hospital discharge in OHCA, showing
the influence of early CPR and early defibrillation.37
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through chest compressions is the key intervention. Several recent
studies advocate two minutes of uninterrupted chest compressions
before defibrillation for prolonged arrests.79,48,78

The AHA supported the concept of public access defibrillation
(PAD) in 1995140 as an effort to shorten time to defibrillation.
Through PAD programs, the community has access to the AED
and is trained in its use. More recently, AEDs have been placed in
a variety of settings,† making immediate defibrillation available
and significantly increasing survival rates. The advances in AED
technology over the past two decades have made AED use by non-
medical personnel safe and effective, contributing to the feasibility
of PAD programs.98

1.4 The automated external defibrillator

Diack et al. introduced the AED in 1979.42 Since the early 1990s,
there have been important advances in AED technology, par-
ticularly in the fields of defibrillation waveform, long-duration
batteries, and rhythm analysis algorithms.131 Current AEDs are
low-cost, small and light, simple-to-operate devices that accurately
diagnose lethal ventricular arrhythmias. These characteristics are
essential in PAD programs where AEDs are operated by first-
time users with minimal training. Manufacturers have simplified
AED operation, which consists of four universal steps2,131 (see
Figure 1.5).

1. Power on. The AED is turned on by pressing the power
switch or by lifting the monitor cover. Once switched on, a
voice prompt is initiated to guide the operator through the
next steps.

2. Attach electrode pads. The electrode pads are then placed in
an anterolateral position, as indicated in the defibrillation
pads in Figure 1.5. The electrode pads serve to record the
ECG and to deliver the electric shock when needed. In some
cases, drying or shaving the victim’s chest will be necessary
to guarantee adequate contact between the pads and the
skin.

3. Analyze the rhythm. In some devices, the operator presses
the analyze button to initiate rhythm analysis; in other de-
vices, it begins automatically when the pads are placed and

† Among others: EMS systems, police departments, casinos, airport terminals, and
commercial aircraft. 134,112,143
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connected. Motion artifacts produce errors in the rhythm
analysis algorithms; therefore, all movement affecting the
victim must be avoided, and CPR must be interrupted.

4. Advise shock. If the rhythm analysis algorithm detects a lethal
ventricular arrhythmia, the AED will recommend a shock.
In a semiautomatic configuration, the rescuer must press
the shock button to deliver the shock, while in a fully au-
tomatic configuration, the shock is delivered without the
intervention of the rescuer. If the algorithm does not detect a
lethal ventricular arrhythmia, the AED prompts the rescuer
to resume CPR.

Defibrillation
pads

Analyze

On/off

Shock

Voice
command

Figure 1.5: The automated external defibrillator and its basic operation
steps. Adapted from Takata et al. 131

1.4.1 The shock advice algorithm

AEDs are thought to be operated by rescuers who do not need to
recognize or interpret heart rhythms. For this reason, an essential
component of the AED is the rhythm analysis or shock advice
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algorithm. In 1997, the AHA task force on automatic external
defibrillation published a scientific statement80 that, among other
items described how to evaluate the accuracy of the algorithms
and the algorithm performance specifications.

The shock advice algorithm of an AED analyzes the ECG to
determine whether or not to shock a patient; i. e., the decision
of the algorithm is a binary diagnostic test. The accuracy of the
algorithm is evaluated by comparing the decisions of the algo-
rithm with the consensus diagnosis of three expert reviewers, as
indicated in Table 1.2. It is then possible to calculate the propor-
tions of correctly identified shockable (Sensitivity), non-shockable
(Specificity), and total rhythms (Accuracy). The positive and neg-
ative predictive values — PPV and NPV — give the probability
that a shock is needed when it is recommended by the AED or
not needed when it is not recommended by the AED.

Rhythm classification

Shockable Non-shockable

A
lg

or
it

hm
de

ci
si

on Shock True Positive = TP False Positive = FP

No Shock False Negative = FN True Negative = TN

Sensitivity (Se) = 100× TP
TP + FN

Specificity (Sp) = 100× TN
TN + FP

Accuracy (Acc) = 100× TN+TP
TP + FN + TN + FP

Positive predictive value (PPV) = 100× TP
TP + FP

Negative predictive value (NPV) = 100× TN
TN + FN

Table 1.2: Contingency table for an AED decision algorithm. The rhythm
classification is the result of 100% agreement among three expert review-
ers of OHCA rhythms.

The AHA task force divided the cardiac rhythms into three
broad categories.

• Shockable rhythms: lethal ventricular arrhythmias that lead
to death unless the patient is defibrillated. These rhythms
include coarse VF (peak-to-peak amplitude > 200 µV50)
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and rapid VT.† Shockable rhythms are associated with an
unresponsive and pulseless patient in all cases of VF and in
most cases of rapid VT.

• Non-shockable rhythms: benign (or even normal) rhythms that
must not be shocked, especially in patients with a pulse, be-
cause no benefit will follow and deterioration in rhythm may
result. These rhythms include: normal sinus rhythm (NSR),
supraventricular tachycardia (SVT), sinus bradycardia (SB),
atrial flutter or fibrillation (AF), heart blocks, idioventricular
(IV) rhythms, premature ventricular contractions (PVC), and
other rhythms occurring in a conscious patient with a pulse.

Asystole is included in the non-shockable rhythm category.
Although patients in asystole are pulseless and unrespon-
sive, there is no evidence of benefits from defibrillating asys-
tole.99 In fact, the 2005 European resuscitation guidelines
do not recommend the interruption in chest compressions
to attempt shock delivery for asystole.41

• Intermediate rhythms: rhythms for which the benefits of defib-
rillation are limited or uncertain. This category includes fine
VF (non-coarse) and slow VT. Fine VF precedes asystole, sur-
vival rates are low, and it is associated with a considerable
delay since collapse.

The statement mentions that the ECG data used to develop
and test the algorithms may be acquired from prehospital or in-
hospital events and that the data used to develop the algorithm
must be different from the data used to test the algorithm.

The task force also specified the minimum number of ECG
samples per category needed to test the algorithm, and the values
of the sensitivity and specificity for each rhythm type. These
values are compiled in Table 1.3.

The IEC 60601-2-4 standard64 — which specifies the require-
ments for the safety of cardiac defibrillators, and particularly the
section‡ that specifies the performance goals of AED shock advice
algorithms — is currently under revision. The current draft sup-
ports keeping the VF sensitivity goal above 90% and the specificity
for non-shockable rhythms above 95%.

The shock advice algorithms of commercial AEDs have been
tested extensively in adults, both in vitro against libraries of

† The task force did not specify the heart rate above which VT should be shocked
because tolerance to VT varies widely among patients. Each manufacturer should
specify the criteria for VT used in its algorithm.

‡ Section: essential performance data of the rhythm recognition detector, page 15 of the
current standard.
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Rhythms
Minimum test

sample size
Performance

goal
90% lower

CI a

Shockable

Coarse VF 200 >90% Se 87%

Rapid VT 50 >75% Se 67%

Non-shockable 300

NSR 100 >99% Sp 97%

AF, SB, SVT, blocks,
idioventricular, PVC

30 >95% Sp 88%

Asystole b 100 >95% Sp 92%

Intermediate

Fine VF 25 Report only -

Other VT 25 Report only -

a The confidence interval (CI) is calculated for the minimum sample size and
an observed performance equal to the performance goal.

b Asystole is included for safety.

Table 1.3: Performance goal for AED shock advice algorithms. The sam-
ples must be free of artifacts.

recorded cardiac rhythms103,34 and clinically in many field tri-
als.138,110,112 These algorithms are extremely accurate in the dis-
crimination of shockable and non-shockable rhythms in the field,
with reported sensitivities of 96–100% and specificities of around
100%.

1.4.2 The use of AEDs in children

Sudden death is 10 times less frequent in pediatric (under 21
years of age) patients than in adult patients, and estimates of
the annual incidence range between 8.5 and 19.7 per 100 000
children,47,87,124,53 depending on the inclusion criteria for age and
etiology. In the US, an estimated 16 000 children die each year from
SCA.124 Although cardiac arrest in children constitutes less than
10% of all OHCA, the social and emotional impact is enormous
because of the greater life expectancy of a child.

Cardiac arrests due to arrhythmias are less frequent in children
than in adults.87,148 Data on the initially recorded rhythm on pe-
diatric SCA show that VF as the initial rhythm is less common
in children than in adults and that its occurrence increases with
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age. However, VF has been reported as the initial rhythm in 4%
to 24% of pediatric OHCA cases.124,101,58 In-hospital studies also
indicate that VF is not a rare rhythm among children. A recent
comprehensive study reported VF or pulseless VT as the initial
rhythm in 14% of children in cardiac arrest.106 More importantly,
in most pediatric studies, VF is the arrhythmia associated with
the highest survival rate.101,58,148 For example, Mogayzel et al. 101

reported a 17% survival rate with good neurological outcome
when VF was the initially recorded rhythm, versus only 2% for pa-
tients in asystole or pulseless electrical activity (PEA).† Young and
Seidel 148 reported that only 5% of children in asystole survived
versus a 30% survival rate for children in VF.

As late as 2000, no conclusive study on the use of AEDs in
patients under 8 years of age existed. In 1998, Atkins et al. 14 eval-
uated the accuracy and efficacy of AEDs in adolescents for the
first time. However, their study was not conclusive because it only
included 18 patients, with a mean age of 12 years. Cecchin et al. 25

in 2001 and Atkinson et al. 16 in 2003 published two independent
studies that provided the necessary scientific evidence to recom-
mend the use of AEDs in children. Based on this evidence, in 2003,
the International Liaison Committee on Resuscitation (ILCOR)
made the following recommendations.120

“Automated external defibrillators (AEDs) may be used for children
1–8 years of age who have no signs of circulation. Ideally, the device
should deliver a pediatric dose. The arrhythmia detection algorithm used
in the device should demonstrate high specificity for pediatric shockable
rhythms, i. e. it will not recommend delivery of a shock for non-shockable
rhythms (Class IIb).

Currently the evidence is insufficient to support a recommendation
for or against the use of AEDs in children <1 year of age.”

These recommendations were included in the 2005 European
resuscitation guidelines.22 These guidelines mention the most
important modifications needed to adapt the AEDs designed for
adult patients for pediatric use.

• Defibrillation pads. Defibrillation pads must be large enough
to provide good contact with the chest walls; however, there
should be good separation between the pads. Current guide-
lines recommend pad diameters of 4.5 cm for children under
10 kg and 8–12 cm diameter for children >10 kg. If the pads
in the anterolateral position are too close together, the an-

† PEA is characterized by organized, wide complex electrical activity, usually at a
slow rate, and absent pulses. 22
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teroposterior position is recommended to avoid electrical
arcing (see Figure 1.6).

• Defibrillation dose. An AED for pediatric use should deliver
a lower dose (50–75 J), suitable for children aged 1–8 years.
The dose can be adjusted electronically when charging or
by an attenuator incorporated into the pediatric defibrillator
pads.

• AED shock advice algorithm. The shock advice algorithm
should be able to discriminate lethal ventricular arrhyth-
mias accurately in the pediatric case and should be tested
against a library of pediatric arrhythmias.

Since ILCOR recommended the use of AEDs in children, sev-
eral case reports of successful pediatric defibrillation18,90 have
provided further evidence of the benefits of extending AED use
to the pediatric population.

Pad placement for adults and
children over 55 pounds or 8
years old.

Pad placement for infants and
children under 55 pounds
or 8 years old.

Figure 1.6: Defibrillation pad placement. Pads are placed in the antero-
lateral position in adult patients and in the anteroposterior position in
pediatric patients. Adapted from Philips Medical Systems.

1.5 New milestones in the design of AED
shock advice algorithms

Two important aspects related to the design of AED shock advice
algorithms have attracted the attention of the scientific community
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in the last years: the design of AED shock advice algorithms valid
for adult and pediatric use, and the influence of CPR on AED
shock advice algorithms.

1.5.1 AED shock advice algorithms for pediatric use

The current resuscitation guidelines mention that the performance
of the shock advice algorithm must be tested against a database of
pediatric arrhythmias before an AED can be used on children.22

However, no public database of pediatric arrhythmias exists to
test AED shock advice algorithms. In fact, in all published studies
to date, researchers have tested the algorithms of several com-
mercial AEDs against proprietary databases of pediatric arrhyth-
mias.25,16,15

The compilation of a pediatric database is difficult because fatal
ventricular arrhythmias are less frequent in children than in adults.
In fact, none of the published studies reported a database that met
the AHA specifications summarized in Table 1.3. Although the
lack of shockable arrhythmias is the most important difference,
there are two other relevant differences between the adult and
pediatric cases. First, the heart rate is higher in the pediatric
rhythms. In particular, SVT frequently exceeds the shockable rate
threshold of adult VT and might be misinterpreted as shockable
by adult AEDs.120,15 Second, the probability of the occurrence of
arrhythmias is different in children and adults; for instance, AF
rarely occurs in children.43 The composition of the databases of
pediatric arrhythmias reflects these differences, and this may have
important implications in the design of shock advice algorithms.

The initial studies on shock advice algorithms for children tried
to demonstrate that existing adult algorithms accurately diag-
nosed pediatric arrhythmias.25,16 More recently, Atkins et al. 15

showed that an adult algorithm fell below the AHA specification,
with an 87.1% specificity on pediatric SVT and a 54.6% sensitivity
on pediatric VT, and proposed the use of a pediatric algorithm.

This thesis presents a new approach — a single algorithm
designed using a combination of a pediatric and an adult database
— which will be suitable for pediatric and adult use.

There could be differences between the adult and pediatric cases.
For instance, because a child’s heart rate is higher, the threshold
for shockable VT could be higher in children.16 However, using
a threshold adapted to each patient group can account for this
difference. The appropriate threshold will be activated when the
AED identifies the type of patient, which is necessary to decide
the defibrillation dose. The identification normally occurs either
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through a switch in the AED or because the defibrillation pads
are different for adults and children.

1.5.2 CPR artifacts and AED shock advice algorithms

As stated in Section 1.3, the most influential factor explaining
OHCA survival rates is the interaction between CPR and defib-
rillation. CPR must be interrupted during AED rhythm analysis
because the mechanical activity from the chest compressions in-
troduces artifacts into the ECG that make the rhythm analysis
algorithms of current AEDs unreliable.92,49 The time interval be-
tween the end of CPR and the delivery of the shock is known as
the hands-off interval.

Current evidence suggests that minimizing the hands-off inter-
val is an important determinant of survival from prolonged VF
cardiac arrest. An initial study using a swine model of prolonged
(7 min) VF cardiac arrest reported a decline in survival rates from
80% to 0% when the hands-off interval was increased from 10 to
20 s.149 In a later swine study of prolonged (6.5 mins) VF, cardiac
arrest survival degraded from 83% to 17% after the introduction
of a 40 s hands-off interval.127

Eftestøl et al. 45 demonstrated that VF waveforms in humans
deteriorated during hands-off intervals and analyzed the rela-
tionship between the duration of the hands-off interval and the
probability of the restoration of spontaneous circulation (ROSC)
after the shock. Shorter hands-off intervals correlated with higher
probabilities of ROSC. In a more recent prospective study of hu-
man in-hospital and out-of-hospital cardiac resuscitations, shock
success† declined from 94% to 38% when the hands-off inter-
val increased from under 10 s to over 30 s.44 In fact, reducing
the hands-off intervals motivated a change from the three-shock
protocol of the 2000 European resuscitation guidelines to a one
shock protocol in the 2005 guidelines.41 Currently, CPR must be
resumed immediately after giving a single shock and without
reassessing the rhythm or feeling for a pulse.

In 2004, a study of seven popular AEDs measured hands-off
intervals in the range of 5.2 to 28.4 s.126 A hands-off interval below
10 s was only achieved for one AED. In the light of the published
evidence, the design of AED shock advice algorithms should
minimize the hands-off interval to increase survival rates.

This thesis work explores two approaches to minimizing the
hands-off interval: the design of AED algorithms that will diag-

† Defined as removal of VF for at least 5 s following defibrillation.
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nose a rhythm in less than 10 s, and the suppression of the CPR
artifact from the ECG to allow a reliable diagnosis during CPR.

1.6 Objectives of the thesis
The main objective of this thesis work is to design an AED shock
advice algorithm valid for adult and pediatric patients, and to test its
performance on a real resuscitation scenario. In order to accomplish
this objective, a set of intermediate goals have been defined.

• The compilation of the experimental data. The AED shock advice
algorithm will be developed simultaneously for adult and
pediatric patients. The experimental data must contain a
representative set of pediatric and adult arrhythmias. The
adult database should comply with the AHA statement,80

while the pediatric data will have fewer shockable sam-
ples.25,16 A database of OHCA episodes composed of time
intervals with and without CPR artifacts is necessary to test
the algorithm in a real resuscitation scenario.

• Parametrization of the ECG. Although commercial AED al-
gorithms are not published in the scientific literature, it is
well known that they analyze ECG features derived from
several signal domains (time, frequency, and slope).25,16 The
first step in the design of the algorithm is to define a set of
discrimination parameters applicable to adult and pediatric
patients from several signal domains.

• Design of the AED shock advice algorithm. The shock advice
algorithm is the result of optimally combining the discrimi-
nation parameters to produce an accurate shock/noshock
decision. An algorithm designed for universal use will be
developed and tested using a representative set of pediatric
and adult arrhythmias, and its accuracy will be validated in
terms of sensitivity and specificity. In an effort to reduce the
hands-off interval, the algorithm should diagnose arrhyth-
mias in less than 10 s.

• Testing the algorithm in a resuscitation scenario. AED algo-
rithms are designed to meet AHA performance goals. In an
OHCA scenario the rhythms analyzed by the AED might
be of different nature; furthermore, they often appear cor-
rupted by a CPR artifact. The performance of the algorithm
will therefore be tested for OHCA rhythms both with and
without CPR artifacts. During CPR, the AED algorithm will
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be tested in combination with a CPR artifact suppression
method.

The accomplishment of the objectives of this thesis work will
contribute to the advancement of AED algorithms in the following
ways.

• An AED shock advice algorithm designed using a combi-
nation of adult and pediatric arrhythmias is more reliable
than adult algorithms tested on pediatric databases25,16 and
is less complex than using a pediatric and an adult algo-
rithm.15

• The assessment of the influence of the CPR artifact on the
AED shock advice algorithm will contribute to a better un-
derstanding of the limitations of rhythm analysis during
CPR.
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2 B A C KG R O U N D

This chapter provides the background necessary to put the most
important contributions of this thesis work in context. Section 2.1
presents the general structure of AED shock advice algorithms,
and then it describes the main methods used to derive the features
that serve in the discrimination of shockable rhythms. Emphasis
is on the methods for the detection of VF, which have attracted the
attention of the scientific community. In 2003, ILCOR approved
the use of AEDs in children, and since then, AED shock advice
algorithms adapted for pediatric use have gained relevance, as
discussed in Section 2.3. The interaction between CPR and the
AED shock advice algorithm, and in particular the problems
associated with the suppression of the CPR artifact, are covered
in Section 2.4. The chapter concludes with a brief description of
the main contributions of this thesis work.

2.1 AED shock advice algorithms

AED shock advice algorithms analyze a single lead surface ECG†

to detect fatal ventricular arrhythmias, i. e., VF and fast VT, ac-
curately and reliably. An arrhythmia detection system consists
basically of the three blocks shown in Figure 2.1.

xecg(n)

AED shock advice algorithm

Filter(s)
x̂ecg(n) Feature

extraction

Decision

algorithm

shock/

noshock

Figure 2.1: Building blocks of an AED shock advice algorithm. Filters preprocess the raw
ECG signal, xecg(n), to obtain an ECG free of artifacts, x̂ecg(n). The shock advice algorithm
analyzes x̂ecg(n) to obtain a shock/noshock diagnosis.

† Implantable Cardioverter-Defibrillator algorithms based on intracardiac leads are
excluded from this section. For a comprehensive review see Jenkins and Caswell 75

or Aliot et al. 8

19
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First, the ECG is filtered to eliminate noise, such as baseline
wander or muscle noise. AEDs may also have a filter to suppress
the CPR artifact, as discussed in Section 2.4. The shock advice
algorithm then analyzes the filtered ECG, where a shock/noshock
decision is made based on the values of a set of features. These
features are designed to quantify the distinctive characteristics of
ventricular arrhythmias.

The following subsections review the main features and de-
cision algorithms found in the literature. Then, five algorithms
are discussed in detail. These algorithms were chosen for two
reasons: they illustrate the most widely accepted approaches to
feature extraction in a simple way, and they have been extensively
reviewed and tested in the literature.

2.1.1 Feature extraction

The first stage in a shock advice algorithm is the computation of
a set of features that will serve to discriminate fatal ventricular ar-
rhythmias. These features quantify distinctive characteristics of the
arrhythmias, which are generally better observed by transforming
the ECG into a new domain. For example, Figure 2.2 shows the
time and frequency domain representation of two shockable — VF
and VT — and two non-shockable — NSR and SVT — rhythms.
Non-shockable rhythms have larger bandwidths and more har-
monic content because of the fast-changing QRS complexes. Other
characteristics are better observed in the time domain; for instance,
the waveform irregularity of VF or the lower content around the
isoelectric line of VT.

Four domains have been extensively used to extract features: the
time domain, the frequency domain, the time–frequency domain,
and the complexity domain.

1. Time domain features. The time domain has been used to quan-
tify many different characteristics of ventricular arrhythmias.
In 1978, Kuo and Dillman 88 proposed the VF filter leakage,
a measure of the similarity of ventricular arrhythmias to a
sinusoidal waveform. The autocorrelation function (ACF)
was introduced to stress the periodic nature of VT and
pulsed rhythms, as opposed to the more irregular VF.57,17,27

Other authors identified fast ventricular arrhythmias based
on heart rate calculations. For instance, Thakor et al. 132 de-
veloped the Threshold Crossing Interval (TCI) feature to
estimate the inverse of the heart rate; i. e., the mean interval
between beats. Later, Chen et al. 29 refined the algorithm
by considering the refractory period of the ventricles, and
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(a): Shockable VF.
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(b): Shockable rapid VT (heart rate: 278 bpm).
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(c): Non-shockable NSR.
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(d): Non-shockable SVT (heart rate: 212 bpm).

Figure 2.2: Time domain (left panel) and frequency domain (right panel) representation of
shockable (a–b) and non-shockable (c–d) rhythms. The y axis is the amplitude of the ECG in
mV for the time domain representation, and the normalized power spectral density for the
frequency domain representation.
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Amann et al. 10 introduced two methods to estimate the
heart rate based on exponentially decaying functions. The
probability density function (PDF) is an adequate tool to
calculate the isoelectric content,91,113 which is low in ven-
tricular rhythms. Time domain modeling of the ECG based
on Prony28 and autoregressive models52 has been recently
proposed, as well as features derived from the comparison
of the ECG with a set of predefined reference signals.10

2. Frequency domain features. Pulsed rhythms have quasi-periodic
and fast-changing QRS complexes, and concentrate their
frequency components around the harmonics of the car-
diac frequency, with major components up to 25 Hz.32 The
more sinus-like ventricular arrhythmias are narrow-band
signals concentrated around the fundamental frequency,
with most of their components under 10 Hz.128 The early
researchers on VF detection observed these differences us-
ing the Fast Fourier Transform (FFT).109,108 In 1989, Barro
et al. 19 made a more systematic approach and developed
a set of four features measuring the concentration of the
amplitude spectrum around the fundamental frequency and
the relative contributions of the different frequency bands.
Clayton et al. 33 analyzed 31 spectral amplitudes separated
by 0.5 Hz in the 2–16.6 Hz frequency range and concluded
that a combination of the parameters proposed by Barro
et al. and the TCI feature provided better results than a
brute force approach. Minami et al. 100 successfully detected
ventricular arrhythmias by analyzing the frequency content
of the QRS complex in five predefined frequency bands.
More recently, bispectral analysis82 has been explored as a
tool to identify ventricular arrhythmias.

3. Time–frequency domain features. In 1995, Afonso and Tomp-
kins 5 introduced time–frequency distributions in an attempt
to track the spectral characteristics of VF over time better.
They showed the superiority of the smoothed Wigner–Ville
and the cone-shaped kernel distributions over the short-time
Fourier transform. Clayton and Murray 31 further explored
the smoothed Wigner–Ville distribution. Khadra et al. 81

introduced features based on the continuous wavelet trans-
form (WT), and later al Fahoum and Howitt 7 extended
the analysis by including the continuous and discrete WT
and various mother functions. The discrete WT has been
used to characterize the complexity of VF across different
scales.62,130 Time–frequency distributions provide a pow-
erful framework for arrhythmia discrimination; however,
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they demand a high computational cost† that limits their
applicability in current AED technology.

4. Complexity domain features. Ventricular arrhythmias are con-
sidered nonlinear physiological processes of varying com-
plexity.115 Although complexity is not a domain per se, this
point summarizes the contributions aimed at quantifying the
nonlinear character of those physiological processes. These
techniques include methods derived from nonlinear dynam-
ics and chaos theory, such as correlation dimension,31,125,111

Lyapunov exponents,111 and phase space plots.11 Other
authors proposed the use of qualitative chaos based on
symbolic complexity,61 multifractality,137 Hurst indices,130

and methods based on different types of entropy121,122,62

to quantify the complexity of VF. Perhaps the best-known
contribution is the 1999 paper by Zhang et al. 150 based on
the Lemp–Ziv complexity, which is one of the few computa-
tionally reasonable methods to estimate the complexity of
ventricular arrhythmias.

2.1.2 Decision algorithms

In an AED, the values obtained for the features are fed to a
decision algorithm that diagnoses the rhythm as shockable or non-
shockable. Decision algorithms based on one feature range from
single-thresholding150,10,11 to more elaborate sequential hypothe-
sis testing on consecutive values on the feature.132,29,26 However,
real AED algorithms are based on multiple features because no
single feature captures all the variability of ventricular arrhyth-
mias. Many multiple feature classification algorithms have been
used, including heuristic decision trees,19,73,85 multistage thresh-
olding,28‡ k Nearest Neighbors (kNN),24,72,74 linear discriminant
analysis,71 and generalized linear models.52 Clayton et al. 33 intro-
duced an algorithm based on neural networks, which have been
frequently used for the detection of ventricular arrhythmias.7,137

2.2 Review of five VF detection algorithms

This section describes five of the most thoroughly reviewed32,70,10

and best-known VF detection algorithms. Three are based on

† The computational cost is considerably lower in the case of the discrete WT. 62

‡ This is actually another form of decision tree: a multiple stage, single-thresholding
technique.
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the time domain: the VF filter, the algorithm based on the ACF
and the TCI method. One is based in the frequency domain, the
spectral algorithm. The last one is the method proposed by Zhang
et al. to quantify the complexity of VF.

VF filter

In 1978, Kuo and Dillman introduced a novel time domain feature
to identify VF,88 which various other authors have used since
as a benchmark to compare their results.150,137 The basic idea
is that the VF waveform is approximately sinusoidal and can be
canceled by applying a narrow-band filter around the fundamental
frequency of the waveform. A feature called leakage quantifies
the residue after filtering.

For an ECG data segment of m samples, Vi, the leakage, l, is
defined as:

l =

m
∑

i=1
|Vi + Vi−T/2|

m
∑

i=1
(|Vi|+ |Vi−T/2|)

, (2.1)

where T, the number of samples in a mean period, is estimated
assuming a sinusoidal waveform:

T = 2π

m
∑

i=1
|Vi|

m
∑

i=1
|Vi −Vi−1|

. (2.2)

Sinusoidal waveforms yield low values of l because samples
separated by a half period cancel each other. In the original con-
tribution, the leakage was calculated if no QRS complexes or
paced beats were detected. However, later implementations have
not considered a QRS detection stage and have identified VF for
l < 0.625.32,70,10

Algorithm based on the autocorrelation

The ACF of a periodic signal has peaks of decreasing amplitude
separated by multiples of the period. Therefore, the ACF is a
proper tool to discriminate periodic ECGs from the more irregular
VF.

Chen et al. 27 ordered the ACF peaks by their amplitude. Then,
they fitted a linear regression equation to the integer order, xi,
and the corresponding lag, yi, of the first m peaks of the ACF:

yi = a + bxi, (2.3)
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with

a = y− bx and b =

m
∑

i=1
(xi − x)yi

m
∑

i=1
(xi − x)2

, (2.4)

where x and y are the mean values of xi and yi.
The goodness of the linear regression fit is measured by com-

puting the variance ratio, VR:

VR =
b

[R/(m− 2)]
, with (2.5)

R =
m

∑
i=1

(yi − y− b(xi − x))2. (2.6)

When VR > F1,m−2; 0.05 (the F-test at level 0.05),† a linear relation-
ship exists between yi and xi, the peaks are well ordered and the
rhythm is not VF.

Spectral algorithm

In 1989, Barro et al. 19 introduced a set of four spectral features
based on the amplitude‡ of the FFT of the Hamming windowed
ECG.

First, the reference frequency (F) is identified as the frequency
where the amplitude of the FFT is maximum in the 0.5 – 9 Hz
range and all the components below 5% of the peak amplitude
are made zero. Then, four features, FSMN, A1, A2, and A3, are
calculated in the 0.5 – min(100 Hz, 20F) frequency range. FSMN is
the center of mass of the amplitude spectrum and measures its
concentration around F:

FSMN =
1
F

∑ ai fi

∑ fi
, (2.7)

where ai is the amplitude at frequency, fi. A1 is the ratio of the
area in the 0.5 – 0.5F range to the total area; A2 is the ratio of the
area in the 0.7F – 1.4F range to the total area; and A3 is the ratio
of the sum of the areas of the 2nd to 8th harmonics in bands of
0.6F to the total area.

The algorithm detects VF using a heuristic decision tree when
all of the following conditions hold: A1 > 0.19, FSMN ≤ 1.55,
A2 ≥ 0.45 and A3 < 0.09.

† Although Chen et al. 27 were more restrictive, later authors have used a 0.05 or
95% probability level. 32,70,10

‡ Because of computational constraints, Barro et al. 19 calculated the amplitude
spectrum as the sum of the absolute values of the real and imaginary parts of the
FFT.
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Threshold crossing intervals

The TCI feature, introduced by Thakor et al.,132 measures the
mean interval between consecutive beats of the ECG waveform.
First, the ECG is converted to a binary signal by comparing it with
a threshold. A heart beat is detected every time the ECG crosses
the detection threshold, which adjusts dynamically every second
to 20% of the peak value of the signal during that second. The
TCI is calculated for every 1 s interval as follows:

TCI =
1000

(N − 1) +
t2

t1 + t2
+

t3

t3 + t4

(ms), (2.8)

where N is the number of pulses in the 1 s interval, and the ti
intervals are defined in Figure 2.3.

Fast ventricular arrhythmias present lower interbeat intervals,
i. e., TCI values, than pulsed rhythms. NSR is detected when
TCI ≥ 400 ms. Although VF and fast VT have low values of TCI,
Thakor et al. 132 discriminated VT from VF using a sequential
hypothesis testing procedure.

0.5 1.0 2.0 2.5

-0.60

0

1.40

t (s)

0.5 1.0 2.0 2.5

0

-1.00
N = 2
beatst2t1 t3 t4

Figure 2.3: Basic parameters in the calculation of the TCI for an NSR. The
top panel shows the ECG in mV of the NSR, and the bottom panel shows
its corresponding binary signal.
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Complexity measure

In 1999, Zhang et al. 150 introduced a new method to quantify the
complexity of ventricular arrhythmias based on the Lempel–Ziv
Complexity Measure.94

First, the n sample ECG data segment, {xi}n
i=1, is normalized

by subtracting xm, the mean value of the samples. The normalized
sequence, {x̂i}n

i=1, is converted to a sequence of 0− 1 symbols,
{si}n

i=1, by comparing it with a threshold, Td. The threshold calcu-
lation is based on Pc, the number of datapoints in 0 < x̂i < 0.1Vp,
and Nc, the number of datapoints in 0.1Vn < x̂i < 0. Vp and Vn
are the positive and negative peak values of the normalized data
segment. If (Pc + Nc) < 0.4n, the threshold is set to Td = 0. Else if
Pc < Nc then Td = 0.2Vp, otherwise Td = 0.2Vn.

The Lempel–Ziv complexity is computed by scanning {si}n
i=1

from left to right and increasing the complexity counter, c(n), by
one unit every time a new subsequence of consecutive characters
is found. Kaspar and Schuster 77 give a detailed description of
the computation of c(n), including a flow chart description of
the algorithm. The upper bound of c(n) is b(n) = n/ log2 n,
which is the asymptotic behavior of c(n) for a random string. The
normalized complexity measure is then defined as:

C(n) =
c(n)
b(n)

0 ≤ C(n) ≤ 1, (2.9)

and it measures the rate of occurrence of new patterns within the
sequence {si}n

i=1.
Ventricular arrhythmias are inherently more complex than

NSR and have higher C(n) values. Zhang et al. 150 detected NSR
when C(n) < 0.150 and separated VT from the more complex
VF when C(n) < 0.486. Some authors70,10 who reviewed the VF
detection method later modified the NSR detection threshold to
C(n) < 0.173.

2.2.1 Comparison of five VF detection algorithms

The methods for the detection of ventricular arrhythmias de-
scribed in the literature report excellent sensitivity and specificity;
for instance, Zhang et al. 150 mention a 100% sensitivity and speci-
ficity when the complexity measure is computed on ECG segments
longer than 6 s. Most of these results, however, are biased by the
data used in the studies; i. e., these methods were developed and
tested on proprietary databases that do not meet the AHA cri-
teria described in Section 1.4.1. Furthermore, in many cases, the
methods are developed and tested on the same data.132,150
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Three important review articles that compared the five VF de-
tection algorithms described in the previous section underlined
these sources of bias. In 1993, Clayton et al. 32 compared the first
four algorithms using a proprietary database of 150 VF segments
and 100 VF-like segments, which included recordings of muscle
artifacts and atrial flutter. By 2000, Jekova,70 in a comparative
study, had added the method proposed by Zhang et al. 150 in 1999.
She used a dataset composed of 71 NSR and 90 VF segments
extracted from three standard databases for arrhythmia detection:
the AHA database, the CU ventricular tachyarrhythmia database,
and the MIT-BIH malignant ventricular arrhythmia database.†

In their 2005 comparative analysis, Amann et al. 10 used a more
comprehensive dataset composed of the complete MIT-BIH ar-
rhythmia database, the complete CU ventricular tachyarrhythmia
database, and the subset of ventricular arrhythmias from the AHA
database, totaling 333 583 segments of 8 s.

The review articles quite accurately reproduced the original
methods, although some differences exist. For example, Jekova
and Amann et al. do not use the sequential hypothesis test on
the TCI values proposed by Thakor et al. but rather a decision
algorithm based on a majority criterion. The authors of the review
articles use lower probability levels than the original authors for
the F-test in the ACF method; they do not use a QRS detection
stage in the VF filter method or they use slightly higher thresh-
olds on the C(n) value to discriminate NSR. The most important
difference between the original contributions and the review ar-
ticles is the length of the data segments used to compute the
discrimination features. The original VF detection methods were
not developed using a standard length of the data segment. For
instance, Kuo and Dillman computed the VF leakage using 2 s
segments, while Zhang et al. obtained the best discrimination
results for data segments longer than 6 s. In the review articles,
the authors compared the performance of the algorithms using
the same length of the data segment for all the methods, 4 s in
Clayton et al. and 8 s in Jekova and Amann et al.

Despite these differences, the three review articles illustrate that
when the methods are evaluated on datasets other than those used
by the original authors, the results degrade substantially. Table 2.1,
a summary of the results presented in the review articles, best
shows how testing a method on different databases produces large
differences in the results. Two important conclusions are derived
from the results compiled in Table 2.1.

† These databases are described in more detail in section Section 3.1.
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• The results presented in the original contributions are biased
by the data used in the studies, as confirmed by the large
differences in the results reported by the original authors
and the review articles. Among the review articles, Jekova
reports better sensitivities and specificities because she used
a very restrictive database, which only included VF and
NSR. When other arrhythmias, or a larger class of VF, are
included, the results deteriorate, as shown in Amann et al.
Furthermore, the data used in the original studies also bi-
ased the detection thresholds. For example, the much higher
specificity than sensitivity obtained by all the reviewers of
the spectral algorithm showed that the detection thresholds
obtained by Barro et al. are biased toward the detection of
non-shockable rhythms. The adequate framework to avoid
such biases is the AHA statement describing the methodol-
ogy to test AED shock advice algorithms,80 which includes a
thorough description of the databases and a clear indication
to separate test from development (see Section 1.4.1).

• No single feature captures all the morphological variability
of ventricular arrhythmias. The methods reviewed are rep-
resentative of the different techniques and signal analysis
domains. The results showed that a single feature or a single
domain approach is not sufficient. A robust AED shock ad-
vice algorithm must rely on features from several domains
to represent such morphological variability better.

Clayton et al. 32 Jekova 70 Amann et al. 10

Se(%) Sp(%) Se(%) Sp(%) Se(%) Sp(%)

VF filter 77 55 94 91 19 100

ACF 67 38 78 32 50 49

Spectral 46 72 79 93 29 100

TCI 53 93 98 75 75 84

CM - - 66 75 59 92

Table 2.1: Sensitivity and specificity reported in the comparative analysis
of five VF detection methods.
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2.3 Pediatric shock advice algorithms
The literature on ventricular arrhythmia detection methods re-
viewed in the preceding sections is ample, and the methods are
well documented. The conclusions and methods presented in
those studies, however, are applicable only to the adult case. The
use of AEDs in pediatric patients has only recently received atten-
tion.

In 1998, Atkins et al. 14 published the first data on AED use in
children and adolescents. They analyzed 18 cases, including 9 VF,
of patients with a mean age of 12.1 years, and they concluded
that AEDs accurately recognize the cardiac rhythms observed in
pediatric cardiac arrest. These conclusions, however, were sus-
tained by an insufficient number of rhythms from patients with
a high mean age. In 2001, Cecchin et al. 25 published the first
comprehensive study. They compiled 696 rhythms, including 73
VF and 58 VT, from 191 pediatric patients, and the segments had
a duration of 5 s. The median age of the patients was 3.0 years.
Furthermore, the methodology for the classification and compi-
lation of the arrhythmias followed the guidelines indicated by
the AHA.80 A second important contribution came in 2003, when
Atkinson et al. 16 published a second study where 1561 pediatric
rhythms, 73 VF and 3 VT, from 201 patients with a median age
of 11 months were analyzed. The ECG samples had a duration of
15 s.

The contributions by Cecchin et al. and Atkinson et al. demon-
strated that two adult algorithms from commercial AEDs accu-
rately identified pediatric non-shockable rhythms and pediatric
VF. In both studies, the specificity was above 99% and the VF
sensitivity above 95%. They both concluded that the analyzed
adult AED algorithms could be used in children and constituted
the bulk of evidence needed by ILCOR to recommend AED use on
pediatric patients.120 However, both studies failed to meet AHA
criteria on fast VT; Cecchin et al. reported a 71% VT sensitivity,
and the results from Atkinson et al. were not significant because
their database only contained three instances of shockable VT.

The differences between pediatric and adult arrhythmias might
explain the poor VT sensitivity results; in particular, the higher
rates of pediatric SVT. A related problem is that, as indicated in
the ILCOR statement,120 heart-rate-oriented AED shock advice
algorithms designed for adult patients might identify high-rate pe-
diatric SVT as shockable. Atkins et al. 15 addressed this difficulty
when they recently showed how an AED algorithm designed for
adult patients failed to identify non-shockable pediatric supraven-
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tricular arrhythmias accurately. Using an adult algorithm, Atkins
et al. obtained a specificity of 87% for pediatric supraventricular
rhythms, well below the 95% AHA specification. They defined
a new set of detection criteria adapted to pediatric rhythms to
correct those deficiencies and obtained a 99.6% specificity for the
pediatric supraventricular rhythms. Unlike the two previous stud-
ies, Atkins et al. supported the use of two algorithms: one adult
and one pediatric. The pediatric algorithm was automatically used
when the pediatric defibrillation pads were attached. Their study
was based on 749 strips from 198 children under 8 years of age,
and the strips had a duration of 9 s. The database included 42 VF,
78 VT and 348 supraventricular rhythms.

Finally, Aramendi et al. 12 recently assessed the performance
of four of the five classical methods for the detection of VF for
pediatric and adult rhythms. They showed that features related to
the spectral distribution of the ECG power, such as the leakage,
l, or the spectral parameter, A2, are less affected by the inclusion
of pediatric arrhythmias than are heart-rate-dependent features,
such as TCI or C(n).† The study used a subset of the complete
pediatric and adult databases described in Section 3.1, and it is the
first study to evaluate such parameters using databases compliant
with the AHA statement.

Although there is not a vast literature on pediatric AED al-
gorithms, some important conclusions can be drawn from the
published studies described in the preceding paragraphs.

• There is no public database of pediatric arrhythmias to test
AED algorithms. To date, the most laborious task of all
the studies in this field has been the experimental phase,
which comprises the gathering and classification of pedi-
atric rhythms. Table 2.2 displays a summary of the rhythms
collected by the three studies described above. Furthermore,
none of the databases meets the AHA requirements for the
numbers of ventricular arrhythmias, underlining the well-
known fact that ventricular arrhythmias in children are not
as frequent as in adults. As addressed by Atkins et al., a
comprehensive database must include a large number of
SVTs in the non-shockable category to test the robustness
of the algorithm in the presence of very-high-rate pediatric
SVT.

• The values of the discrimination features used in the shock
advice algorithms are different in adult and pediatric pa-

† C(n) is aimed at quantifying the complexity of the ECG; however, it depends
strongly on the heart rate as a consequence of the signal binarization process that
precedes the calculation of the Lempel–Ziv complexity.
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tients. The differences between pediatric and adult rhythms
— for instance, the higher rate of pediatric rhythms — are
reflected in the values of the features used to discriminate
ventricular arrhythmias. In their groundbreaking contribu-
tion, Cecchin et al. compared the features used in their
AED algorithm and reported higher rates for the pediatric
database and higher conduction scores for pediatric ven-
tricular arrhythmias; surprisingly, these differences do not
alter the performance of the adult algorithm on pediatric
rhythms. On the contrary, Atkins et al. had to adapt the
detection criteria of the adult algorithm to identify pediatric
SVT accurately. Aramendi et al. analyzed the differences for
four classical VF detection methods.

• The algorithms are not public. The literature on pediatric
AED algorithms has focused on the validation or adaptation
of current adult AEDs for pediatric use. Patents protect the
algorithms; therefore, they are not published in the scientific
literature. The only well-known VF detection methods are
those described in the preceding sections for adult patients.

Rhythms Cecchin et al. 25 Atkinson et al. 16 Atkins et al. 15

Shockable

VF 73 73 42

VT 58 3 78

Non-shockable

NSR 173 798 208

SVT 116 378 161

Other 135 217 187

Asystole 39 79 29

Intermediate

Fine VF
102 a 0 0

Slow VT 3 44

a The authors do not specify how intermediate rhythms are distributed be-
tween fine VF and slow VT.

Table 2.2: Number of pediatric rhythms per category reported in the
studies that tested AED algorithms in children.
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2.4 Shock advice during CPR
During CPR, the mechanical activity from the chest compressions
introduces artifacts in the ECG. For example, Figure 2.4 shows four
OHCA episodes where a CPR artifact corrupts the ECG. These
artifacts make the rhythm analysis algorithms of current AEDs
unreliable. Therefore, CPR must be discontinued for a reliable di-
agnosis by the AED.126 These hands-off intervals adversely affect
the probability of ROSC after the delivery of the shock;45,149,44 fur-
thermore, pauses in chest compressions compromise circulation.20

The shortening of those intervals, particularly the suppression of
the CPR artifact to allow a reliable AED diagnosis during CPR,
has been an active field of research during the last 15 years.

The first studies on the suppression of the CPR artifact, de-
scribed in Section 2.4.1, were conducted on animal models. A
multidisciplinary group of Norwegian researchers† has led the
investigations on CPR artifact removal from the human ECG,
treated in Section 2.4.2 and Section 2.4.3. They conducted the first
experiments on the suppression of the CPR artifact from human
VF and most importantly, the first clinical studies based on a
database of OHCA episodes. Their filtering methods use several
additional reference channels (multi-channel) besides the surface
ECG. Since then, most efforts have focused on the simplification
of the filtering methods, either by filtering the artifact using only
the surface ECG or by using only one additional reference channel
(dual-channel methods). These two approaches are reviewed in
Section 2.4.4. A novel alternative to the suppression of the CPR
artifact is the direct analysis of the corrupted ECG, an approach
also discussed in Section 2.4.4.

2.4.1 First animal models

Research on CPR artifact removal was initiated using porcine
models. Strohmenger et al. 129 induced VF on pigs using an AC
current and after 4 minutes of cardiac arrest administered CPR
by means of a mechanically driven piston at a constant chest
compression rate of 80 cpm. They computed a set of spectral
features correlated with myocardial blood flow and the probability
of ROSC and observed a clear spectral separation between the CPR
artifact in the lower frequencies and VF in the higher frequencies.
The dominant frequency (DF) of VF in pigs falls around 9 Hz,

† The group is composed of medical staff from the Ullevål University Hospital, engi-
neers from the University of Stavanger, and researchers from an AED manufacturer,
Laerdal Medical AS.
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(a): Underlying rhythm: Ventricular Fibrillation.
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(b): Underlying rhythm: Pulse-giving Rhythm.

Shock No Shock
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(c): Underlying rhythm: Pulseless Electrical Activity.

Shock No Shock

0 2.5 5 7.5 10

-0.20

0

0.20

(d): Underlying rhythm: Asystole.

Figure 2.4: Examples of CPR artifact in OHCA episodes. During the initial 5 s, the CPR
artifact corrupts the ECG. During the following 5 s, CPR is stopped, and the recorded signal
shows the underlying heart rhythm. The shock/noshock decisions with and without CPR
artifact show how a direct analysis of the corrupted ECG is not reliable (the real analysis
interval is longer than 5 s). The y axis shows the ECG in mV.

while CPR administered at 80 cpm has a fundamental frequency
of 1.33 Hz. Strohmenger et al. concluded that the CPR artifact
could be efficiently suppressed using a constant-coefficient high-
pass digital filter with a 4.3 Hz cutoff frequency. Following a
similar experimental procedure, several studies have successfully
suppressed the CPR artifact from pigs with cutoff frequencies
around 4 Hz.107,114 Unfortunately, the dominant frequencies of
human VF are much lower than in pigs; they fall between 3
and 5 Hz.128 Consequently, there is an important spectral overlap
between human VF and the CPR artifacts that makes a simple
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constant-coefficient filter inadequate for the suppression of the
CPR artifact in humans.128

2.4.2 First experiments on human VF: the additive
noise model

Research on the suppression of the CPR artifact from the hu-
man ECG started with two important papers by Aase et al. 3 and
Langhelle et al. 92 Langhelle et al. conjectured that the CPR artifact
is an additive noise and identified four possible sources for the
artifact: the mechanical stimulation of the heart, the mechanical
stimulation of the thoracic muscles, electrode tapping or drag-
ging, and static electricity. The influence of these sources can be
measured by recording additional reference channels that can be
incorporated into more elaborate adaptive filters. Furthermore, if
the noise model is additive, the filtering methods can be tested us-
ing independently recorded human VF and CPR artifacts, added
at different signal-to-noise ratios (SNRs), to conform the corrupted
ECG. Figure 2.5 shows an example of how a human VF and a
CPR artifact are combined when the additive noise model is used.
The CPR suppression filter estimates the underlying ECG, and the
efficiency of the filter is quantified by comparing the estimated
ECG with the original ECG; i. e., the SNR at the output of the
filter. Langhelle et al. first described this methodology,† and Aase
et al. later systematized it to test their adaptive filters based on
additional reference channels.

Langhelle et al. combined 25 samples of human VF with a CPR
artifact recorded from a pig in asystole. CPR was administered
with a mechanical chest compression device at a constant rate of
90 cpm (1.5 Hz), and additional reference signals were recorded
to model the four sources of the artifact. Two filtering methods
were compared: a high-pass constant-coefficient filter with a cutoff
frequency of 4.9 Hz that suppressed the first three harmonics of
the artifact, and an adaptive filter based on a single reference
signal. Although several reference signals were recorded, their
conjugate gradient adaptive finite impulse response filter could
only accommodate one. Langhelle et al. studied different configu-
rations for the reference signal and concluded that the best results
were obtained when two reference signals were mixed together:
the thoracic impedance and the compression depth. Adaptive
methods were proved superior to constant-coefficient filters which

† Although Aase et al. published their results earlier they acknowledged the prece-
dence of Langhelle et al.
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(a): VF without CPR artifact.
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(b): CPR artifact recorded on a human patient in asystole.
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(c): VF+CPR artifact (SNR=6 dB).
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-0.80
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(d): VF+CPR artifact (SNR=0 dB).

0 5 10

-0.80

0

0.80

(e): VF+CPR artifact (SNR=-6 dB).

Figure 2.5: Additive noise model: combination of a human VF and a human CPR artifact
recorded from a patient in asystole at different SNR. The VF+CPR artifact combinations are
normalized so that the maximum amplitude is 1 mV.

were discarded thereafter as a CPR artifact suppression method
in humans.

The contribution by Aase et al. completed the preliminary adap-
tive filter presented by Langhelle et al. Aase et al. used a larger
database of shockable human rhythms, 200 VF and 75 VT samples,
combined with CPR artifacts obtained from two pigs in asystole.
CPR was administered by a mechanical chest compression device
at 60, 90, and 120 cpm (1, 1.5, and 2 Hz). Furthermore, they pro-
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posed an adaptive multi-channel Wiener filter that accommodated
an arbitrary number of independent reference signals to reflect
the different sources of additive noise better. Aase et al. evaluated
not only how the SNR improved but also how the sensitivity of an
AED improved after the CPR artifact was suppressed, observing
that artifact removal becomes more difficult as the compression
rate increases. This was due to the growing spectral overlap,
which was highest when chest compressions were administered
at 120 cpm. They also observed important differences between VF
and VT sensitivities: the AED algorithm performed worse for VT,
both before and after filtering the artifact. Aase et al. concluded
that the differences were caused by the characteristics of the AED
algorithm, which treats organized VT below 180 bpm (3 Hz) as
non-shockable. The algorithm misinterpreted the appearance of
repetitive lower-rate CPR artifacts as slow VT.

The filtering method proposed by Aase et al. presents important
computational limitations, as their method requires the inversion
of an autocorrelation matrix for every signal sample. The dimen-
sion of the autocorrelation matrix is given by the sum of the
filter lengths of each reference signal. Although the method can
accommodate many reference channels and use arbitrary filter
lengths, the computational cost of inverting the autocorrelation
matrix limits its applicability. Furthermore, real reference signals
may produce ill-conditioned autocorrelation matrices. In 2002,
Husøy et al. 63 proposed a more efficient adaptive filter — a
Multi-Channel Recursive Adaptive Matching Pursuit (MC-RAMP)
algorithm — that corrected those limitations. They demonstrated
that both methods produced similar results in terms of SNR im-
provement for a database of 200 VF and 71 VT, combined with
CPR artifacts recorded from pigs in asystole in the most unfavor-
able conditions; i. e., at a constant compression rate of 120 cpm.
The reference channels were acquired using a modified Heartstart
4000 AED from Laedal Medical AS that recorded the thoracic
impedance, the ECG common mode, and the compression acceler-
ation. The compression depth was not directly recorded; it was
estimated using the compression acceleration signal in the way
described by Aase and Myklebust.4

2.4.3 First study on real OHCA episodes

The importance of the preceding contributions is unquestionable
as they started and perfected the field of CPR artifact cancellation
in humans. They all, however, suffered three important limitations:
the CPR artifacts originated from mechanically administered CPR
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in pigs, therefore ignoring the variability on CPR administration
by rescuers in humans; they only contemplated the shockable
rhythms rather than all possible rhythms during OHCA; and they
were tested on artificial mixtures of clean shockable rhythms and
CPR artifacts. All these limitations were overcome in 2004 when
Eilevstjønn et al. 46 published the results of a comprehensive study
that analyzed a CPR cancellation algorithm on recordings from
OHCA victims.

The study by Eilevstjønn et al. was based on data recorded
in a clinical study led by Dr. Lars Wik from the Institute for Ex-
perimental Medical Research at the Ullevål University Hospital
in Oslo.146 The OHCA episodes were recorded at three sites be-
tween 2002 and 2003 (Akershus in Norway, Stockholm in Sweden
and London in the United Kingdom (UK)) using the Heartstart
4000 AED from Laedal Medical AS. The AEDs were modified
to record additional reference channels, including the thoracic
impedance, the ECG common mode, the compression accelera-
tion, and the compression depth, which was derived from the
pad pressure and compression acceleration signals. Eilevstjønn
et al. extracted ECG segments with a uniform underlying heart
rhythm containing an initial 10 s interval corrupted by CPR, im-
mediately followed by 10 s without a CPR artifact. Their database
contained 184 shockable rhythms, 178 VF and 6 fast VT,† and 348
non-shockable rhythms: 104 asystole, 228 PEA and 16 pulse-giving
rhythms (PR). The ECG segments were randomly distributed in
two equal subsets for development and testing.

Eilevstjønn et al. modified the MC-RAMP adaptive filter pro-
posed by Husøy et al. to incorporate the four reference signals
mentioned in the preceding paragraph. They tested the filter in
a more realistic scenario by optimizing and reporting its perfor-
mance in terms of how the sensitivity and specificity improved
after filtering. They also compared the sensitivity and specificity
after filtering with those obtained in the intervals without CPR.

Eilevstjønn et al. obtained an excellent sensitivity of 96.7% for
the filtered test set, above the 90% AHA performance goal for VF,
concluding that CPR artifacts could successfully be cleaned from
VF/VT in a clinical scenario. The results for the non-shockable
rhythms, however, were disappointing: the specificity was only
79.9%, well below the 95% AHA specification.‡ Eilevstjønn et al.
mentioned the inadequacies of the shock advice algorithm and the
manifestation of spontaneous underlying heart activity as possible
reasons for the low specificity. The suppression of the CPR artifact

† Rate above 150 bpm.
‡ This figure refers to asystole and other non-shockable rhythms. The specificity

performance goal for NSR is 99%, although NSR is rare in OHCA victims.
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was found to be more complex for non-shockable rhythms than
for shockable rhythms.

2.4.4 Simplifying rhythm analysis during CPR

The major limitation of a CPR filtering technique based on multi-
ple reference signals is that the acquisition of such signals implies
AED hardware alterations. Current AEDs only record the sur-
face ECG signal to diagnose the underlying heart rhythm, and in
some cases, a limited set of reference channels to improve CPR
administration and the delivery of the defibrillation shock. Since
the publication of the study by Eilevstjønn et al., several contri-
butions have attempted to reduce or eliminate the need to use
reference signals, thus minimizing the AED hardware modifica-
tions required to implement the CPR suppression method. This
section describes the three main approaches: filters based solely
on the surface ECG (no reference channels), filters based on a
single reference channel (dual-channel methods), and the direct
classification of the corrupted ECG (no filter).

Filters based only on the surface ECG

In 2007, Aramendi et al. 13 published the first study on the sup-
pression of the CPR artifact from the human VF using only the
surface ECG. The method is based on a notch filter centered
around the fundamental frequency of the compressions, which
was estimated as the frequency where the amplitude spectrum
of the corrupted ECG was maximum in the 1–3 Hz band. The
filter adapted to the time-varying characteristics of the artifact by
updating the estimate of the fundamental frequency every 4.8 s.†

Aramendi et al. used artificial mixtures of 200 human VF samples
and 25 CPR artifacts recorded from OHCA patients in asystole,
and reported good SNR improvement and a mean AED sensitivity
of 98.1% for all the input corruption levels tested.

In 2008, de Gauna et al. 39 published a more comprehensive
work. Although de Gauna et al. used artificial mixtures to design
their adaptive CPR suppression filter, they reported their results
using data extracted from the database of OHCA episodes used by
Eilevstjønn et al. The filter was based on a more elaborate model
of the artifact, composed of two harmonically related sinusoids of
time-varying amplitude and phase. The parameters of the model
were the fundamental frequency of the artifact and its harmonic
content, which were estimated using spectral analysis every 4.8 s.

† The analysis window of the AED used to test the effectiveness of the filter.
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Cleaning the CPR artifact from non-shockable rhythms, asystole in
particular, posed the greatest difficulty because the residuals after
filtering often resembled low-amplitude VF, which was diagnosed
as shockable. Specificity was improved by a prefiltering stage,
where asystole corrupted by CPR was detected when the power
content percentage of the low frequencies exceeded a threshold.

More recently, Amann et al. 9 investigated the possibility of
using a coherent line removal algorithm to suppress the CPR
artifact using only the surface ECG. Again, the algorithm starts
by estimating the fundamental frequency of the artifact using
spectral analysis on the surface ECG. The coherent line removal
algorithm then removes the artifact, assuming a periodic artifact
of strong harmonic components. The filtering results, however,
are not conclusive because the performance of the algorithm was
evaluated in terms of SNR improvement for artificial mixtures of
14 human VF and 12 CPR artifacts — compression rate 80–120 cpm
— recorded in pigs in asystole.

Dual-channel filters

Models of the CPR artifact based only on the analysis of the
surface ECG are not accurate enough. As discussed later in Sec-
tion 2.4.5, the filtering results using only the ECG are well below
those reported by Eilevstjønn et al. 46 for a multi-channel method.
However, intermediate approaches based on a single reference
channel can be as accurate as the more elaborate multi-channel
methods.

Berger et al. 21 proposed the first dual-channel method in 2007.
The study used the force signal to model the CPR artifact, using
linear and nonlinear coupling terms.† The filter was tested on a
porcine experimental setup, and CPR was administered through a
mechanical device, the Zoll AutoPulse, which works at a constant
frequency of 80 cpm.55 The sensitivity and specificity of three com-
mercial AED algorithms were tested for 13 NSR, 8 asystole, and
106 VF episodes recorded from 13 pigs. Although the results were
promising, they must be considered with care because porcine VF
presents larger DF than human VF, and CPR was administered
mechanically at a low compression rate.‡ As stated in Section 2.4.3,
suppressing the artifact introduced by human rescuers in human
OHCA registers is a much more challenging effort.

† The nonlinear coupling term is quadratic and serves to model higher harmonics of
the artifact. In fact, Berger et al. mentioned that the filtering results substantially
improved after the addition of this term.

‡ The current guidelines recommend 100 cpm. 56
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A group of Austrian researchers investigated the possibility of
using the arterial blood pressure as the reference signal. Rhein-
berger et al. 117 proposed a Kalman filter based on lagged copies
of the arterial blood signal to adjust the time-varying amplitudes
and phases of the CPR artifact model. However, the results were
not conclusive because they used artificial mixtures with a very
limited database composed of 14 CPR porcine artifacts and 14 hu-
man VF episodes. Later, Werther et al. 142 used a similar database
to adjust a different filtering method based on Gabor multipli-
ers. Werther et al. assumed a known SNR to adjust the ampli-
tude of the reference channel; however, the SNR is not known
when the ECG is recorded in a real OHCA setting. This initial
effort was later completed by comparing the performance of four
dual-channel filtering methods using 395 human ECGs (165 from
OHCA settings, and 230 from public databases) combined with
13 CPR artifacts recorded from pigs in asystole.141 In any case, all
these contributions use artificial mixtures and are not based on
recordings from human OHCA episodes. Furthermore, recording
the arterial blood pressure signal may not be realistic in a resusci-
tation scenario, although the methods could be adjusted for other
reference channels.141

Irusta et al.,67 presented the first dual-channel method tested
in human OHCA episodes, the method is described in detail in
Chapter 5. The filter estimates a time-varying Fourier series repre-
sentation of the CPR artifact and uses the instantaneous frequency
of the chest compressions as the only additional reference channel.
These data are not directly recorded in AEDs but can be easily
derived from, for intance, the compression depth or the force sig-
nal. The method was tested on 381 OHCA registers: 89 shockable
and 292 non-shockable, including 88 asystole. These are the first
realistic results for dual-channel methods, and the sensitivities
and specificities reported for a commercial AED are comparable
to those presented by Eilevstjønn et al. for the MC-RAMP filter,
as later discussed in Section 2.4.5.

Classifying the corrupted ECG

In 2008, Li et al. 95 introduced a new approach to rhythm diagnosis
during CPR. All the previous efforts were concentrated on sup-
pressing the CPR artifact to identify the underlying ECG rhythm.
Li et al. proposed a method to classify directly the ECG corrupted
by a CPR artifact. Their classification algorithm is based on fea-
tures that are marginally affected by the artifact. These features
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were obtained from the wavelet transform, the spectral analysis,†

and the correlation function. The algorithm was validated on 4580
segments of 10 s duration from 229 victims of OHCA: 2360 un-
corrupted and 2220 corrupted by CPR artifacts. The results are
promising: Li et al. 95 reported a sensitivity of 93.3% and a speci-
ficity of 88.6% for the corrupted registers. However, their database
of non-shockable registers only contains 4% asystole corrupted by
CPR, which does not reflect the fact that asystole is the most fre-
quent non-shockable rhythm in OHCA.35 Furthermore, asystole
corrupted by CPR has also been identified as the non-shockable
rhythm type that is the most difficult to identify.39

More recently, Krasteva et al. 86 presented a second attempt
at direct classification of the corrupted ECG. Their shock advice
algorithm is based on features derived from the corrupted ECG
and a reconstructed version of the ECG; i. e., the algorithm com-
bines features obtained from the corrupt and the filtered ECG. The
authors used a development and a validation dataset of OHCA
registers of 20 s duration: 10 s corrupted by CPR followed by 10 s
without artifact. The testing dataset was obtained from 100 OHCA
victims and was composed of 172 shockable registers and 721
non-shockable registers, including 330 asystole registers. Their
results, 90.1% sensitivity and 86.1% specificity, are worse than
those reported by Li et al.,95 probably because their database
contains a much larger proportion of asystole.

2.4.5 Comparative assessment on OHCA registers

Table 2.3 shows a comparison of four methods tested on OHCA
registers. Each method represents one of the four approaches to
rhythm analysis during CPR described in the preceding sections.
The comparison must be accepted with caution for two reasons.
First, the composition of the databases was different in each study.
There are, for example, large differences among the studies in
the proportion of asystole corrupted by CPR: 30% of the non-
shockable registers in Eilevstjønn et al., 43% in de Gauna et al.,
30% in Irusta et al., and 46% in Krasteva et al. Second, each
study assessed the performance of the technique using a different
AED algorithm. Eilevstjønn et al. reported a 81.5% sensitivity
and a 67.2% specificity before filtering; i. e., the AED algorithm
they used has a tendency to identify CPR artifacts as shockable.
Conversely, Irusta et al. reported a sensitivity of 58.4% and a

† Li et al. use the AMSA parameter, which had been previously used in studies on
the prediction of shock success. 114
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specificity of 90.8% before filtering; i. e., CPR artifacts are more
frequently classified as non-shockable by their AED algorithm.

The first three studies use data from the same source, the clinical
study described in Section 2.4.3. The performance reported by
de Gauna et al. for a filter based only on the surface ECG is well
below the one reported by Eilevstjønn et al. for a multi-channel
filter and Irusta et al. for a dual-channel filter, particularly the
sensitivity, which is 5 to 6 points lower. In fact, the best global
performance is obtained for the dual-channel method, which
suggests that a single reference channel may suffice to model
the artifact accurately. The variations in specificity between the
dual-channel and multi-channel methods are probably related
to the differences in the performance of the AED algorithms
when classifying rhythms corrupted by CPR artifacts. Finally,
Krasteva et al. reported the lowest sensitivity, similar to the one
reported in de Gauna et al., but the highest specificity, half a point
above that reported in Irusta et al. Their method, based on the
direct analysis of the corrupted ECG, presented an 86% specificity
despite the high prevalence of asystole in their database.† Filtering
based on reference channels presents good sensitivity; therefore,

Authors Method Se(%)a Sp(%)a Testing datasetsb

S NS

Eilevstjønn et al. 46 MC-RAMP
96.7 79.9

92 174
(87.6–98.0) (73.3–85.2)

de Gauna et al. 39 Kalman filter
90.1 80.4

131 347
(83.6–94.2) (75.9–84.3)

Irusta et al. 67 LMS filter
95.6 85.6

45 146
(84.4–99.6) (78.9–90.5)

Krasteva et al. 86 Direct analysis
90.1 86.1

172 721
(85.6–94.6) (83.6–88.7)

a 95% CI indicated in parenthesis.
b S≡ shockable, NS≡ non-shockable.

Table 2.3: Comparison of four different approaches to rhythm analysis during CPR tested
on OHCA registers. The AED shock advice algorithms used in each study were: the Philips
HeartStart 4000 algorithm in Eilevstjønn et al. and the algorithm from the Reanibex 200 in
de Gauna et al. and Irusta et al. The datasets used in the first three studies originated from
the same original database (see Section 2.4.3). Data reproduced and corrected from Krasteva
et al. 86

† The reported specificity for asystole is a poorer 83%.
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these methods may be combined with the direct analysis of the
corrupted ECG to improve the specificity.

All the studies report a sensitivity above the 90% AHA perfor-
mance goal for VF. The major limitation of all approaches is the
specificity, which is well below the 95% AHA performance goal
for all cases. Unfortunately, a reliable rhythm analysis during CPR
is not currently a commercial reality;96 the results compiled in
Table 2.3 are still far from the AHA performance goals.

2.5 Contributions of the thesis work
The motivation and objectives of the thesis work are described
in Section 1.6. At this point, we summarize, in the context of the
background presented in this chapter, the main contributions of
the thesis work.

1. A database of pediatric arrhythmias. Gathering and classifying
a sufficient number of pediatric arrhythmias to test AED
algorithms is a laborious and complex experimental task,
which was initiated by our research group because of the
lack of public pediatric arrhythmia databases to test AED
algorithms. This database was then combined with an adult
database, which served to develop and test the validity of
the AED shock advice algorithm for adults and children.
The results and methodology followed in the creation of the
databases are presented in Section 3.1.

2. New arrhythmia detection algorithms. This thesis proposes a
new AED shock advice algorithm that is valid for both
adults and children. The current literature only covers adult
ventricular arrhythmia detection algorithms and the valida-
tion of complete AED algorithms on children. No general
methods valid for adult and pediatric patients have been
described in detail. The method is developed and tested on a
combination of adult and pediatric databases designed to re-
flect the most difficult discrimination cases fully, such as the
high-rate pediatric SVT. This point is covered in Chapter 4.

3. Rhythm analysis for OHCA episodes. The complete analysis of
an AED arrhythmia detection algorithm must include the
assessment of its performance for OHCA registers, both with
and without CPR artifacts. This is explored in Chapter 5.
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This chapter presents the ECG register databases created to de-
velop and test the algorithms described in Chapter 4 and Chap-
ter 5. The chapter is organized in two sections. The first section
introduces the databases of adult and pediatric registers used to
develop and test the AED shock advice algorithms. The second
section presents the database of OHCA registers used to assess
the performance of the AED algorithm in a resuscitation scenario,
in both the presence and the absence of CPR artifacts.

3.1 Databases for AED rhythm analysis
The AHA scientific statement described in Section 1.4.1 is the
framework for the creation of the ECG register databases used
to develop and test AED shock advice algorithms. The statement
describes, among other things, the composition of the databases
in terms of the types of rhythms and the minimum number of
registers per rhythm type (see Table 1.3 for a summary). Further-
more, it mentions that the data used to develop the algorithm
must be different from the data used to report the performance of
the algorithm.

Currently, there exists no public database of ECG registers com-
pliant with the AHA statement. Each AED manufacturer, there-
fore, must compile its own proprietary database of ECG registers
to test their algorithms. Since 2003, when ILCOR recommended
the use of AEDs in children 1 to 8 years of age,120 the database
must also include pediatric arrhythmias if the AED will treat
children. To date, only three proprietary pediatric databases have
been described in the scientific literature,25,16,15 and none of them
meets the minimum requirement for the numbers of shockable
registers specified in the AHA statement.

The creation of a database of ECG registers is a complex exper-
imental task that involves EMS (out-of-hospital data), hospitals
(in-hospital data), expert cardiologists to classify the registers and
biomedical engineers to manage and store the data. First, the
registers are collected, either retrospectively or prospectively, and
then at least three expert reviewers classify them. The registers

45
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are classified into one of three possible classes: shockable (fast
VT and coarse VF), non-shockable (NSR, other non-shockable
rhythms, such as SVT, and asystole), and intermediate (slow VT
and fine VF). Several examples of shockable and non-shockable
ECG registers are shown in Figure 3.1.

Our research group has been involved in research on AED
shock advice algorithms since 2000. As a result of several research
projects, two databases of adult arrhythmias were available for
this thesis work: the Reanibex and the Donostia–Emergencias
databases, described in Section 3.1.3. In 2005, we initiated a
project to create a pediatric database. The creation of the pe-
diatric database, which constitutes the core of the experimental
part of this thesis work, was completed by late 2007.

The following sections present a unified description of the
two phases in the creation of the two adult databases and the
pediatric database. Section 3.1.1 describes the original sources and
the formats of the registers, together with the process followed
to obtain the final common storage format. The classification
procedure is detailed in Section 3.1.2, with particular attention to
the difficulties found when classifying pediatric arrhythmias.

3.1.1 The collection of the ECG registers

The databases mentioned in the preceding section are collections
of classified surface ECG registers. These registers were obtained
from several sources, which can be grouped in the following three
broad categories.

• Public databases of surface ECG registers. The following pub-
licly available databases of ECG registers were used to build
our databases:102,1

– The Massachusetts Institute of Technology-Boston’s
Beth Israel Hospital (MIT-BIH) databases, including the
arrhythmia, malignant ventricular arrhythmia, atrial
fibrilation/flutter, supraventricular arrhythmia, long-
term, ST change and noise stress test databases.

– The Creighton University (CU) ventricular tachyarrhyth-
mia database.

– The AHA database for evaluation of ventricular ar-
rhythmia detectors.

The registers in these databases are stored in either MIT
or AHA file formats. Lead II, equivalent to the defibrillator
pads placed in anterior–anterior position, was used to obtain
the registers.
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-0.90
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(a): Coarse VF, shockable.

0 2 4 6 8 10

-0.40

0
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(b): Rapid VT, shockable (Rate 322 bpm).

0 2 4 6 8 10

-0.60

0

0.90

(c): NSR, non-shockable.

0 2 4 6 8 10

-0.70

0

1.50

(d): SVT, non-shockable (Rate 210 bpm).

0 2 4 6 8 10

-0.15

0

0.20

(e): AF, non-shockable.

0 2 4 6 8 10

-2.00

0

1.50

(f): PVC, non-shockable.

Figure 3.1: Examples of shockable (a–b) and non-shockable (c–f) ECG registers. The ampli-
tude of the ECG is measured in mV.
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• In-hospital registers. These registers were obtained as a re-
sult of the collaboration with various Spanish hospitals. The
ECG registers came from retrospective and prospective elec-
trophysiology (EP) studies and Intensive Care Units (ICU).
The EP studies were available in either digital format — the
Prucka Cardiolab or the EP-Tracer systems — or as ECG
paper strips. All the registers from the ICUs came in printed-
paper format. The available data were in the form of 3-lead
and 12-lead surface ECG recordings. Lead II was used to
obtain the registers.

• Out-of-hospital registers. Data from OHCA episodes was gath-
ered from two Spanish EMS. Unfortunately, the storage file
format of the AEDs and the manual defibrillators used by
the EMS was not available to our research group, and the
registers had to be printed out in paper and later digitized.

The original registers were reviewed by expert cardiologists
who marked the start and end times of the registers to guarantee
two aspects: a unique rhythm type during the entire register and
the absence of artifacts. Only registers with durations exceeding
3.2 s — the length of the analysis window of the AED shock
advice algorithm described in Chapter 4 — were included in
the databases. The study dates, acquisition characteristics (see
Table 3.1), and patient data were annotated when available; in
particular, the age of the pediatric patients.

In summary, the surface ECG data came in two different for-
mats: digital recordings and printed-paper recordings. The digital
registers came in the MIT or AHA file formats or in the propri-

Acquisition
parameters

Digital registers
Paper

registersEP-Tracer Cardiolab MIT/CU/AHA

fs (Hz) 1000 1000 360/250/250 500

Resolution (µV) 1.25 5 a 2.4/5/2.4 5

BW (Hz) 0.05-150 0.05-100 0.1-100/0-70/ 0.5-40 b

0.05-100

a For a ± 10 mV dynamic range and 12 bit quantization.
b Minimum acquisition bandwidth.

Table 3.1: Signal characteristics of the data acquisition systems: sampling
frequency ( fs), resolution and acquisition bandwidth (BW).
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etary file format of the EP equipment. All registers were converted
to a common format with a sampling rate of fs = 250 Hz.

The paper strips were digitized. The digitization process started
by obtaining a digital image of the ECG — lead II in the case
of multilead EP studies — using a flatbed scanner. Paper strips
with a color grid were scanned in 24-bit color, and paper strips
with black grids in 8-bit gray scale. The grid was eliminated using
thresholding techniques producing a binary image of the ECG
trace. The binarized ECG trace was put through a line detection
and noise reduction procedure, and the digitized register was ob-
tained. All registers were then visually inspected by superposing
the original image and the digitized register. Figure 3.2 shows an
extract of a digitized paper strip containing a pediatric VF rhythm.
For a paper speed of 25 mm/s and a gain setting of 10 mm/mV, a
scanning resolution of 508 dpi yields a fs = 500 Hz and a resolu-
tion of 5 µV, as indicated in Table 3.1. The digitized registers were
finally downsampled to fs = 250 Hz.

(a): Original ECG in paper. (b): Grid removed.

(c): Digitized ECG superposed
on the original ECG.

0 1 2

-1

0

1

(d): Digitized ECG, y axis in mV
and x axis in s.

Figure 3.2: Example of a digitized EP study: the rhythm in the original
paper strip is a pediatric VF.

3.1.2 The classification of the ECG registers

Following the AHA statement, the classification of the ECG regis-
ters requires agreement among three expert reviewers of cardiac
arrest rhythms. Consequently, the ECG registers were printed
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out and handed to three independent cardiologists, who clas-
sified them in one of the rhythm types specified in the AHA
statement. Finally, each register was classified as shockable, non-
shockable, or intermediate. The criteria followed to determine
the shock/noshock recommendation for potentially shockable
rhythms were:25 the patient is unresponsive, the patient has no
palpable pulse, and the age of the patient is unknown.†

The shock/noshock recommendation depends on the heart rate
for VT; fast VT is considered shockable, and slow VT is classified
as intermediate. The AHA statement allows the manufacturer
to specify the rate threshold for fast VT because tolerance to
VT varies widely among patients.80 In our databases, shockable
VT included polymorphic VT and fast monomorphic VT. Fast
VT was defined as VT with rates above 150 bpm in adults and
20 bpm above age-matched normal rate in children; i. e., 180 bpm
for children under 1 year and 150 bpm for children over 1 year.16

These criteria are not universally accepted; for instance, the pe-
diatric studies published to date have all used different criteria:
250 bpm for monomorphic VT in Cecchin et al.,25 20 bpm above
age-matched normal rate in Atkinson et al.,16 and 200 bpm in
Atkins et al. 15 We adopted the criteria used by Atkinson et al.
because it is the most inclusive and therefore posed a greater
challenge to the design of the algorithms.

During the classification process, two types of discrepancies
among the cardiologists occurred: in the determination of the
rhythm type and in the shock/noshock decision. The latter are the
important ones from the point of view of the design of shock ad-
vice algorithms. In fact, the AHA statement requires a consensus
decision only for the shock/noshock diagnosis. All the registers
with non-agreeing diagnoses were further discussed. The final
consensus diagnosis was reached after the assessment of the risks
of each potential recommendation.

Non-shockable fast pediatric SVT and shockable pediatric VT
proved to be the most difficult rhythms to classify. In a number
of cases, the reviewers could not reach a consensus decision and
stated that additional information, such as other ECG leads, was
needed for a diagnosis. Figure 3.3 shows some of those cases. Dis-
crepancies were resolved by adopting the original interpretation
from the rhythm source. Our hypothesis is that it may not be
feasible for a cardiologist to discriminate pediatric SVT and VT
accurately based on the surface ECG alone, particularly when the
rate of pediatric SVT is high. A consensus decision of three inde-
pendent cardiologists is the only possibility for registers obtained

† The cardiologist did know whether the patient was adult or pediatric.
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-0.25
0

1.25

(a): Pediatric SVT with disagreements in diagnosis (Rate 255 bpm).

0 2 4 6 8 10

-0.30

0

0.20

(b): Pediatric SVT with disagreements in diagnosis (Rate 125 bpm).

0 2 4 6 8 10

-0.70

0

0.50

(c): Pediatric VT with disagreements in diagnosis (Rate 210 bpm).

0 2 4 6 8 10

-1.50

0

0.70

(d): Pediatric VT with disagreements in diagnosis (Rate 255 bpm).

Figure 3.3: Examples of pediatric VT and SVT with disagreements in the cardiologist’s
classification. In these cases, the diagnosis from the rhythm source was adopted.

from AEDs in the field. When registers come from EP studies,
the diagnosis from the physician aware of the clinical history of
the patient might be more reliable. Atkins et al.,15 also found
difficulties in the diagnosis of pediatric rhythms using a single
lead and mentioned that in a number of cases much discussion
and multiple views of the registers were needed for a consensus;
and Atkinson et al.,16 presented an example of a pediatric SVT
in which the cardiologist’s classification could change depending
on the ECG acquisition bandwidth. Atkins et al. defined pediatric
SVT based on three criteria: the presence/absence of P waves,
the heart rate, and the duration of QRS complexes.15 However,
criteria based on rate and QRS duration using a single lead might
be insufficient because wide QRS complex tachycardia in children
is likely to be of supraventricular origin.22 Furthermore, infants
may have a QRS duration in VT less than 90 ms.123
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3.1.3 Databases of adult registers

The Reanibex database

This is the database of adult registers used to test and certify the
shock advice algorithms of the AEDs manufactured by Osatu S.
Coop., a line of products called Reanibex. The registers were col-
lected and classified during 2000–2002, and it is the first database
created by our research group. It contains registers extracted from
the publicly available databases; i. e., the MIT-BIH, CU and AHA
databases. More registers were added through the collaboration
with the EP and ICU departments of the Basurto Hospital in
Bilbao, which provided digital registers from the Cardiolab sys-
tem and paper registers. The database was completed with the
addition of registers from OHCA episodes obtained from the
EMS of Osakidetza (the Basque Health Service) and the EMS in
Madrid (SAMUR). The Philips ForeRunner and the PhysioControl
LifePack AEDs recorded the OHCA registers.

As stated in the AHA statement, each register within a rhythm
class belongs to a different patient. The database also met the

Rhythms
Origin

Total
MIT/CU/AHA Basurto OHCA

Shockable

Coarse VF 9/28/9 64 68 178

Rapid VT 8/8/1 42 20 79

Non-shockable

NSR 125/13/47 2 - 187

SVT a 39/11/16 1 - 67

AF, SB, blocks,
idioventricular, PVC

92/39/56 - - 187

Asystole 5/3/1 - 65 74

Intermediate

Fine VF 1/1/- 9 20 31

Other VT 1/1/1 6 16 25

a Although SVT belongs to the other non-shockable group (AF,SB, ...) it is
considered as an individual category in this work.

Table 3.2: Number and source of the registers in the the refined Reanibex
database of adult rhythms.
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requirement for minimum sample sizes specified in the AHA
statement. For this thesis work, the registers in the original Re-
anibex database were thoroughly reviewed, and those with low
signal quality or noise were discarded. For instance, out of the 200
VF registers from the original database, only 178 were selected.
Table 3.2 shows a summary of the selected registers, which to-
tal 828 registers from 590 adult patients. The mean duration of
the registers is 13.5± 3.3 s and 11.5± 4.6 s for the 257 shockable
registers and 14.6± 1.6 s for the 515 non-shockable registers.

The Donostia–Emergencias database

The Donostia–Emergencias database is the second database of
adult registers, it was compiled during 2006–2007. It contains
registers from EP studies conducted at the Donostia Hospital in
San Sebastian using the EP-Tracer system, as well as a second
set of OHCA episodes from the EMS in the Basque Country and
Madrid. The Philips ForeRunner and the PhysioControl LifePack
AEDs recorded the registers.

Table 3.3 shows a summary of the collected registers; in this case,
more than one register per patient and rhythm class were allowed

Rhythms
Origin

Total
Donostia OHCA

Shockable

Coarse VF 140 (113) 88 (83) 228 (196)

Rapid VT 105 (101) 22 (20) 127 (121)

Non-shockable

NSR 105 (104) 1 (1) 106 (105)

SVT 21 (20) 2 (2) 23 (22)

AF, SB, blocks,
idioventricular, PVC

31 (31) 16 (15) 47 (46)

Asystole 2 (2) 446 (436) 448 (438)

Intermediate

Fine VF 3 (2) 34 (30) 37 (32)

Other VT 6 (6) 14 (14) 20 (20)

Table 3.3: Number and source of the registers in the Donostia–
Emergencias database of adult rhythms. The number of patients is indi-
cated in parenthesis.
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but only if the morphology of the rhythm was sufficiently different.
The Donostia–Emergencias database contains 1036 registers from
838 adult patients. The mean duration of the registers is 12.9± 5.7 s
and 11.1± 5.9 s for the 355 shockable registers and 13.9± 5.4 s for
the 624 non-shockable registers.

3.1.4 The pediatric database

ILCOR’s approval in 2003 of the use of AEDs in 1–8 year olds120

triggered our need to create a database of pediatric registers. The
database was created in two phases that span a period of 3 years,
from early 2005 to late 2007.

During the initial phase, Dr A Bodegas and Dr E Pastor from
the Cruces Hospital in Barakaldo and Dr F Benito from La Paz
Hospital in Madrid provided us with retrospective EP studies
from pediatric patients. These registers came either in digital for-
mat from the Cardiolab system or in paper format. Drs Benito,
Bodegas and Pastor participated in the register classification pro-
cess. The results from the initial phase were presented at the 2006
Computers in Cardiology conference.65

In 2006, we extended the network of cooperating hospitals to
include Dr JM Porres from the Donostia Hospital, Dr JL López-
Herce from the pediatric ICU at the Gregorio Marañón Hospital
in Madrid, and Dr J Brugada from the San Joan de Deu Hospital
in Barcelona. In this second phase, we added registers in digital
format from the EP-Tracer systems of the Donostia and San Joan
de Deu hospitals and digitized paper registers from the Gregorio
Marañón Hospital. Drs Bodegas, Pastor, and Porres classified the
registers during the second phase.

The pediatric database contains 1090 registers from 649 pedi-
atric and adolescent patients aged between 1 day and 20 years
(mean age 7.1± 4.5 years). Table 3.4 summarizes the composition
of the pediatric database. The registers had a mean duration of
13.7± 8.9 s and 10.9± 4.9 s for the 124 shockable registers and
14.1± 9.3 s for the 958 non-shockable registers.

Table 3.5 summarizes the registers obtained from pediatric
patients in the 1–8 years old group, the population to which
the 2003 ILCOR recommendations apply. For this age group, we
collected 563 registers from 378 patients, mean age 4.7± 2.2 years.
The registers had a mean duration of 14.3± 8.0 s and 11.6± 5.1 s
for the 57 shockable registers and 14.6± 8.2 s for the 504 non-
shockable registers.

Contrary to the AHA statement, the pediatric database included
several registers from the same patient and rhythm type, if the



i
i

i
i

i
i

i
i

3.1 DATABASES FOR AED RHYTHM ANALYSIS 55

Rhythms
Origin

Total

Cruces La Paz Donostia GM SJD

Shockable

Coarse VF 8 (2) 43 (14) 4 (4) – (–) 3 (2) 58 (22)

Rapid VT 9 (7) 34 (17) 4 (2) 5 (1) 14 (9) 66 (36)

Non-shockable

NSR 240 (226) 33 (33) 17 (13) – (–) 250 (182) 540 (454)

SVT 58 (42) 68 (50) 8 (8) 6 (5) 182 (131) 322 (236)

AF, SB, blocks,
idioventricular, PVC

33 (30) 8 (6) 5 (4) 6 (3) 44 (39) 96 (82)

Asystole – (–) – (–) – (–) – (–) – (–) – (–)

Intermediate

Fine VF – (–) 4 (2) – (–) – (–) – (–) 4 (2)

Other VT – (–) 4 (3) – (–) – (–) – (–) 4 (3)

Table 3.4: Number of registers and patients per origin in the pediatric database. GM stands
for Gregorio Marañón, and SJD stands for San Joan de Deu.

morphology of the arrhythmias was sufficiently different. All
the previous studies on AED shock advice algorithms in chil-
dren25,16,15 have relaxed the AHA recommendations because of
the difficulty of gathering pediatric ventricular arrhythmias.

The pediatric database has two important shortcomings. First,
the number of shockable registers is low, well below the minimum
required by the AHA. The numbers are nevertheless comparable
to those reported in the previous studies on the field (see Table 2.2).
Our database contains 124 shockable registers (57 in the 1–8 year
old group) while Cecchin et al.,25 Atkinson et al.,16 and Atkins
et al. 15 reported 131, 76, and 120 shockable registers, respectively.
These numbers reflect the low incidence of shockable rhythms in
children. Second, the pediatric registers were obtained in hospital;
i. e., there are no registers from pediatric OHCA, which is also a
limitation of all the previous studies on the field. Pediatric OHCA
registers are scarce; for instance, Rossano et al. 118 reviewed the
interventions of three EMS from 1982 to 2002 in patients up to 18
years of age and only identified 57 victims with VF, 43 of whom
had VF as the initial rhythm.

Conversely, our database contains a large number of fast pedi-
atric SVT, both in the complete and in the 1–8 year old group. It
is well known that pediatric SVT can have a very high heart rate
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Rhythms
Origin

Total

Cruces La Paz Donostia GM SJD

Shockable

Coarse VF 1 (1) 15 (8) 2 (2) – (–) – (–) 18 (11)

Rapid VT 7 (5) 24 (11) – (–) 5 (1) 3 (2) 39 (19)

Non-shockable

NSR 217 (206) 21 (21) – (–) – (–) 74 (53) 312 (280)

SVT 38 (27) 36 (24) – (–) 3 (3) 70 (49) 147 (103)

AF, SB, blocks,
idioventricular, PVC

29 (26) 5 (4) – (–) 2 (1) 9 (7) 45 (38)

Asystole – (–) – (–) – (–) – (–) – (–) – (–)

Intermediate

Fine VF – (–) – (–) – (–) – (–) – (–) – (–)

Other VT – (–) 2 (2) – (–) – (–) – (–) 2 (2)

Table 3.5: Number of registers and patients per origin in the pediatric database. The data
refers to the subset of 1–8 year old patients.

that might produce erroneous shock recommendations when al-
gorithms designed for adult patients are used.120,15 Our database,
therefore, is a useful tool to test the specificity of AED algorithms
on pediatric patients.

There are no asystole registers in the pediatric database because
of the lack of pediatric OHCA episodes and the difficulty in
gathering asystole from children in an in-hospital setting.† During
asystole, there is no cardiac electrical activity, and the ECG is
close to a flat line. An accurate identification of asystole for adult
patients guarantees the correct diagnosis for the pediatric case
because asystole is similar for adult and pediatric patients.

3.1.5 Databases for the development and testing of
AED shock advice algorithms

The pediatric and the two adult databases were merged to form
a database of adult and pediatric registers that contains all the
collected registers from the sources described in Section 3.1.1.
The intermediate rhythms were removed because there are no

† Asystole is usually associated with a confirmation of death.
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algorithm performance goals for these rhythms.† Several registers
from the same patient in the same rhythm class were allowed
in the pediatric case but not in the adult case. Consequently,
some registers from the Donostia–Emergencias database were
discarded.

The registers were randomly split into two similar sets regard-
ing numbers of registers and patients. The first database, described
in Table 3.6a, was used to develop the AED shock advice algo-
rithm. The second database, shown in Table 3.6b, was used to test
the algorithm. There is an important difference between the devel-
opment and test databases. The development database contains a
single register per patient and rhythm class. The test database con-
tains all the pediatric registers not included in the development
database; therefore, rhythm repetition was allowed. For instance,
there are 58 pediatric VF from 22 patients. A single VF register was
selected from half the patients for inclusion in the development
database (11 VF from 11 patients); the rest (47 VF from 17 patients)
were added to the test database. The independence between test
and development is respected because pediatric rhythm repetition
was only allowed when the morphology of the arrhythmias was
different. The objective of this partition strategy is to develop
the algorithm using adult and pediatric data while testing the
algorithm in the largest possible pediatric database.

3.2 A database to test rhythm analysis dur-
ing real OHCA episodes

The 1997 AHA statement establishes the framework for the devel-
opment and testing of AED shock advice algorithms. Although
our adult databases contain a large number of OHCA registers,
most of them are either asystole or shockable rhythms. There
are very few OHCA non-shockable rhythms, which may be very
different from the NSR or SVT rhythms in our databases. Further-
more, during OHCA a CPR artifact frequently corrupts the ECG.
No statement exists describing the composition of the databases
to develop and test CPR cancellation algorithms, although the
most advanced studies in this field46,39,67 used data from OHCA
episodes. One of the most comprehensive datasets of OHCA
episodes was gathered in the prospective study led by Dr Lars
Wik, aimed at measuring the quality of out-of-hospital CPR.146,84

† The benefits of defibrillation are uncertain for intermediate rhythms; consequently,
the AHA statement mentions that results should simply be reported.
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Rhythms
Original database

Total
Reanibex Don.-Emerg. Paediatric

Shockable

Coarse VF 89 (89) 98 (98) 11 (11) 198 (198)

Rapid VT 40 (40) 61 (61) 18 (18) 119 (119)

Non-shockable

NSR 94 (94) 53 (53) 227 (227) 374 (374)

SVT 34 (34) 11 (11) 118 (118) 163 (163)

AF, SB, blocks,
idioventricular, PVC

94 (84) 24 (24) 42 (42) 160 (150)

Asystole 37 (37) 219 (219) – 256 (256)

(a): Development database for AED shock advice algorithms. All the patients
within a rhythm type are different.

Rhythms
Original database

Total
Reanibex Don.-Emerg. Paediatric

Shockable

Coarse VF 89 (89) 98 (98) 47 (17) 234 (204)

Rapid VT 39 (39) 60 (60) 48 (24) 147 (123)

Non-shockable

NSR 93 (93) 52 (52) 313 (266) 458 (411)

SVT 33 (33) 11 (11) 204 (155) 248 (199)

AF, SB, blocks,
idioventricular, PVC

93 (84) 22 (22) 54 (47) 169 (153)

Asystole 37 (37) 219 (219) – 256 (256)

(b): Test database for AED shock advice algorithms. All the patients within
a rhythm type are different, except in the pediatric case. Pediatric rhythm
repetition is only allowed for rhythms with different morphology.

Table 3.6: Number of registers and patients per origin in the development and test databases
used in Chapter 4 to design the universal AED shock advice algorithm.
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Our research group gained access to these data through the col-
laboration with Prof. Trygve Eftestøl, who leads the Norwegian
research group that has produced the most important advances
in the field of CPR artifact cancellation algorithms.

The OHCA episodes were recorded between March 2002 and
September 2004 in three locations: Akershus in Norway, Stock-
holm in Sweden, and London in the UK. The study, which the
regional ethics committees approved, consisted of two phases.
During phase I,146 the paramedics were instructed to follow the
2000 guidelines for CPR and ECC;2 in phase II,84 feedback on
CPR quality via the defibrillators was activated. The data were
recorded at fs =500 Hz with a 16-bit resolution using the Laerdal
HeartStart 4000SP, a modified version of the HeartStart 4000 that
allowed the recording of additional reference signals. The ECG
channel was recorded with a resolution of 1.031 µV per least
significant bit and a bandwidth of 0.9 – 50 Hz. For each OHCA
case, the initial rhythm and each subsequent change in rhythm
were annotated, and the rhythms were grouped in five classes:
VF and non-perfusing fast VT (rate > 150 bpm) in the shockable
category, and asystole, PEA, and Pulse-giving Rhythms (PR)† in
the non-shockable category.

The ECG registers extracted from the prospective study were
composed of two consecutive 15.5 s intervals: CPR artifacts cor-
rupted the first interval and were immediately followed by a
second interval without CPR artifact. The rhythm annotations in
the original databases were used to certify that the underlying
heart rhythm was the same in both intervals. Therefore, these
registers can be used to assess the effect of the CPR artifact on the
diagnosis of the shock advice algorithm, as well as how much the
diagnosis improves after the CPR artifact is suppressed. Figure 3.4
shows three examples of the extracted registers.

Chapter 5 analyzes the performance of the universal AED al-
gorithm presented in Chapter 4 for OHCA episodes, in both the
presence and the absence of CPR artifacts. During chest com-
pressions, the artifact is suppressed using the LMS algorithm
described in Irusta et al. 67 The CPR artifact suppression method
is based on the instantaneous frequency of the chest compressions.
This information was not directly recorded by the HeartStart
4000SP, although it can be deduced from the compression depth
signal following the procedure described in Section 5.3.2. The
compression depth and the ECG registers were extracted and

† Wik et al. 146 defined PEA as QRS complexes without blood flow, indicated either
by a clinically detected pulse or blood-flow-induced changes in thoracic impedance.
PR was defined as QRS complexes with blood flow as indicated by the same factors.



i
i

i
i

i
i

i
i

60 ECG REGISTER DATABASES

0
5

1
0

1
5

2
0

2
5

3
0

-1
.0

00

1
.0

0

(a
):

Th
e

un
de

rl
yi

ng
rh

yt
hm

is
V

F.

0
5

1
0

1
5

2
0

2
5

3
0

-2
.0

00

2
.0

0

(b
):

Th
e

un
de

rl
yi

ng
rh

yt
hm

is
PE

A
.

0
5

1
0

1
5

2
0

2
5

3
0

-5
.0

00

5
.0

0

(c
):

Th
e

un
de

rl
yi

ng
rh

yt
hm

is
as

ys
to

le
.

Fi
gu

re
3.

4:
EC

G
re

gi
st

er
s

ex
tr

ac
te

d
fr

om
th

e
pr

os
pe

ct
iv

e
st

ud
y

on
C

PR
qu

al
it

y.
A

C
PR

ar
ti

fa
ct

co
rr

up
ts

th
e

EC
G

in
th

e
in

it
ia

l1
5

s
in

te
rv

al
.I

n
th

e
se

co
nd

15
s

in
te

rv
al

,c
he

st
co

m
pr

es
si

on
s

w
er

e
st

op
pe

d,
an

d
th

e
EC

G
sh

ow
s

th
e

un
de

rl
yi

ng
rh

yt
hm

.T
he

y
ax

is
sh

ow
s

th
e

EC
G

in
m

V.



i
i

i
i

i
i

i
i

3.2 DATABASE OF OHCA EPISODES 61

downsampled to fs =250 Hz, and the ECG registers were prepro-
cessed with an order-four Butterworth bandpass filter (0.7–30 Hz).

Table 3.7 shows a summary of the extracted episodes, the ex-
traction contains 381 ECG registers from 299 patients. According
to the annotations of the underlying rhythm, 89 are shockable
(84 VF and 5 VT) and 292 are non-shockable (88 ASY, 166 PEA,
and 38 PR) cases. All the registers within the same rhythm class
belong to a different patient except two VF instances. The low
incidence of VT in OHCA explains the low number of VT registers.
In fact, it is estimated that patients in OHCA with VT as the first
recorded rhythm are 1% of those found in VF and are customarily
all grouped under VF.35

Rhythms Registers

Shockable

Coarse VF 84 (82)

Rapid VT 5 (5)

Non-shockable

PEA 166 (166)

PR 38 (38)

Asystole 88 (88)

Total 381 (299)

Table 3.7: Number of registers in the database of OHCA episodes cor-
rupted by CPR. The number of patients is indicated in parenthesis. This
database is used to test the CPR suppression algorithm described in Chap-
ter 5 in combination with the AED shock advice algorithm described in
Chapter 4.
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This chapter presents a new shock advice algorithm designed
and validated for adult and pediatric patients together. To date,
two different strategies have been proposed to adapt the rhythm
analysis algorithms of AEDs for their use in children. Initially, two
AED rhythm analysis algorithms designed for adult patients were
tested on comprehensive databases of pediatric arrhythmias.25,16

In both studies, the specificities for non-shockable pediatric ar-
rhythmias and the sensitivity for pediatric VF were above the
AHA specifications. However, the sensitivity for pediatric VT was
either too low25 or inconclusive due to the low number of pe-
diatric VT registers in their databases.16 More recently, Atkins
et al. showed that the specificity of an adult algorithm fell be-
low the AHA performance goal for pediatric SVT.15 Pediatric
rhythms have faster heart rates and lower QRS durations25,15 that
might produce lower SVT specificities and lower VT sensitivities
in children.15 To solve this problem, Atkins et al. defined pediatric
specific thresholds to be used when the pediatric defibrillation
pads are attached to the AED.

The algorithm described in this chapter is based on a new
design strategy: a universal algorithm designed and validated
using adult and pediatric arrhythmias together.

4.1 Overview of the shock advice algorithm

4.1.1 Basic design principles

Two have been the guiding principles for the design of the new
shock advice algorithm:

1. Universal algorithm. A single algorithm valid for adult and
pediatric patients. To this aim, the design of the algorithm
is based on a set of new features that, regardless of age,
quantify the distinctive characteristics of shockable and non-
shockable rhythms. It is particularly important that those fea-
tures are independent of the heart rate, which is significantly
higher for pediatric arrhythmias. The complete algorithm
and its constituent blocks are designed and validated in the

63
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framework of the AHA statement on the assessment of the
performance of AED arrhythmia analysis algorithms.80 The
datasets used for development and testing are composed
of a large number of both adult and pediatric arrhythmias.
This design methodology guarantees that the algorithm will
be valid for the two patient groups.

2. Minimize the hands-off intervals. The algorithm must diag-
nose the rhythm in less than 10 s to shorten the hands-off
intervals for rhythm analysis. For this purpose, the discrimi-
nation features are computed in non-overlapping 3.2 s ECG
segments. The algorithm assigns a shock/noshock decision
to each segment and a register is classified as shockable or
non-shockable using a majority criterion on three consec-
utive segments; i. e., the algorithm diagnoses a register in
either 6.4 s or 9.6 s.

4.1.2 Block diagram of the decision algorithm

The decision algorithm analyzes the digitized ECG,

xecg(n) = xecg(t)
∣∣
t=nTs

with fs =
1
Ts

= 250 Hz, (4.1)

and classifies each 3.2 s segment in one of the categories described
in Table 4.1 and assigns the corresponding shock/noshock deci-
sion to the segment. The block diagram of the processing flow is
described in Figure 4.1. Each segment is processed sequentially by
a set of sub-algorithms and when one of the categories established
in Table 4.1 is decided the analysis ends.

The decision algorithm starts by identifying the absence of car-
diac electrical activity (asystole algorithm). If no cardiac electrical
activity is detected the segment is classified as ASY and the analy-
sis concludes. Segments with cardiac electrical activity are further
processed in the second sub-algorithm, QRS algorithm, where the
decision algorithm tests if narrow-QRS complexes are present.
Narrow-QRS complexes, which are a strong indication of a pulsed
rhythm, are not found in fatal ventricular arrhythmias; conse-
quently, if narrow-QRS complexes are detected the analysis ends
and the segment is classified as PR. Otherwise, the segment is
classified as nPR, a ventricular origin is suspected and the analysis
continues.

Fast ventricular arrhythmias are further processed to discrimi-
nate VT from VF. Whereas VF is always shockable, VT is classified
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as shockable if the ventricular rate exceeds the ThR threshold.†

The Regularity algorithm discriminates regular (VT) from irregular
(VF) ventricular arrhythmias; irregular ventricular segments are
classified as VF and the analysis finishes. Suspected VT is further
analyzed by the SVT/VT algorithm. This algorithm is included
to identify fast pediatric SVT with wide-QRS complexes, which
might be classified as nPR by the QRS algorithm. These are fast
and regular non-shockable rhythms likely to be misclassified as
shockable VT.15 When SVT is detected the algorithm stops. Oth-
erwise, the ventricular rate is calculated and VT is classified as
shockable rapid VT (rVT) for rates above ThR or as non-shockable
slow VT (sVT) for rates below ThR.

Each sub-algorithm was adjusted by maximizing the sensitivity
and the specificity for the subclass of rhythms it identifies. The
sub-algorithms and the decision algorithm were designed using
the rhythms in the development database (Table 3.6a) and the
complete design was tested on the test database (Table 3.6b).

However, we do not report in the manuscript the final results for
either the coefficients of the decision algorithms or the detection
thresholds, because this algorithm is used in a commercial AED
and is protected by company rights.

Segment types AHA types Characteristics

Non-shockable

ASY Asystole Asystole Absence of cardiac electrical activity.

PR Pulsed Rhythm
AF, SB, blocks,
PVC, SVT, NSR

Rhythms with well defined QRS complexes.

SVT
Supraventricular
tachycardia

SVT
Supraventricular tachycardias not identified as
pulsed rhythms, i. e. with either very fast rates or
wide QRS complexes.

sVT slow VT Other VT
Ventricular Tachycardia with rates below the
threshold for shockable VT.

Shockable

rVT rapid VT rapid VT
Ventricular Tachycardia with rates above the
threshold for shockable VT.

VF coarse VF coarse VF
Ventricular Fibrillation, the algorithm does not
check coarseness (amplitude > 200 µV).

Table 4.1: Description of the categories assigned to the 3.2 s ECG segments.

† The AHA statement indicates that the rate criteria is specified by the AED manu-
facturer. 80
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4.2 Asystole algorithm
The objective of the Asystole algorithm is to identify segments with
either very low or no cardiac electrical activity at all. For such
segments the ECG is a low power signal because all the electrical
activity is concentrated around the baseline. This characteristic
of asystolic rhythms is parametrized by the process described in
Figure 4.2, the block diagram of the Asystole algorithm.

First the ECG segment, xecg(n), is preprocessed by a band-
pass filter (BPF) to suppress baseline wander and low frequency
noise.† The preprocessed ECG segment, x̂ecg(n), is divided into
two non-overlapping subsegments of 1.6 s, and the power of each
subsegment is calculated as:

Pi = 103 × 1
N/2

i·N/2−1

∑
(i−1)·N/2

x̂2
ecg(n) i = 1, 2 (4.2)

where N = 3.2 · fs = 800 is the number of samples in the 3.2 s
segment, and 103 is a scaling factor.

The segment is classified as an asystole if the lowest of the two
power values obtained is below the ThP threshold; i. e., a 1.6 s
interval of very low cardiac activity is enough to suspect asystole.
This is a broad criterion because bradycardias or IV rhythms
with rates below 40 bpm present low activity periods of larger
duration. However all these arrhythmias should be classified as
non-shockable, and including a broader class of non-shockable
rhythms is acceptable from the shock/noshock point of view.

xecg(n) BPF

2.5 - 30 Hz

x̂ecg(n)

Butterworth IIR
Order n = 10

Power analysis

min{Pi}i=1,2
< ThP

no

yes
ASY

nASY

Further Processing

Figure 4.2: Block diagram of the Asystole algorithm.

† The low cutoff frequency of the filter is unusually high (2.5 Hz), however we are
not interested in preserving the ECG waveform but rather in suppressing low
frequency artifacts that produce large errors in the calculation of the power of the
underlying asystolic rhythm. Power calculations for regular pulsed rhythms (well
defined QRS complexes) or for fast ventricular arrhythmias (dominant frequencies
above 2.5 Hz) are only marginally affected by the preprocessing filter.
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Rhythm type Recordsa P

min P0.5 P50 P99.5 max

Shockable

Coarse VF 198 (565) 0.95 1.52 23.74 1087.21 1494.70

Rapid VT 119 (347) 2.14 2.74 128.21 1465.51 1494.97

Non-shockable

NSR 374 (1333) 1.43 1.80 22.10 351.23 551.24

SVT 163 (586) 2.48 3.11 46.98 710.14 778.20
AF, SB, blocks,
idioventricular, PVC

160 (596) < 10-3 0.01 42.05 576.31 700.77

Asystole 256 (867) < 10-3 < 10-3 0.02 0.79 2.82

a The number of 3.2 s segments is indicated in parenthesis.

Table 4.2: Values of the P parameter for the ECG segments of the development database.
The statistical distribution is characterized in terms of percentiles, Px means percentile x of
the distribution.

Rhythm type Recordsa No Shock Undecided

ASY nASY

Shockable

Coarse VF 198 (565) 0 565

Rapid VT 119 (347) 0 347

Non-shockable

NSR 374 (1333) 0 1333

SVT 163 (586) 0 586

AF, SB, blocks,
idioventricular, PVC

160 (596) 23 573

Asystole 256 (867) 862 5

a The number of 3.2 s segments is indicated in parenthesis.

Table 4.3: Partial classification of the Asystole algorithm for the devel-
opment database. At this stage a segment is either classified as ASY,
or needs to be further processed. The 23 segments from non-shockable
rhythms classified as ASY correspond to either IV rhythms (22) or SB (1).
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0 1.6 3.2 4.8 6.4 8 9.6

-0.10

0

0.10

(a): IV rhythm. All segments contain at least a subinterval of low activity and
are therefore classified as ASY. P = {0.0133, 0.0097, 0.0072}.

0 1.6 3.2 4.8 6.4 8 9.6

-1.00

-0.50

0

0.50

(b): SB first segment classified as ASY. The first subinterval of the first segment
only contains baseline activity and the segment is classified as ASY. For the
rest of the segments both subintervals contain part of a QRS complex and the
ThP threshold is exceeded. P = {0.2812, 2.0806, 11.3791}.

0 1.6 3.2 4.8 6.4 8 9.6

-0.15

0

0.15

(c): Asystole. The last segment contains two subintervals with enough cardiac
activity to exceed the ThP threshold. P = {0.0218, 0.0180, 0.7684}.

0 1.6 3.2 4.8 6.4 8 9.6

-0.20

0

0.20

(d): VF. The VF is fine (below 200 µV peak-to-peak) during the initial subinterval
of the first and third segments, the power values are low but above the ThP
threshold. P = {1.6065, 12.0565, 2.8265}.

Figure 4.3: Examples of borderline rhythms for the Asystole algorithm. The figures show
x̂ecg(n) in mV as a function of t = nTs in s. The tick marks in the time axis mark the limits
between the 1.6 s subintervals.

Table 4.2 shows the values of P power parameter obtained in
the development database. Asystole is well separated from the
shockable rhythms (the P99.5 percentile for asystole is smaller than
the P0.5 percentile for rapid VT or coarse VF), although there is
a slight overlap with a few non-shockable rhythms (slow brady-
chardias or IV rhythms). Table 4.3 shows the partial classification
of the Asystole algorithm. It is possible to identify 99.4% (862/867)
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of the segments from the asystolic rhythms while avoiding mis-
classifying a single segment of the shockable rhythms. The 23
non-shockable segments identified as ASY either correspond to
IV rhythms (22/23) or to slow bradychardias (1/23). A discussion of
some borderline rhythms or segments of rhythms for the Asystole
algorithm is shown in Figure 4.3.

4.3 QRS algorithm
The objective of the QRS algorithm is to identify the presence of
QRS complexes in the ECG segment. The algorithm is designed
to be more accurate for narrow QRS complexes because they are
usually associated with pulsed rhythms. In any case, and although
there exists no way to certify the presence of pulse from a single
lead ECG, lethal ventricular arrhythmias do not present narrow
QRS complexes. Identifying such complexes serves to discard
many rhythm types from being shockable.

Figure 4.4 shows the block diagram of the QRS algorithm. The
algorithm consists of two phases: a feature extraction phase from
three different signal analysis domains and a decision algorithm

Butterworth IIR
Order n = 10

Logistic Regression

b

xecg(n) Band Width

bW = fH − fL
×
β2

+ < ThQRS

no

yes
PR

nPR

Further Processing

BPF

0.5 - 30 Hz
b

Slope Analysis

min{bCPi}i=1,2
×
β1

BPF

6.5 - 30 Hz

Baseline Cont.

max{bWTi}i=1,2
×
β3

Figure 4.4: Block diagram of the QRS algorithm. The algorithm starts by calculating three
features: bCP in the slope domain, bW in the frequency domain and bWT in the time
domain. These features are then optimally combined to detect pulsed rhythms, using a
logistic regression classifier.
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based on an optimal combination of those features to detect pulsed
rhythms.

The QRS algorithm analyzes the ECG segment in three differ-
ent domains: slope, frequency and time. For each domain, the
analysis starts with a preprocessing BPF to obtain x̂ecg(n), the
preprocessed ECG segment. The low cutoff frequency of the fil-
ters was independently adjusted to maximize the discriminative
power of each feature. In the following subsections we describe
the analysis domain and the basic principles behind each of the
discrimination features.

4.3.1 Slope domain: bCP parameter

In a normal sinus rhythm the ECG varies slowly most of the time,
during QRS complexes however the ECG changes very rapidly.
These differences in the rate of variation of the ECG have been
extensively exploited to identify QRS complexes in the normal
ECG.89 In our analysis we are not interested in locating QRS
complexes within the normal ECG but rather in quantifying the
differences between non-shockable rhythms with QRS complexes
and rhythms without QRS complexes, an indication of a possible
shockable rhythm. We have defined a new parameter to discrimi-
nate these two broad classes of rhythms, based on the analysis of
the ECG in the slope domain.

The analysis starts by estimating the slope of the ECG as the first
difference of the preprocessed ECG. Since we are only interested
in the magnitude of the variation, the first difference is squared
to obtain xd(n):

xd(n) = (x̂ecg(n + 1)− x̂ecg(n))2 n = 1, .., N − 1. (4.3)

Then, xd(n) is normalized to amplitude one,

xd(n) =
xd(n)

max{xd}
. (4.4)

The differences in the amplitudes of xd(n) are large for ECG
segments with QRS complexes, with peaks during QRS complexes
and valleys for the slow varying intervals of the ECG. Conversely,
shockable rhythms with no QRS complexes present more evenly
distributed values of xd(n). Figure 4.5 shows the characteristic
xd(n) waveforms for ECG segments with and without QRS com-
plexes.

An adequate way to quantify the differences in slope between
rhythms with and without QRS complexes is to evaluate the
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x̂ecg(n)

0 1.6 3.2

-0.80

0

0.80

ThS

xd(n)

0 1.6 3.2

0

1.00

(a): PR. Large differences in slope produce many samples where xd(n) < ThS.

x̂ecg(n)

0 1.6 3.2

-3.00

0

3.00

ThS

xd(n)

0 1.6 3.2

0

1.00

(b): nPR. Evenly distributed slope fewer samples where xd(n) < ThS.

Figure 4.5: Differences in the distribution of the slope, xd(n), between PR and nPR ECG
segments.

proportion of time xd(n) is below a threshold ThS, or equivalently
the proportion of samples below the threshold,

bCP = P(xd(n) < ThS) (4.5)

Following the procedure described in Section 4.2 for the Asyslole
algorithm, the 3.2 s ECG segment is divided in two 1.6 s subinter-
vals, and bCP is evaluated for both subintervals. The ECG segment
is assigned the smallest of the two values. In this way both subin-
tervals must contain at least a QRS complex to suspect a PR, as
shown in Figure 4.6. Slow pulsed rhythms such as bradycardias
might not meet this criterion, however these segments are classi-
fied as ASY (non-shockable) by the Asystole algorithm and do not
pose a problem for the shock/noshock diagnosis. Furthermore,
at this stage a non-shockable segment misclassified as nPR is
not yet assigned a shock diagnosis, while a shockable segment
classified as PR is assigned an erroneous non-shockable diagnosis
(see Figure 4.1).

4.3.2 Frequency domain: bW parameter

The frequency domain has been frequently proposed to identify
ventricular arrhythmias, either as an standalone domain88,19 or
in combination with features extracted from other domains,71 for
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0 1.6 3.2 4.8 6.4 8 9.6

-0.30

0

0.50

0 1.6

0

0.50

1.00

0 1.6

0

0.50

1.00

bCP1 = 0.905 bCP2 = 0.875

(a): NSR. Both subintervals contain QRS complexes, bCP=0.875 is high.

0 1.6 3.2 4.8 6.4 8 9.6

-0.20

0

0.20

0 1.6

0

-0.50

1.00

0 1.6

0

-0.50

1.00

bCP1 = 0.135 bCP2 = 0.158

(b): VF. There are no narrow QRS complexes, bCP=0.135 is low.

Figure 4.6: Analysis in the slope domain. The parameter bCP parameter is evaluated in
subwindows of 1.6 s duration, the ECG segment is then assigned the smallest of both values;
i. e., both subintervals must contain QRS complexes to suspect a PR.

a thorough account see Section 2.1.1. In particular, features like
the VF leakage88 or A2

19 have been shown to partially discrimi-
nate ventricular rhythms on pediatric and adult arrhythmias.70,12

Both these features measure the concentration of the ECG power
around the dominant frequency (DF)† using two very different
approaches. Our frequency domain analysis is based on the work
by Barro et al.,19 although we parametrize the information in a
physically more meaningful way by assigning a bandwidth to
each ECG segment.

The analysis in the frequency domain starts by computing an
estimate of Px̂x̂( f ), the power spectral density of the ECG segment.
The preprocessed ECG segment is first Hamming windowed and
then X̂ecg( f ) is computed, as its FFT zero-padded to 4096 points.

† The frequency at which the power spectral density is at its maximum.
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Px̂x̂( f ) is estimated as the square of the amplitude of the FFT,
normalized to a unit area under the curve:

Px̂x̂( f ) =
|X̂ecg( f )|2

∑
fs/2
f=0 |X̂ecg( f )|2

. (4.6)

We then define the high and low frequencies ( fH and fL) which
delimit the center frequency band that contains a proportion α of
the power of the ECG segment:

1 + α

2
=
fH

∑
f=0

Px̂x̂( f ) and
1− α

2
=
fL

∑
f=0

Px̂x̂( f ), (4.7)

a simple definition of the bandwidth follows:

bW = fH − fL. (4.8)

These frequencies and the bW they delimit are shown in Figure 4.7
for a segment with QRS complexes and for a shockable segment.

The second feature of the QRS algorithm is bW. ECG segments
with quasiperiodic and fast changing QRS complexes concen-
trate their frequency components around the harmonics of the
cardiac frequency with major components up to 25 Hz. Ventric-
ular arrhythmias are more sinus like narrow band signals, the
energy is concentrated around the DF and most components are

x̂ecg(n)

0 1.6 3.2

-0.80

0

0.80

P
x̂x̂

( f )

fL fH0 10 20 30
0

0.20

(a): PR. Wide band with many harmonics.

x̂ecg(n)

0 1.6 3.2

-3.00

0

3.00

P
x̂x̂

( f )

fL fH0 10 20 30
0

0.75

1.50

(b): nPR. Narrow bandwidth with most of the power around the DF.

Figure 4.7: Differences in bandwidth between PR and nPR ECG segments.
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0 1.6 3.2 4.8 6.4 8 9.6
-0.30

0

0.50

0 1.6 3.2
-0.30

0

0.50

0 10 20 30
0

0.15

0.30

Time Domain Frequency Domain

(a): NSR. There are multiple harmonics, bW = 9.46 Hz is high.

0 1.6 3.2 4.8 6.4 8 9.6

-0.20

0

0.20

0 1.6 3.2

-0.20

0

0.20

0 10 20 30
0

0.35

0.70

Time Domain Frequency Domain

(b): VF. Power concentrates around DF, bW = 4.76 Hz is low.

Figure 4.8: Analysis in the frequency domain. The parameter bW is calculated for the whole
3.2 s segment.

under 10 Hz. Figure 4.8 graphically illustrates these differences
and shows that this parameter, unlike those from the slope and
time domains, is calculated for the whole 3.2 s segment.

4.3.3 Time domain: bWT parameter

An ECG with well defined QRS complexes normally has large
ECG intervals around the baseline or isoelectric line. These inter-
vals shorten as the heart rate increases. Conversely, the proportion
of time spent by the ECG around the baseline is low for shockable
rhythms because of the fast ventricular actitivity. This difference
between shockable and non-shockable rhythms is related to the
presence of QRS complexes and has been previously quantified in
terms of the probability density function of the amplitudes of the
ECG.91,113
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The time domain analysis of the ECG described in this section
proposes a new feature related to the isoelectric content of the
ECG. We are nevertheless not interested in an accurate estimation
of the isoelectric content but rather in a feature that discriminates
shockable from non-shockable rhythms.

First the ECG is preprocessed using a BPF between 6.5–30 Hz.
The unusually large low cutoff frequency was selected to eliminate
P and T waves, highlighting the presence of the QRS complex and
maximizing the baseline effect. Such a high low cutoff frequency
will degrade the waveform of shockable segments because it either
exceeds or is close to the DF of shockable arrhythmias. However,
suppressing the dominant component produces a noisier signal
with a smaller baseline content, thus increasing the discriminative
power of the parameter. The effect of the preprocessing filter on
the ECG is shown Figure 4.9, for both a PR and a nPR ECG
segment.

The preprocessed ECG is then normalized so that the maximum
absolute value of the amplitude of x̂ecg(n) is one,

x̂ecg(n) =
x̂ecg(n)

max{|x̂ecg|}
. (4.9)

xecg(n)

0 1.6 3.2

-0.80
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x̂, 1−α
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0 1.6 3.2

-1.00

1.00

(a): PR. Long isoelectric intervals between QRS complexes.

xecg(n)

0 1.6 3.2

-3.00
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3.00

x̂ecg(n)

P
x̂, 1+α

2

P
x̂, 1−α

2

0 1.6 3.2

-1.00

1.00

(b): nPR. Fast ventricular activity with low isoelectric content.

Figure 4.9: Differences in the baseline content for PR and nPR segments. The waveform of
the normalized preprocessed ECG, x̂ecg(n), is very distorted because of the large low cutoff
frequency of the preprocessing filter.
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The time domain parameter bWT is defined as the center am-
plitude range that contains a percent α of the samples of x̂ecg(n):

bWT = P
x̂, 50+α/2

− P
x̂, 50−α/2

, (4.10)

where P
x̂, k

is the percentile k of the distribution of the amplitudes
of x̂ecg(n). These percentiles are shown in Figure 4.9 for a PR and
a nPR segment. When the segment has QRS complexes a small
amplitude interval contains a large proportion of samples, and
bWT is small. On the other hand, for fast ventricular arrhythmias a
large amplitude interval is needed to include a similar proportion
of samples and bWT is large.

The time domain analysis is also performed in 1.6 s subintervals.
Following the principle described in the slope domain, a QRS
complex needs to be detected in both subintervals, the value of

0 1.6 3.2 4.8 6.4 8 9.6

-0.30

0

0.30

0 1.6

-0.30

0

0.30

0 1.6

-0.30

0

0.30

bWT1 = 0.066 bWT2 = 0.088

(a): NSR, the baseline content is high, bWT=0.088 is therefore low.

0 1.6 3.2 4.8 6.4 8 9.6

-0.15

0

0.15

0 1.6

-0.15

0

0.15

0 1.6

-0.15

0

0.15

bWT1 = 0.543 bWT2 = 0.662

(b): VF, the baseline content is low, bWT=0.662 is therefore high.

Figure 4.10: Analysis in the time domain. The bWT parameter is evaluated in subwindows
of 1.6 s duration, the ECG segment is then assigned the largest of both values; i. e., both
subintervals must contain QRS complexes to suspect a PR. The rhythms shown in this figure
are those shown in Figure 4.6, the differences in waveform are explained by the different
preprocessing filters.
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bWT assigned to the segment is therefore the largest of the two
values obtained for the subintervals, as indicated in Figure 4.10.

4.3.4 Decision algorithm

The discrimination features derived from the slope (bCP), fre-
quency (bW) and time (bWT) domains were calculated for all the
segments in the development database after the rhythms labeled
as asystole were excluded. The distribution of the values of the
features for the shockable and non-shockable rhythms are shown
in Figure 4.11. There is a clear separation between shockable and
non-shockable ECG segments for all three features, the overlap of
the distributions is therefore low.

The QRS algorithm is a binary classifier that discriminates be-
tween ECG segments with QRS complexes (PR) and segments
without QRS complexes (nPR). The segments from registers clas-
sified as non-shockable should be classified as PR and segments
from shockable registers as nPR, although at this stage the AED
algorithm does not yet decide if a segment is shockable (see Fig-
ure 4.1). The discriminative power of each feature and of the
combination of features was evaluated using the Bhattacharyya
distance.51 For multivariate gaussian distributions with mean
value µ and covariance matrix Σ, Bhattacharyya’s distance be-
tween classes 1 and 2 is:

DB = 1
8 (µ2 −µ1)

T
{

Σ1 + Σ2

2

}
(µ2 −µ1) +

1
2 ln

∣∣∣∣Σ1 + Σ2

2

∣∣∣∣√
|Σ1||Σ2|

.

(4.11)

The DB values between the shockable and non-shockable seg-
ments of the development database are shown in Table 4.4, which
shows that combining the information from the three domains
yields the best discriminative power.

The features were linearly combined to fit a multiple logistic
regression model.† For each segment we defined the following
feature vector:

x = {1, bCP, bW, bWT}. (4.12)

† Indirect classification methods such as the k-NN algorithm require longer compu-
tation times and additional storage and do not improve the detection results on
our databases.
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(a): bCP, slope domain feature.
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(b): bW, frequency domain feature.
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(c): bWT, time domain feature.
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(d): YPR, logistic regression

Figure 4.11: Normalized histograms of the features that intervene in the QRS algorithm for
the shockable (�) and non-shockable (�) segments in the development database. Note that
the x axis for the bW parameter is in logarithmic scale.

FEATURES DB( PR, nPR )

{bW} 1.232

{bWT} 1.510

{bCP} 3.172

{bWT, bW} 2.303

{bCP, bW} 2.580

{bCP, bWT} 3.480

{bCP, bWT, bW} 3.690

Table 4.4: Discriminative power of the features for the QRS algorithm. A
larger value of DB corresponds to a better discriminative power.
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Then, the logistic regression model assigns the following proba-
bility of being PR to the segment:

PPR =
1

1 + e−βxT , (4.13)

βxT = βo + β1bCP + β2bW + β3bWT. (4.14)

The decision threshold was set at PPR = 0.5; i. e., the segment was
classified as PR for PPR > 0.5 or as nPR for PPR ≤ 0.5.†

Before the β regression coefficients were determined two sources
of bias were eliminated. First, longer registers have more 3.2 s seg-
ments and contribute with more feature vectors to the optimiza-
tion process. Second, the number of non-shockable registers is
much larger than the number of shockable registers. These sources
of bias were eliminated by assigning the following weights to a
register with k feature vectors:

ωPR, k =
1

NNS · k
and ωnPR, k =

5
NS · k

, (4.15)

where NNS and NS are the number of non-shockable (excluding
asystole) and shockable registers of the development database.

In this manner all registers contribute with the same total weight
within their class. The total weights are 1 for the non-shockable
class and 5 for shockable class; i. e., the penalty for missing shock-
able registers is five times higher than for non-shockable registers.
A non-shockable segment classified as nPR at this stage can be
recovered later but a shockable segment classified as PR is mis-
classified by the AED algorithm. The weighted instances from
the development database were used to determine the regression
coefficients in the Waikato Environment for Knowledge Analysis
(WEKA) software.54 The detection threshold depicted in Figure 4.4
is the ThQRS = −β0 regression coefficient.

The histogram for YPR = βxT is shown in Figure 4.11d, and the
classification results for the development database are the ones
shown in Table 4.5. The proportion of misclassified non-shockable
segments excluding asystole (31/2515) is larger than the proportion
of misclassified shockable segments (3/912) because of the strategy
adopted for the weights of shockable and non-shockable registers.

Figure 4.12 shows some of the segments misclassified by the
QRS algorithm. As shown by the two examples of misclassified
shockable segments, the algorithm is sensitive to the presence
of intervals where the ECG varies rapidly, spiky noise can be
interpreted as QRS complexes and the segment is diagnosed as

† This is equivalent to PR for βxT > 0 and nPR for βxT ≤ 0.
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PR. Non-shockable rhythms with very wide QRS complexes might
also be misclassified as nPR because both the baseline content and
the differences in slope are small. Furthermore, misclassifications
are more probable as the heart rate increases because although the
bandwidth increases, both the baseline content and bCP decrease.
Pediatric SVT frequently presents very high heart rates. These
rhythms, which are very regular, will be discriminated from VT
by the SVT/VT algorithm described in Section 4.5.

Rhythm type Recordsa No Shock Undecided

ASY PR nPR

Shockable

Coarse VF 198 (565) 0 2 563

Rapid VT 119 (347) 0 1 346

Non-shockable

NSR 374 (1333) 0 1322 11

SVT 163 (586) 0 574 12

AF, SB, blocks,
idioventricular, PVC

160 (596) 23 565 8

Asystole 256 (867) 862 4 1

a The number of 3.2 s segments is indicated in parenthesis.

Table 4.5: Partial classification of the QRS algorithm for the development
database. After the detection of asystole, at this stage a segment can only
be identified as PR, otherwise the segment needs to be further processed
for a final classification.
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0 1.6 3.2 4.8 6.4 8 9.6

-2.00

0

2.00

(a): VF. The center segment contains spikes in both 1.6 s subintervals and the
segment is classified as PR. {nPR, PR, nPR}.

0 1.6 3.2 4.8 6.4 8 9.6

-1.50

0

0.50

(b): VT. The first segment contains QRS like activity that gradually disappears
in the second and third segments. {PR, nPR, nPR}.

0 1.6 3.2 4.8 6.4 8 9.6

-1.50

0

1.50

(c): NSR. NSR with wide QRS complexes and very low baseline content, all
segments are classified as nPR. {nPR, nPR, nPR}.

0 1.6 3.2 4.8 6.4 8 9.6

-0.50

0

0.50

(d): SVT. The QRS complexes are wide and the baseline content is low because
of the high rate (180 bpm). {nPR, nPR, nPR}.

0 1.6 3.2 4.8 6.4 8 9.6

-2.50

0

2.50

(e): PVC. The center segment contains no clear QRS complex,the segment is
disorganized and is classified as nPR. {PR, nPR, PR}.

Figure 4.12: Examples of registers and segments misclassified by the QRS algorithm. The
figures show x̂ecg(n) in mV as a function of t = nTs in s for a BPF: 0.5–30 Hz.
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4.4 Regularity algorithm
The objective of the Regularity algorithm is to discriminate between
regular and irregular ECG segments within fast ventricular ar-
rhythmias; i. e., to discriminate VT from VF. Although at first
glance both segment types correspond to shockable rhythms, VT
should only be shocked when its rate is above a threshold.† VT
must therefore be discriminated from VF and its rate must be
calculated before deciding whether or not VT is shockable.

The differences in the ECG waveform between VF and VT
are shown in Figure 4.13. Monomorphic VT presents an almost
periodic waveform with a very regular ventricular activation se-
quence.‡ On the contrary, VF is a disorganized arrhythmia and
the electrical ventricular activity varies both in frequency and
waveform. The autocorrelation function (ACF) of the ECG has
been applied to discriminate VT from VF57,17,27 precisely because
the ACF stresses the underlying organization, the periodicities, of
the signal.

0 1.6 3.2 4.8 6.4 8 9.6

-2.00

-1.00

0

1.00

(a): Monomorphic VT. Very regular rhythm both in frequency and amplitude.

0 1.6 3.2 4.8 6.4 8 9.6

-0.80

0

0.80

(b): Polymorphic VT. Intermediate regularity.

0 1.6 3.2 4.8 6.4 8 9.6

-1.20

0

1.20

(c): VF. Very irregular rhythm in frequency and amplitude.

Figure 4.13: Examples of shockable rhythms ranging from the very regular monomorphic
VT to the most irregular VF.

† Although the rate threshold is decided by the AED manufacturer, in an OHCA
episode with a pulseless unresponsive patient in VT a shock is a sensible treatment.

‡ Polymorphic VT occurs when the ventricular activation sequence varies, conse-
quently the surface ECG is less regular.
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Figure 4.14 shows the block diagram of the Regularity algorithm.
The regularity of the ECG segment is assessed through the analysis
of the positive peaks of the ACF. For this purpose three new
features have been derived, each related to a stronger regularity
condition. These features are sequentially tested in a heuristic
decision tree to determine when a segment is regular. If any of
the regularity conditions fails the ECG segment is classified as VF.
When all the conditions are met the segment is regular, although it
is not yet classified as VT. Regular segments are further processed
by the SVT/VT algorithm described in Section 4.5 to recover part
of the supraventricular segments misclassified as nPR by the
QRS algorithm. However, only the segments from the VF and VT
registers in the development database were used to optimize the
performance of the Regularity algorithm.
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nVF

Further Processing

Figure 4.14: Block diagram of the Regularity algorithm. The regularity of
the ECG segment is determined by analyzing three features derived from
the analysis of the peaks of the autocorrelation function, the number of
peaks (Np) and their variability in time (CVT) and amplitude (RO).

4.4.1 Signal analysis using the ACF

Our Regularity algorithm based on the ACF was inspired by the
work of Chen et al. 27 We have, however, introduced a new set
of parameters derived from the analysis of the positive peaks of
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the ACF to quantify the differences in regularity between VT and
VF more accurately. The analysis starts by computing the biased
estimate of the ACF of the preprocessed segment,

Rx̂x̂(n) =
1
N

N−n−1

∑
m=0

x̂ecg(m + n)x̂ecg(m), (4.16)

which measures the similarity of x̂ecg(m) to its lagged copy as a
function of the lag. For a periodic signal the ACF has positive
peaks separated by the period, because the similarity is maximum
when the signal is lagged by an integer number of periods.

First we compute the ACF of the 3.2 s segment for a 0 - 2.7 s time
interval. Then, we determine the positive peaks† of the ACF, to
analyze the underlying periodicities of the ECG segment. The lag
in seconds of the peaks located at lags nk are:

tk = Ts · nk k = 0, .., Np − 1, (4.17)

where Np
‡ is the number of peaks of the ACF.

Np is the first discrimination feature of the Regularity algorithm.
A fast regular rhythm such as VT contains a large number of peaks,
for a ventricular frequency of 90 bpm there are at least four periods
(Np = 5) in a 2.7 s interval. Consequently when the number of
peaks is small the segment is classified as VF, Figure 4.15a shows
an example.

Regularity of the periodicity: peak location

When the number of peaks is large, it is possible to study the
regularity of the intervals between consecutive peaks, which are
calculated as:

Tk = tk+1 − tk k = 0, .., Np − 2. (4.18)

For a purely periodic signal all Tk are equal to the period. An
irregular signal with no dominant frequency components has
irregularity distributed peaks. To measure the dispersion of the
periodicities of the signal we calculate a normalized measure of
the dispersion, the coefficient of variation of the Tk,

CVT =
σ(Tk)

µ(Tk)
, (4.19)

† Rx̂x̂(n) must be above a positive threshold to detect a peak.
‡ Np ≥ 1 because there is always a peak at the origin



i
i

i
i

i
i

i
i

86 SHOCK ADVICE ALGORITHM
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(a): VF. Low number of peaks: Np ≤ ThN .
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(b): VF. Uneven spacing between peaks: CVT > ThT
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(c): VF. Equispaced peaks of nondecreasing amplitudes: RO < ThA
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(d): nVF. Regular segment with equispaced peaks of decreasing amplitudes.

Figure 4.15: Possible cases for the analysis of the regularity of the positive peaks of the
autocorrelation function.
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where µ and σ stand for the mean value and the standard devi-
ation respectively. Segments with an irregular peak separation
have large values of CVT and are classified as VF, Figure 4.15b
shows an example. Conversely, segments with low values of CVT
have a strong underlying periodicity which corresponds to the
dominant ventricular rate, which can be estimated as the inverse
of the mean value of the period (the dispersion is low):

fc(bpm) =
60

µ(Tk)
. (4.20)

Waveform regularity: amplitude of the peaks

Finally, we discriminate the subclass of irregular segments that
show a strong temporal regularity caused by a dominant underly-
ing frequency component. One such case is shown in Figure 4.15c,
where the dominant frequency component results in equispaced
peaks of the autocorrelation function although the waveform
varies from cycle to cycle. In this case we continue by analyzing
the amplitudes of the detected peaks:

Ak = Rx̂x̂(nk) k = 0, .., Np − 1. (4.21)

For a periodic signal these amplitudes decrease† according to the
following expression:27

Ak =
N − nk

N
k = 0, .., Np − 1. (4.22)

Rather than evaluating how well the amplitudes of the peaks
fit Equation 4.22 we test how well the peak ordering follows the
expected decreasing order, as suggested by Chen et al. 27 Let Aok
denote the Ak amplitudes ordered by decreasing value, then

Aok = Rx̂x̂(nok) k = 0, .., Np − 1, (4.23)

nok are the lags of the positive peaks ordered by decreasing am-
plitudes. The sequence of time lags tok = Ts · nok as a function of
the index number k = 0, .., Np − 1 is linear for a periodic signal,
and the slope of the linear fit is the period.‡ Conversely, if the
cycle duration is constant because of a dominant underlying fre-
quency component, but the waveform varies from cycle to cycle,
the amplitudes of the peaks are not necessarily monotonically
decreasing, as shown in Figure 4.15c.

† The amplitude decreases as the lag increases for the biased estimate of the ACF,
see Equation 4.16.

‡ The interval between consecutive peaks is the period and the amplitude of the
peaks decreases according to Equation 4.22.
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The last discrimination parameter (RO) is the square of the
correlation coefficient for the least square linear fit of the inde-
pendent variable yk = tok to the independent variable xk = k. Its
value is 1 when the relation is linear and 0 when the variables are
independent,

RO = r2 =

[
∑k(xk − µx)(yk − µy)

]2
∑k(xk − µx)2 ∑k(yk − µy)2 . (4.24)

Figure 4.16 shows the process for the examples of Figure 4.15c
and Figure 4.15d. Segments that do not present peaks with mono-
tonically decreasing amplitudes have small values of RO and are
classified as VF, Figure 4.16a shows an example. A segment with
a large value of RO, like the one shown in Figure 4.16b, meets the
three regularity conditions of the algorithm, it is assigned a nVF
label and it is further processed by the SVT/VT algorithm.

Figure 4.17 shows a graphical summary of the analysis pro-
cess in the autocorrelation domain. Consecutive segments of the
rhythm are analyzed to evaluate the regularity of the periodicity
(interval between consecutive peaks of the ACF) and waveform
(linear fit).
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0
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(a): VF. Peak amplitudes do not monotonically decrease RO < ThA.

Rx̂x̂(n)
0

1
2 3 4 5 6

7 8

0 1.6 3.2

-1.00

0

1.00
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0 1 2 3 4 5 6 7 8 9 10
0

0.80

1.60

2.40

(b): nVF. Monotonically decreasing peak amplitudes RO ≥ ThA.

Figure 4.16: Least squares fit of tok as a function of k for the segments shown in Figure 4.15c
and Figure 4.15d. Both cases have a dominant underlying frequency component (CVT ≤ ThT),
the ordering of the amplitudes of the peaks reveals the more irregular nature of VF.
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0 1.6 3.2 4.8 6.4 8 9.6

-0.20

0

0.20

0 1.6 3.2

-1.00

0

1.00

0 5 10 15
0

0.80

1.60

2.40

Rxx(n), CVT = 0.51 Linear Fit, RO = 0.32

(a): VF. The interval between consecutive peaks is irregular, CVT = 0.51 is high.
The peak amplitude ordering is not linear, RO = 0.32 is low.
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-1.00
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0 1.6 3.2

-1.00
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1.00

0 5 10 15
0

0.80

1.60

2.40

Rxx(n), CVT = 0.01 Linear Fit, RO = 1.00

(b): VT. The interval between consecutive peaks is regular, CVT = 0.01 is low.
The peak amplitude ordering is linear, RO = 1.00 is high.

Figure 4.17: Analysis in the autocorrelation domain. The ACF is computed for a 0 - 2.7 s time
interval, and the regularity of the peaks is determined both in time (CVT) and waveform
(RO).

4.4.2 Classification results

The classification results for the development database are shown
in Table 4.6. The proportion of misclassified VF and VT segments
is large, 17.1% of the VF segments are classified as nVF (96/563)
and 11.3% of the VT segments are classified as VF (39/346). This
striking large proportion of misclassification is caused by two
reasons: the Regularity algorithm is designed to identify clearly
irregular segments as VF, and the differences in the approach
to rhythm classification between the cardiologists and the AED
algorithm.

Long intervals of regular ventricular activity are not rare during
VF, these intervals might be sufficiently regular both in periodicity
and waveform to produce a nVF diagnosis. The accurate classifi-
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Rhythm type Recordsa No Shock Shock Undecided

ASY PR VF nVF

Shockable

Coarse VF 198 (565) 0 2 467 96

Rapid VT 119 (347) 0 1 39 307

Non-shockable

NSR 374 (1333) 0 1322 0 11

SVT 163 (586) 0 574 0 12

AF, SB, blocks,
idioventricular, PVC

160 (596) 23 565 4 4

Asystole 256 (867) 862 4 1 0

a The number of 3.2 s segments is indicated in parenthesis.

Table 4.6: Partial classification of the Regularity algorithm for the development database.
At this stage the algorithm analyzes the segments classified as nPR, and classifies as VF
those segments that present irregular ventricular activity in either periodicity or waveform.
Regular segments are assigned a nVF label and are further processed.

cation of VT segments is also difficult because VT is not always
regular in waveform, particularly polymorphic VT. In both cases
the shock/noshock decision of the AED algorithm is not jeopar-
dized, fast regular intervals of ventricular activity during VF will
later be classified as shockable rapid VT and polymorphic VT is
already assigned a shockable VF diagnosis. Figure 4.18 shows sev-
eral examples of borderline cases for the Regularity algorithm that
illustrate the difficulties for an accurate VT/VF discrimination
when only a 3.2 s segment of a single surface lead is observed.

The large number of misclassified segments is thus explained
by the differences in the approach to rhythm classification by the
cardiologists and the AED algorithm. The cardiologists observe
the full length of the register to classify it as VT or VF, as de-
scribed in Section 3.1.2. Small intervals of regularity during VF
or irregularity during polymorphic VT do not alter the diagnosis
for the full register. The AED algorithm, on the contrary, classifies
each 3.2 s segment of the register and is therefore much affected
by these variations in regularity. This difference is most evident
during lethal ventricular arrhythmias because the dynamics of the
arrhythmia are more variable.
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0 1.6 3.2 4.8 6.4 8 9.6
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(a): VF. A monomorphic VT that converts to VF, the initial segment is classified
as nVF. {nVF, VF, VF}.
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-0.80
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(b): VF. VF with a regular middle segment both in frequency and waveform.
{VF, nVF, VF}.

0 1.6 3.2 4.8 6.4 8 9.6

-0.80
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(c): VT. Polymorphic VT with regular frequency but irregular waveform in
segments 1 and 3. {VF, nVF, VF}.

0 1.6 3.2 4.8 6.4 8 9.6

-1.00
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(d): VT. The initial polymorphic segment is identified as VF, the last two as
regular. {VF, nVF, nVF}.

0 1.6 3.2 4.8 6.4 8 9.6

-1.00

0

1.00

(e): VT. The initial irregular segment is identified as VF, the last two as regular.
{VF, nVF, nVF}.

Figure 4.18: Examples of borderline cases for the Regularity algorithm. Although all the
examples are shockable (VF or VT), the regularity of the rhythm might change over time,
producing differences in the classification of its segments. Fast regular segments will be
classified as rVT (shockable) by the SVT/VT algorithm. The figures show x̂ecg(n) in mV as a
function of t = nTs in s for a BPF: 0.5–30 Hz.
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4.5 SVT/VT algorithm
The objective of the SVT/VT algorithm is to identify those supraven-
tricular segments for which no QRS complexes were found. Most
of these segments are regular, as shown in Table 4.6, and must
therefore be discriminated from VT. The highest proportion occurs
for SVT, but it is only a 2% (12/586). However, fast pediatric SVT
has been shown produce many errors in the shock/noshock diag-
nosis of AED algorithms,15 which justifies the protective addition
of an algorithm to discriminate SVT from VT. In fact, we have
already proposed using a SVT/VT discrimination algorithm to
adapt adult AED algorithms for pediatric use,66,68 the algorithm
described in this section is based on that work. Naturally, an adult
algorithm adapted for adult and pediatric use is less robust than
our shock advice algorithm which was designed for both patient
groups together.

Figure 4.19 shows the block diagram of the SVT/VT algorithm.
The algorithm analyzes the ECG segment in the frequency do-
main to compute two features that parametrize its spectral power
distribution. These features are then optimally combined using
a logistic regression classifier to discriminate SVT from VT. As
shown in Figure 4.1, the SVT/VT algorithm is the final stage of

SVT/VT algorithm

Heart rate

analysis

xecg(n)

Butterworth IIR
Order n = 10

BPF

0.5 - 30 Hz

x̂ecg(n)

Frequency

domain

Px̂x̂ ( f )

{P fc
, P

h f
}

β1Pfc
+ β2Ph f

> ThSVT

yes

no
SVT

fc > ThR

yes

no
sVT

rVT

Figure 4.19: Block diagram of the SVT/VT algorithm followed by the
analysis of the heart rate.
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the shock advice algorithm. All the segments processed by the
algorithm are therefore assigned a diagnosis. Segments classified
as SVT are non-shockable. The shock/noshock decision for VT
segments depends on the ventricular rate given by Equation 4.20.
When the ventricular rate is above ThR, the threshold for fast VT,
the segment is classified as shockable rapid VT (rVT), otherwise
the segment is classified as slow non-shockable VT (sVT).

To optimize the performance of the algorithm, we first selected
the segments from the VT and SVT registers in the development
database. Then we only considered those identified as regular
by the Regularity algorithm, 286 SVT and 307 VT segments. This
excludes some VT but includes many SVT segments that would
be correctly classified as PR by the QRS algorithm. By adding these
SVT segments we obtain a more robust classifier, otherwise, as
shown in Table 4.6, we would only consider 12 SVT segments.

4.5.1 Discrimination features in the frequency domain

Monomorphic VT presents regular ventricular beats that fre-
quently appear as a sinus-like waveform; its power spectral dis-
tribution is therefore concentrated around the frequency of the
ventricular rate. SVT is also very regular, however its waveform is
a more complex combination of a QRS complex, P and T waves,
and its power is distributed among the harmonics of the heart rate.
Figure 4.20 shows the power spectral distributions for VT and SVT
segments, and the graphical description of the two parameters
used to quantify the spectral differences between SVT and VT.

The first parameter, Pfc , measures the relative power content
around the cardiac frequency, fc. The cardiac frequency in bpm is
given by Equation 4.20 because the SVT/VT algorithm is applied
to temporally regular segments, fc (Hz) is then

fc (Hz) =
1

µ(Tk)
. (4.25)

Although we intuitively expect that fc will coincide with the DF,
this may not be the case when the energy is distributed in many
harmonics as shown for the SVT segment of Figure 4.20c.

The relative power content around fc is computed for a 2∆ f
bandwidth symmetrically distributed around fc,

Pfc =
fc+∆ f

∑
f= fc−∆ f

Px̂x̂( f ), (4.26)

where Px̂x̂( f ) is given by Equation 4.6.
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x̂ecg(n)

.
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-0.60
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x̂x̂
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0 fc f
h f

20 30
0
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(a): VT. Little harmonic content and little power in the high frequencies;
Pfc = 0.903 and Ph f = 0.007.
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h f

20 30
0
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(b): SVT. Borderline SVT case, it is detected as nPR by the QRS algorithm
because the rate is fast and the QRS complexes are wide; Pfc = 0.322 and
Ph f = 0.052. .

x̂ecg(n)

.
0 1.6 3.2

-1.00

0

1.50

P
x̂x̂

( f )2∆ f

0 fc f
h f

20 30
0

0.15

0.30

(c): SVT. Large harmonic content and more power in the high frequencies;
Pfc = 0.107 and Ph f = 0.532.

Figure 4.20: Differences in the power spectral density between SVT and VT segments.

The second parameter measures the relative power content of
the higher harmonics. For a cutoff frequency fh f that separates
the high and low frequencies, the relative power content of the
higher harmonics is:

Ph f =
30

∑
f= fh f

Px̂x̂( f ). (4.27)

Figure 4.20a shows how VT segments concentrate most of the
power around fc, consequently Pfc is large and Ph f is small. Con-
versely, Figure 4.20c shows how SVT segments distribute their
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power among several harmonics of fc, Pfc is smaller and Ph f larger.
However, discriminating SVT from VT using a single lead becomes
more difficult for fast SVT with wide QRS complexes, as shown
in Figure 4.20b.

4.5.2 Decision algorithm

The spectral parameters {Pfc , Ph f } were computed for all regular
SVT and VT segments, the distribution of their values are shown
in Figure 4.21. Combining the parameters increases the discrimina-
tive power, as demonstrated in Table 4.7a. We therefore repeated
the procedure described in Section 4.3.4 to design the following
logistic regression classifier:

PSVT =
1

1 + e−βxT , (4.28)

βxT = YSVT = βo + β1Pfc + β2Ph f . (4.29)

The decision threshold was set at PSVT = 0.5; i. e., the segment
was classified as SVT for PSVT > 0.5 or as VT for PSVT ≤ 0.5.†

Again, bias due to the differences in numbers of registers and
number of segments per register were avoided by assigning the
following weights to a register with k segments:

ωSVT, k =
1

NSVT · k
ωVT, k =

10
NVT · k

(4.30)

where NSVT and NVT are the number of SVT and VT registers that
have at least a regular segment; i. e., that participate in the design

FEATURES DB(SVT, VT)

{Pfc} 2.383

{Ph f } 1.826

{Pfc , Ph f } 2.737

(a): Feature selection.

Segments
SVT/VT algorithm

SVT VT

SVT 277 9

VT 1 306

(b): Classification results.

Table 4.7: Feature selection and classification results for the SVT/VT
algorithm. The number of segments is smaller than the total number of
SVT and VT segments in the development database because only regular
SVT and VT segments were used to optimize the performance of the
algorithm.

† this equivalent to SVT for YSVT > 0 and VT for YSVT ≤ 0.
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of the algorithm. The total weight assigned to the VT segments
is 10 times larger than that of the SVT segments because the
proportion of SVT segments that the SVT/VT algorithm classifies
is low (see Table 4.6). The detection threshold for the algorithm is
again ThSVT = −β0.

Figure 4.21a shows the histogram for YSVT . The classification
results for the development database are shown in Table 4.7b.
The number of segments reported in Table 4.7b is smaller than
the total number of SVT and VT segments in the development
database because the performance of the algorithm was optimized
for the subset of regular SVT and VT segments. The proportion of
misclassified SVT segments (9/286) is larger than the proportion of
misclassified VT segments (1/307) because of the strategy adopted
for the weights of the SVT and VT registers. However, the SVT/VT
algorithm will only classify a small fraction of the SVT segments
shown in Table 4.7b as most SVT segments are correctly identified
by the QRS algorithm.

-20 -10 0 10 20 30
0

0.05

0.10

0.15

(a): YSVT , logistic regression

0 0.25 0.50 0.75 1
0

0.05

0.10

0.15

(b): Pfc parameter.
0.01 0.10 1.00

0

0.10

0.20

(c): Ph f parameter.

Figure 4.21: Normalized histograms of the features that intervene in the SVT/VT algorithm
for the regular VT (�) and SVT (�) segments of the development database. Note that the x
axis for the Ph f parameter is in logarithmic scale.
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There are borderline cases and incorrectly classified SVT and
VT segments, like the ones shown in Figure 4.22. As described
in Section 3.1.2, the accurate discrimination between SVT and
VT based on a single lead is very troublesome, particularly for
high rate pediatric SVT which frequently presents wide QRS
complexes.

The final classification results for the development database
are show in Table 4.8. Adding the SVT/VT algorithm and check-
ing the ventricular rate for VT segments completes the shock
advice algorithm. All segments are classified, both in one of the
segment types described in Table 4.1 and as either shockable or
non-shockable. The shock/noshock decision for the VT segments
depends on the heart rate given by Equation 4.20, consequently
the 13 non-shockable segments classified as sVT by the algorithm
have a correct no shock diagnosis although they are wrongly iden-
tified as VT. A thorough discussion of the classification results
for the test database is done in Section 4.6, however the results
shown in Table 4.8 for the development database are well above
AHA criteria. The shock advice algorithm incorrectly classifies
only 8/912 = 0.9% shockable, 4/2515 = 0.2% non-shockable and
1/867 = 0.1% asystole segments.

Rhythm type Recordsa No Shock Shock

ASY PR SVT sVT rVT VF

Shockable

Coarse VF 198 (565) 0 2 1 3 92 467

Rapid VT 119 (347) 0 1 0 1 306 39

Non-shockable

NSR 374 (1333) 0 1322 6 5 0 0

SVT 163 (586) 0 574 8 4 0 0

AF, SB, blocks,
idioventricular, PVC

160 (596) 23 565 0 4 0 4

Asystole 256 (867) 862 4 0 0 0 1

a The number of 3.2 s segments is indicated in parenthesis.

Table 4.8: Final classification results of the segments in the development database. The
highlighted segments are those classified by the SVT/VT algorithm, the last block of the shock
advice algorithm.
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0 1.6 3.2 4.8 6.4 8 9.6

-1.50

0

0.50

(a): VT. The first segment is misclassified as SVT, the first segment contains
high frequency components that gradually dissapear. This segment however is
classified as PR (see Figure 4.12b). YSVT = {0.65, −0.50, −1.44}.

0 1.6 3.2 4.8 6.4 8 9.6

-1.20

0

0.80

(b): SVT. All segments are misclassified as VT because most of the signal
power is in the large sinusoidal T waves; i. e., the harmonic content is low.
YSVT = {−1.92, −1.95}.

0 1.6 3.2 4.8 6.4 8 9.6

-1.50

0

0.80

(c): SVT. All segments are misclassified as VT, again most of the signal power
is in the large sinusoidal T waves. YSVT = {−0.39, −0.57, −0.54}.

0 1.6 3.2 4.8 6.4 8 9.6

-1.00

0

0.60

(d): SVT. Large T waves, although their power content gradually decreases. All
segments are correctly identified. YSVT = {0.13, 0.81, 1.36}.

0 1.6 3.2 4.8 6.4 8 9.6

-0.30

0

0.30

(e): SVT. Wide QRS complex tachycardia, most of the power is in the low
frequencies. All segments are correctly identified. YSVT = {0.15, 0.89}.

Figure 4.22: Examples of misclassified (a-c) and borderline (d-e) segments for the SVT/VT
algorithm. The figures show x̂ecg(n) in mV as a function of t = nTs in s for a BPF: 0.5–30 Hz.
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4.6 Classification results
This section presents and discusses the classification results for
the AED shock advice algorithm on the development and test
databases described in Section 3.1.5. It starts analyzing the clas-
sification of the segments in the different categories assigned
by the algorithm. Then, the shock/noshock classification results
are presented for the segments and the registers, and compared
with the AHA specifications compiled in Table 1.3. Finally, the
shock/noshock decision results are broken down into pediatric
and adult patients. The section concludes with a graphical analysis
of some examples of misclassified segments and registers.

4.6.1 Segment type classification

The AED shock advice algorithm classifies each 3.2 s segment
in one of the categories described in Table 4.1. The classification
follows the steps shown in Figure 4.1, the flow diagram of the al-
gorithm. We can trace the classification process for a segment once
we know the category the algorithm assigns to that segment. These
data are important to identify the strengths and weaknesses of
the shock advice algorithm and its sub-algorithms. The categories
assigned by the algorithm to the segments of the development
database are compiled in Table 4.9a† and to the segments of the
test databases in Table 4.9b.

The results for the test database show that most of the errors
for the non-shockable segments occur for SVT classified as rVT,
and for other non-shockable rhythms (particularly PVC and IV
rhythms) classified as VF. The QRS algorithm fails to identify these
segments as PR when they present wide QRS complexes, fur-
thermore the misclassifications are more frequent for rhythms
with higher heart rates like SVT. These wrongly classified seg-
ments are suspected to be ventricular, and are not recovered by
the SVT/VT algorithm. Additionally, there are 21 non-shockable
segments classified as non-shockable VT (sVT).

Most errors for the shockable segments are caused by narrow
complex VT identified as PR by the QRS algorithm and to border-
line cases of the SVT/VT algorithm.

† In the preceding sections we have unfolded the results for the development
database in steps as each sub-algorithm was added to the shock advice algorithm.
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Rhythm type Recordsa No Shock Shock

ASY PR SVT sVT rVT VF

Shockable

Coarse VF 198 (565) 0 2 1 3 92 467

Rapid VT 119 (347) 0 1 0 1 306 39

Non-shockable

NSR 374 (1333) 0 1322 6 5 0 0

SVT 163 (586) 0 574 8 4 0 0

AF, SB, blocks,
idioventricular, PVC

160 (596) 23 565 0 4 0 4

Asystole 256 (867) 862 4 0 0 0 1

a The number of 3.2 s segments is indicated in parenthesis.

(a): Classification of the segments in the development database.

Rhythm type Recordsa No Shock Shock

ASY PR SVT sVT rVT VF

Shockable

Coarse VF 234 (646) 0 1 2 1 95 547

Rapid VT 147 (445) 0 7 2 0 389 47

Non-shockable

NSR 458 (1620) 0 1613 2 3 0 2

SVT 248 (843) 0 794 27 14 7 1

AF, SB, blocks,
idioventricular, PVC

169 (635) 24 593 5 3 0 10

Asystole 256 (860) 856 3 0 1 0 0

a The number of 3.2 s segments is indicated in parenthesis.

(b): Classification of the segments in the test database.

Table 4.9: Detailed classification of the ECG segments of the development and test databases.
The definition of the types of classification is given in Table 4.1, and the flow diagram of the
algorithm with the possible classification outputs is shown in Figure 4.1.
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4.6.2 Shock/Noshock classification

Although the internal classification process is useful to asses and
understand how the algorithm works, the only relevant diagnosis
of an AED shock advice algorithm is the shock/noshock decision.
The algorithm classifies each segment in a category which, as
stated in Table 4.1, is linked to a shock/noshock diagnosis. The
registers are composed of several 3.2 s segments. Registers were
assigned a shock/noshock diagnosis using a majority criterion on
the individual shock/noshock classification of three consecutive
ECG segments, when available. Shorter registers with two seg-
ments were classified as non-shockable if either of the segments
was classified as non-shockable.

The performance of a shock advice algorithm is assessed in
terms of the contingency table and the performance metrics de-
scribed in Table 1.2. Each metric measures an important aspect of
the algorithm performance. The AHA statement on AED shock
advice algorithms, however, only establishes performance goals
for two of the metrics defined in Table 1.2: the sensitivity (Se), the
proportion of correctly identified shockable events; and the speci-
ficity (Sp), the proportion of correctly identified non-shockable
events.80

The sensitivity and specificity results for the development and
test databases are compiled in Table 4.10 for the segments and in
Table 4.11 for the registers. The 90% confidence intervals (CI) are
computed using the adjusted Wald interval for binomial propor-
tions.6 The algorithm exceeds the AHA performance goals for all
rhythm categories in the test database, in fact the 90% low CI is
above the AHA performance goal for all rhythm categories, both
for the segments and the registers.

The complete set of performance metrics for the registers in the
test and development databases are given in Table 4.12. The met-
rics include: the sensitivity and specificity for all shockable and
non-shockable registers; the accuracy (Acc), the proportion of cor-
rectly identified registers; the positive predictive value (PPV), the
proportion of correct shock diagnoses; and the negative predictive
value (NPV), the proportion of correct no shock diagnoses.
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Rhythm type
Segments AHA

goals 80

S NS Se/Sp (%)a

Shockable

Coarse VF 559 6 98.9 ( 97.9 - 99.5 ) > 90 %

Rapid VT 345 2 99.4 ( 98.2 - 99.9 ) > 75 %

Non-shockable

NSR 0 1333 100 ( 99.8 - 100 ) > 99 %

SVT 0 586 100 ( 99.5 - 100 ) > 95 %

AF, SB, blocks,
idioventricular, PVC

4 592 99.3 ( 98.5 - 99.7 ) > 95 %

Asystole 1 866 99.9 ( 99.4 - 100 ) > 95 %

a 90% CI indicated in parenthesis.

(a): Sensitivity and specificity for the segments of the devel-
opment database.

Rhythm type
Segments AHA

goals 80

S NS Se/Sp (%)a

Shockable

Coarse VF 642 4 99.4 ( 98.6 - 99.8 ) > 90 %

Rapid VT 436 9 98.0 ( 96.5 - 98.9 ) > 75 %

Non-shockable

NSR 2 1618 99.9 ( 99.6 - 100 ) > 99 %

SVT 8 835 99.1 ( 98.3 - 99.5 ) > 95 %

AF, SB, blocks,
idioventricular, PVC

10 625 98.4 ( 97.4 - 99.1 ) > 95 %

Asystole 0 860 100 ( 99.6 - 100 ) > 95 %

a 90% CI indicated in parenthesis.

(b): Sensitivity and specificity for the segments of the test
database.

Table 4.10: Sensitivity and specificity of the shock advice algorithm for
the 3.2 s segments of the development and test databases. All the low
90% CI exceed the AHA performance goals for all rhythm categories.
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Rhythm type
Records AHA

goals 80

S NS Se/Sp (%)a

Shockable

Coarse VF 197 1 99.5 ( 97.6 - 100 ) > 90 %

Rapid VT 118 1 99.2 ( 96.0 - 100 ) > 75 %

Non-shockable

NSR 0 374 100 ( 99.1 - 100 ) > 99 %

SVT 0 163 100 ( 98.0 - 100 ) > 95 %

AF, SB, blocks,
idioventricular, PVC

0 160 100 ( 98.0 - 100 ) > 95 %

Asystole 0 256 100 ( 98.7 - 100 ) > 95 %

a 90% CI indicated in parenthesis.

(a): Sensitivity and specificity for the registers in the develop-
ment database.

Rhythm type
Records AHA

goals 80

S NS Se/Sp (%)a

Shockable

Coarse VF 233 1 99.6 ( 97.9 - 100 ) > 90 %

Rapid VT 146 1 99.3 ( 96.8 - 100 ) > 75 %

Non-shockable

NSR 0 458 100 ( 99.3 - 100 ) > 99 %

SVT 2 246 99.2 ( 97.5 - 100 ) > 95 %

AF, SB, blocks,
idioventricular, PVC

1 168 99.4 ( 97.2 - 100 ) > 95 %

Asystole 0 256 100 ( 98.7 - 100 ) > 95 %

a 90% CI indicated in parenthesis.

(b): Sensitivity and specificity for the registers in the test
database.

Table 4.11: Sensitivity and specificity of the shock advice algorithm for
the registers in the development and test databases. All the low 90% CI
exceed the AHA performance goals for all rhythm categories.



i
i

i
i

i
i

i
i

104 SHOCK ADVICE ALGORITHM

Metric
Databasea

Development Test Total

Se (%) 99.4 ( 98.8 - 99.4 ) 99.5 ( 98.8 - 99.8 ) 99.7 ( 99.3 - 99.9 )

Sp (%) 100 ( 99.8 - 100 ) 99.7 ( 99.5 - 99.8 ) 99.9 ( 99.7 - 99.9 )

Acc (%) 99.8 ( 99.6 - 99.8 ) 99.7 ( 99.3 - 99.8 ) 99.6 ( 99.2 - 99.7 )

PPV (%) 100 ( 99.4 - 100 ) 99.2 ( 98.5 - 99.5 ) 99.9 ( 99.8 - 100 )

NPV (%) 99.8 ( 99.6 - 99.8 ) 99.8 ( 99.6 - 99.9 ) 99.8 ( 99.6 - 99.9 )

a 90% CI indicated in parenthesis.

Table 4.12: Additional performance metrics for the registers in the test
and the development databases. The results are derived from the data in
Table 4.11a and Table 4.11b. For a definition of the metrics see Table 1.2.

4.6.3 Results for the adult and pediatric patients

One of the design principles of the AED shock advice algorithm
is that it is universal; i. e., valid for adult and pediatric patients. To
this end, we propose a new design strategy that combines adult
and pediatric registers for the development and test phases of the
algorithm.

The classification results for the adult and pediatric cases are
shown in Table 4.13 for the segments and Table 4.14 for the reg-
isters in the test database. All the sensitivities and specificities
are above the AHA performance goals for the adult and pediatric
patients. However, when the results for the adult and pediatric
patients are separately analyzed, the sample sizes are smaller and
consequently some of the the low 90% CI are below the AHA
performance goals. For instance, there are 145 adult NSR registers
in the test database. Although they are all correctly identified as
non-shockable, the low 90% CI for the specificity is under 99%,
the AHA performance goal for NSR specificity.

Finally, Table 4.15 shows the additional performance metrics
for the pediatric and adult registers in the test database.
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Rhythm type
Segments AHA

goals 80

S NS Se/Sp (%)a

Coarse VF 522 3 99.4 ( 98.5 - 99.8 ) > 90 %

Rapid VT 294 1 99.7 ( 98.4 - 100 ) > 75 %

Non-shockable

NSR 2 566 99.6 ( 98.9 - 99.9 ) > 99 %

SVT 0 185 100 ( 98.3 - 100 ) > 95 %

AF, SB, blocks,
idioventricular, PVC

10 443 97.8 ( 96.4 - 98.7 ) > 95 %

Asystole 0 860 99.9 ( 99.7 - 100 ) > 95 %

a 90% CI indicated in parenthesis.

(a): Sensitivity and specificity for the segments of the adult
database.

Rhythm type
Segments AHA

goals 80

S NS Se/Sp (%)a

Shockable

Coarse VF 120 1 99.2 ( 96.1 - 100 ) > 90 %

Rapid VT 142 8 94.7 ( 90.7 - 97.1 ) > 75 %

Non-shockable

NSR 0 1052 100 ( 99.7 - 100 ) > 99 %

SVT 8 650 98.8 ( 97.8 - 99.3 ) > 95 %

AF, SB, blocks,
idioventricular, PVC

0 182 100 ( 98.2 - 100 ) > 95 %

Asystole - - - - > 95 %

a 90% CI indicated in parenthesis.

(b): Sensitivity and specificity for the segments of the pedi-
atric database.

Table 4.13: Sensitivity and specificity results for the segments of the adult
and pediatric patients in the test database. All the low 90% CI exceed the
AHA performance goals for all rhythm categories except for adult NSR.
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Rhythm type
Records AHA

goals 80

S NS Se/Sp (%)a

Coarse VF 187 0 100 ( 98.3 - 100 ) > 90 %

Rapid VT 99 0 100 ( 96.8 - 100 ) > 75 %

Non-shockable

NSR 0 145 100 ( 97.8 - 100 ) > 99 %

SVT 0 44 100 ( 93.1 - 100 ) > 95 %

AF, SB, blocks,
idioventricular, PVC

1 114 99.1 ( 95.9 - 100 ) > 95 %

Asystole 0 256 100 ( 98.7 - 100 ) > 95 %

a 90% CI indicated in parenthesis.

(a): Sensitivity and specificity for the registers in the adult
database.

Rhythm type
Records AHA

goals 80

S NS Se/Sp (%)a

Shockable

Coarse VF 46 1 97.9 ( 90.3 - 99.3 ) > 90 %

Rapid VT 47 1 97.9 ( 90.5 - 99.4 ) > 75 %

Non-shockable

NSR 0 313 100 ( 99.0 - 100 ) > 99 %

SVT 2 202 99.0 ( 96.9 - 99.8 ) > 95 %

AF, SB, blocks,
idioventricular, PVC

0 54 100 ( 94.3 - 100 ) > 95 %

Asystole - - - - > 95 %

a 90% CI indicated in parenthesis.

(b): Sensitivity and specificity for the registers in the pediatric
database.

Table 4.14: Sensitivity and specificity results for the registers of the adult
and pediatric patients in the test database.
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Metric
Test databasea

Adult Pediatric Total

Se (%) 100 ( 99.4 - 100 ) 97.9 ( 95.4 - 99.1 ) 99.5 ( 98.8 - 99.8 )

Sp (%) 99.8 ( 99.5 - 99.8 ) 99.7 ( 99.2 - 99.8 ) 99.7 ( 99.5 - 99.8 )

Acc (%) 99.9 ( 99.5 - 99.9 ) 99.4 ( 98.7 - 99.7 ) 99.7 ( 99.3 - 99.8 )

PPV (%) 99.7 ( 99.1 - 99.7 ) 97.9 ( 95.4 - 99.1 ) 99.2 ( 98.5 - 99.5 )

NPV (%) 100 ( 99.7 - 100 ) 99.7 ( 99.2 - 99.8 ) 99.8 ( 99.6 - 99.9 )

a 90% CI indicated in parenthesis.

Table 4.15: Additional performance metrics for the adult and pediatric
registers of the test database. The results are derived from the data in
Table 4.14a and Table 4.14b.

4.6.4 Graphical examples of classification errors

There are two important causes of classification errors for VF
(Figure 4.23): slow but regular intervals of ventricular activity
during VF which are misclassified as slow VT (Figure 4.23a) and
QRS like activity during VF due to rapid ventricular contractions
or spiky noise (Figure 4.23d). Furthermore, for short registers
with only one or two 3.2 s segments a single error will result in a
misclassified register (Figure 4.23a and Figure 4.23c).

The accurate discrimination between VT and fast SVT with wide
QRS complexes using a single lead is very troublesome, particu-
larly for the pediatric case. Most errors are caused by borderline
cases of the QRS algorithm (only VT) and SVT/VT algorithm (SVT
and VT), see Figure 4.24 and Figure 4.25. Additionally, correctly
identified VT segments with slow ventricular rates are classified
as non-shockable slow VT (Figure 4.24a). The converse — SVT seg-
ments classified as slow VT — also occurs, although the no shock
diagnosis is correct the classification is incorrect (Figure 4.25c).

There are some classification errors for other non-shockable reg-
isters with intervals of clear ventricular activity, see Figure 4.26c
and Figure 4.26e. Occasionally, PVC segments can be incorrectly
classified as shockable if the ventricular contractions form a suf-
ficiently irregular pattern and the QRS complexes are not well
defined (Figure 4.26d). The ECG shown in Figure 4.26a was classi-
fied as NSR by the cardiologists, although it is quite irregular with
large P and T waves and a double hump QRS probably caused by
the delayed activation of one of the ventricles.
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0 1.6 3.2 4.8 6.4 8 9.6
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(a): Pediatric VF classified as non-shockable. The register contains only two
segments, and the first one is classified as slow VT. {sVT, VF}.

0 1.6 3.2 4.8 6.4 8 9.6

-0.55

0

0.50

(b): Adult VF correctly classified as shockable despite the last slow and regular
segment. {VF, VF, sVT}.

0 1.6 3.2 4.8 6.4 8 9.6

-2.20

0

2.00

(c): Pediatric VF classified as non-shockable. The register contains only two
segments and the first segments contains some QRS like activity in both 1.6 s
subintervals. {PR, rVT}.

0 1.6 3.2 4.8 6.4 8 9.6

-2.00

0

2.00

(d): Adult VF correctly classified as shockable. The center segment contains two
spikes (QRS like) in both 1.6s subintervals, however, the other two segments
are correctly identified as VF. {VF, PR, VF}.

0 1.6 3.2 4.8 6.4 8 9.6

-0.30

0

0.50

(e): Adult VF correctly classified as shockable. The center segment is slow and
regular, however the SVT/VT algorithm incorrectly classifies it as SVT. {VF, SVT,
VF}.

Figure 4.23: Examples of misclassified VF segments and registers. The figures show x̂ecg(n)
in mV as a function of t = nTs in s.
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0 1.6 3.2 4.8 6.4 8 9.6

-1.00
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(a): Pediatric VT classified as non-shockable. The register contains only one
slow segment that does not exceed the rate threshold for shockable VT
( fc = 149 bpm). {sVT}.

0 1.6 3.2 4.8 6.4 8 9.6

-1.50

0

1.50

(b): Pediatric VT classified as non-shockable. The abrupt descents produce
high frequency components and large slopes. All segments are identified as
PR. {PR, PR, PR}.

0 1.6 3.2 4.8 6.4 8 9.6

-0.50
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0.20

(c): Pediatric VT. The first segment is a borderline case for the QRS algorithm,
the following two are correctly identified ( fc = 235 bpm). {PR, rVT, rVT}.
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0
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(d): Pediatric VT. The center segment is a borderline case for the SVT/VT
algorithm, the other two are correctly identified ( fc = 190 bpm). {rVT, SVT,
rVT}.
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-1.00

0

0.40

(e): Pediatric VT. The first segment is a borderline case for the SVT/VT algorithm,
the following two are correctly identified ( fc = 215 bpm). {SVT, rVT, rVT}.

Figure 4.24: Examples of misclassified pediatric VT segments and registers. The figures show
x̂ecg(n) in mV as a function of t = nTs in (s).
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0 1.6 3.2 4.8 6.4 8 9.6

-0.25

0

0.30

(a): Pediatric SVT classified as shockable. It is a fast SVT ( fc = 260 bpm) with
wide QRS complexes. All segments are misclassified as shockable VT. {rVT,
rVT, rVT}.
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-0.30

0
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(b): Pediatric SVT classified as shockable. Although the heart rate is not very
high ( fc = 160 bpm), the ECG has very large P and T waves. {rVT, rVT}.
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-0.30

0

0.40

(c): Pediatric SVT. All segments are misclassified as VT, however the diag-
nosis is correct because only the last segment exceeds the rate threshold
( fc = 142→ 155 bpm). {sVT, sVT, rVT}.
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-0.30

0
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(d): Pediatric SVT. Borderline case for the SVT/VT algorithm ( fc = 205 bpm).
{rVT, SVT}.
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(e): Pediatric SVT. Borderline case for the QRS algorithm ( fc = 197 bpm).
{PR, PR, rVT}.

Figure 4.25: Examples of misclassified SVT segments and registers. The figures show x̂ecg(n)
in mV as a function of t = nTs in s.
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0 1.6 3.2 4.8 6.4 8 9.6

-0.18

0

0.25

(a): Adult NSR. The first segment is a borderline case for the QRS algorithm, it
is classified as nPR and as irregular. {VF, PR, PR}.
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-3.00
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4.00

(b): Adult IV. The first 1.6 s subinterval of the first segment has no QRS
complexes, it is classified as nPR and as irregular. {VF, PR, PR}.
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(c): Adult PVC. The initial segment contains clear ventricular activity which is
correctly identified as VF. {VF, PR, PR}.
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(d): Adult PVC. The QRS complexes are not as clear in the initial segment,
which is then classified as VF because it is irregular. {VF, PR, PR}.
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-1.50
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(e): Adult PVC. The last 1.6 s interval of the last segment contains fast ventricu-
lar activity. {PR, PR, VF}.

Figure 4.26: Examples of misclassified non-shockable segments and registers. The figures
show x̂ecg(n) in mV as a function of t = nTs in s.
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5 O H C A R H Y T H M A N A LYS I S

This chapter presents the analysis of the performance of the AED
shock advice algorithm for real OHCA episodes. First, the algo-
rithm is tested on OHCA rhythms free of artifacts. In this way
its performance is assessed for the rhythm types found in the
field, which may differ from those covered in the AHA statement.
Then, the algorithm is used to diagnose the rhythms during chest
compressions both before and after filtering the CPR artifact. The
filtering method to suppress the CPR artifact was developed as
part of this thesis work.

5.1 Structure of the OHCA episodes
The database described in Section 3.2 serves to assess the per-
formance of the universal shock advice algorithm in an OHCA
scenario. The OHCA registers contain two distinct intervals. Dur-
ing the initial 15.5 s† CPR was performed, and an artifact caused
by the chest compressions corrupted the underlying rhythm. In
the following 15.5 s CPR was stopped, and the underlying OHCA
rhythm was revealed free of CPR artifacts. Figure 5.1 describes
these two intervals,‡ which were used to assess the performance
of the AED algorithm in the following two ways.

1. Evaluation of the shock advice algorithm for clean OHCA registers.
The universal AED algorithm described in Chapter 4 was
developed in the framework of the AHA statement.80 Its
specificity was assessed using registers obtained in hospital,
with a large proportion of NSR and SVT. However,

† This database was created in the process of developing the dual-channel method
for the suppression of the CPR artifact described in Irusta et al. 67 In that work,
the filter performance was assessed using the AED algorithm from the Reanibex
200, which analyzes three consecutive 4.8 s ECG segments. This is the reason for
the 15.5 s interval duration, which includes the interval needed for the diagnosis
and an additional 1.1 s for the convergence of the filter.

‡ The figure shows two consecutive 15 s intervals, for esthetic reasons the initial and
final 0.5 s of the original episodes are not shown in this chapter’s figures.
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the non-shockable rhythms found in OHCA could be very
different from NSR or SVT. In Section 5.2, we assess the
performance of the algorithm for clean OHCA rhythms; i. e.,
on the second interval of the OHCA registers.

2. Rhythm analysis during CPR. The diagnosis of current AEDs
is not reliable during CPR because the mechanical activity
from the chest compressions introduces artifacts in the ECG.
However, stopping CPR for a reliable diagnosis adversely
affects the probability of ROSC after the delivery of the
shock,45,149,44 in fact pauses in chest compressions compro-
mise circulation.20 In Section 5.3, we assess the performance
of the universal AED algorithm before and after filtering the
CPR artifact. The artifact is suppressed from the first inter-
val of the OHCA registers using the dual-channel filtering
strategy introduced by Irusta et al. 67

5.2 Diagnosing clean OHCA rhythms
The AHA statement emphasizes safety; i. e., it tries to minimize
the risk of injury to the patient and the rescuer, who may be
a first-time user with minimal training. Consequently, the AED
must avoid inadvertent (in a conscious and breathing patient) or
deliberate misuse. This is the reason why the statement requires
a high specificity for rhythms accompanied by a palpable pulse
and/or rhythms in a conscious patient.

However, non-shockable rhythms in OHCA are frequently found
in patients without a pulse. For example, during PEA the electri-
cal activity of the heart is not accompanied by a palpable pulse.
Furthermore, the prevalence of PEA in an OHCA scenario is
high both for adult and pediatric patients.101,30 As shown in Fig-
ure 5.2, the heart rate and morphology of these rhythms may be
very different from those found in the non-shockable rhythms of
databases compliant with the AHA statement.

The classification results of the new algorithm for free-of-artifact
OHCA rhythms are compiled in Table 5.1, both for the registers
and their segments. The sensitivity and specificity are above AHA
specification for all the rhythm categories, although the figures
are below those reported in Table 4.11b for the test database. For
instance, VF sensitivity drops 4 points, from 99.6 % to 95.5 %; the
specificity for PEA is 97 %, 2.4 points lower than the 99.4 % ob-
tained for the other non-shockable registers in the AHA compliant
test database; and finally there is a 1 point drop in the detection
of asystole.
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(a): Very slow PEA rhythm, approximate rate 14 bpm.

0 1.6 3.2 4.8 6.4 8 9.6
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(b): Very slow PEA rhythm, approximate rate 18 bpm.
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-0.20
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(c): Slow PEA rhythm, approximate rate 28 bpm.
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-0.15
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0.15

(d): Slow PEA rhythm, approximate rate 38 bpm.
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-0.40
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(e): PEA with very wide QRS complexes, approximate rate 49 bpm.

0 1.6 3.2 4.8 6.4 8 9.6

-0.50

0

0.40

(f): PEA with PVC, approximate rate 65 bpm.

Figure 5.2: Six examples of PEA recorded from OHCA victims. All of the examples present
very wide QRS complexes of very different morphology, the examples are ordered by
increasing heart rate. The figures show the ECG in mV as a function of time in s.
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The largest performance drop is found for the shockable regis-
ters, with 4/89 classified as non-shockable. Three cases are shown
in Figure 5.3, a VT with a ventricular rate below the threshold for
fast VT (Figure 5.3c), a VF with a very low peak-to-peak amplitude
of ∼100 µV (Figure 5.3b) and VF with QRS like activity caused
by rapid ventricular contractions or spiky noise (Figure 5.3a). The

Rhythm type
Segments AHA

goals (%)
S NS Se/Sp (%)a

Shockable

VF and VT 336 19 94.7 ( 92.3 - 96.3 ) > 90b

Non-shockable

PEA 28 637 95.8 ( 94.3 - 96.9 ) > 95

PR 4 148 97.4 ( 94.1 - 99.0 ) > 95

Asystole 8 344 97.7 ( 96.0 - 98.8 ) > 95

Total 40 1129 96.6 ( 95.6 - 97.4 ) > 95

a 90% CI indicated in parenthesis.
b Performance goal for VF.

(a): Sensitivity and specificity for the 3.2 s segments.

Rhythm type
Records AHA

goals (%)
S NS Se/Sp (%)a

Shockable

VF and VT 85 4 95.5 ( 90.1 - 98.2 ) > 90b

Non-shockable

PEA 5 161 97.0 ( 93.8 - 98.6 ) > 95

PR 0 38 100 ( 92.1 - 100 ) > 95

Asystole 1 87 98.9 ( 94.7 - 100 ) > 95

Total 6 286 98.0 ( 96.0 - 99.0 ) > 95

a 90% CI indicated in parenthesis.
b Performance goal for VF.

(b): Sensitivity and specificity for the registers.

Table 5.1: Sensitivity and specificity of the universal AED algorithm for
artifact-free OHCA rhythms.
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first two examples are not found in the test database because
only VT exceeding the rate threshold for fast VT and coarse VF
(peak-to-peak amplitude >200 µV) were included in the group of
shockable rhythms.

The differences in the nature of the non-shockable rhythms be-
tween the test database and the OHCA database are not reflected
in a significant drop in specificity. PEA is diagnosed accurately,
only 5/166 are classified as shockable, and most of them are bor-
derline PEA-VF cases like the ones shown in Figure 5.3e and
Figure 5.3f. The misclassified asystole register is shown in Fig-
ure 5.3d, and is caused by the very large amplitude (>0.5 mV)
and its irregularity. The classification results and the graphical
display of the misclassified registers show that although the non-
shockable registers in the development and test databases were
not obtained from OHCA victims, these databases are diverse
enough to design a robust AED shock advice algorithm that cor-
rectly diagnoses OHCA rhythms.
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(a): VF. There are spiky QRS-like complexes. {PR, PR, VF}.

0 1.6 3.2 4.8 6.4 8 9.6
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(b): VF. Fine VF confused with asystole. {AS, AS, AS}.
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(c): VT. The ventricular rate (130 bpm) is below 150 bpm. {sVT, sVT, VF}.
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-0.40
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(d): AS. Asystole with large and irregular activity. {VF, VF, VF}.

0 1.6 3.2 4.8 6.4 8 9.6

-0.30
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(e): PEA. Although the first segment is regular and slow the last two are
irregular. {sVT, VF, VF}.
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-1.30

0

1.30

(f): PEA. Very irregular PEA classified as VF. {VF, VF, VF}.

Figure 5.3: Examples of misclassified OHCA registers free of CPR artifacts. The figures show
the ECG in mV as a function of time in s for a BPF: 0.7–30 Hz.
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5.3 Rhythm analysis during CPR

5.3.1 Characteristics of the CPR artifact

The CPR artifact is generated by the mechanical activity necessary
for the delivery of chest compressions. When CPR is performed
manually,† the characteristics of the artifact are very variable. They
depend on many factors such as: how CPR is administered, the
characteristics of the patient and the recording system.

The nature of the CPR artifact is best analyzed when CPR is per-
formed on patients in asystole; i. e., there is no underlying heart
rhythm and consequently the recorded signal only reflects the
presence of the artifact. Figure 5.4 shows two examples of a CPR

t (s)

0 5 10

-0.75

0

0.75

f (Hz)

0 2.5 5 7.5 10
0

0.50

1.00

1.50

(a): CPR artifact with large harmonic content and no pauses for ventilation.
The mean frequency of the compressions is 116 cpm (∼1.93 Hz).

t (s)

0 5 10

-0.30

0

0.30
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0 2.5 5 7.5 10
0

0.80

1.60

2.40

(b): CPR artifact with small harmonic content and pauses for ventilation. The
mean frequency of the compressions is 133 cpm (∼2.22 Hz).

Figure 5.4: Two examples, in the time and frequency domain, of a CPR artifact recorded
on a patient in asystole. The figures show the ECG in mV in the time domain and the
normalized PSD in the frequency domain. The PSD was calculated using Welch’s method
with 5 s Hamming windows and 50% overlap.

† For automatic chest compression devices like the Zoll AutoPulse or the Jolife
LUCAS the characteristics of the artifact are less variable. Both the frequency
of the chest compressions and the waveform of the induced artifact are more
predictable because CPR is delivered under the same conditions in a repetitive
automatic way by the device. 21
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artifact recorded on a patient in asystole. There are large differ-
ences in the time and frequency domain between the two artifacts.
Figure 5.4a shows an artifact with rapid waveform variations that
produce large harmonic components. The chest compression rate
was 116 cpm and there are no pauses for respiration in the interval
shown in the figure. Conversely, Figure 5.4b shows an artifact with
slower waveform variations, and consequently a lower harmonic
content. The chest compression rate was 133 cpm and there are
pauses in the interval shown in the figure.

The initial 15.5 s interval of the 88 asystole registers was used to
analyze the characteristics of the CPR artifact in the database of
OHCA episodes. The average chest compression rate was 121 cpm
(range: 73–170 cpm). Although this rate is well above the 100 cpm
recommended by the current guidelines,56 it matches the one re-
ported by the authors that conducted the study that originated our
database of OHCA registers.146 From a CPR artifact suppression
standpoint, higher compression rates increase the spectral overlap
with OHCA rhythms and filtering the CPR artifact becomes more
difficult.

The spectral analysis of the CPR artifacts is shown in Figure 5.5.
The power is distributed among the harmonics of the fundamental

replacements

f (Hz)

%Pfo
= 70

%P2 fo
= 18

%P3 fo
= 7

%P4 fo
= 3

0 fo = 1.95 Hz 5 7.5 10
0

0.33

0.66

1.00

Figure 5.5: Normalized PSD for the CPR artifact recorded in patients
in asystole. The PSD was calculated using Welch’s method with 5 s
Hamming windows and 50% overlap, and then averaged with equal
weight for all the registers. The value %P` fo indicates the percent power
content in a frequency band of bandwidth fo and centered in ` fo; i. e., it
measures the contribution of the `-th harmonic to the total power.
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component, as expected for an almost-periodic artifact. The funda-
mental component — f0=1.95 Hz — corresponds to the mean chest
compression rate. The first three harmonics account for 95% of the
total power, although there may be CPR artifacts with significant
power content in higher harmonics, Figure 5.4a is an example.

The efficient elimination of the CPR artifact involves adaptive
signal processing techniques because the artifact presents an im-
portant spectral overlap with human cardiac arrest rhythms, in ad-
dition to its inter-patient and inter-rescuer variability. The spectral
overlap of the CPR artifact and human VF is well known, however
the spectral overlap between non-shockable OHCA rhythms and
the CPR artifact is also large. Figure 5.6 compares the PSD of
the OHCA rhythms in our database to that of the CPR artifacts.

f (Hz)

VF

CPR artifact

0 2.5 5 7.5 10
0

0.33

0.66

1.00

(a): Shockable VF.
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(b): Shockable VT.

f (Hz)

PR

CPR artifact

0 2.5 5 7.5 10
0

0.33

0.66

1.00

(c): Non-shockable PR.
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0.33
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(d): Non-shockable PEA.

Figure 5.6: Normalized PSD of pure CPR artifacts and rhythms recorded in OHCA. The
PSD were computed for the intervals without CPR artifact of the registers from the database
described in Section 3.2. Asystole registers (no underlying rhythm) corrupted by CPR are
taken as pure artifacts. The PSD was calculated using Welch’s method with 5 s Hamming
windows and 50% overlap, and then averaged with equal weight for all the registers in the
class.
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There is a clear spectral overlap for both shockable and non-
shockable OHCA rhythms, which is reflected by the proximity of
the dominant frequencies of each rhythm class to the fundamen-
tal frequency of the artifact. Furthermore, the overlap is higher
for non-shockable than for shockable rhythms which anticipates
the challenge of artifact removal from corrupted non-shockable
registers.

5.3.2 Adaptive filter based on the frequency of the
chest compressions

This section describes a methodology to suppress the CPR artifact
developed in the course of this thesis work. The method is general
and can be implemented using different adaptive solutions, the
LMS filter described in page 127 is one of the possible solutions,
although alternative ways based on Kalman filters have also been
studied.38,119

The filtering method relies on a simple hypothesis: during
chest compressions, the CPR artifact can be modeled as an almost
periodic signal, its fundamental frequency being that of the chest
compressions. Then, the suppression of the CPR artifact depends
on an accurate recording of the instantaneous frequency of the
chest compressions, or alternatively, of the instants when the chest
compressions are given. Let us call those instants

tk = nk Ts, (5.1)

where Ts is the sampling period.
The interval between consecutive compressions corresponds to

one oscillatory cycle. Assuming that during a cycle the frequency
is constant but may vary between cycles, the instantaneous fre-
quency and phase of the compressions are:

fk =
1

Ts(nk+1 − nk)
=

fs

∆nk
nk ≤ n < nk+1, (5.2)

φ(n) =
2π

∆nk
(n− nk) + k · 2π nk ≤ n < nk+1. (5.3)

The {tk} instants were not directly available in the database
of OHCA registers. However, they can be estimated from the
additional reference channels, for instance from the compression
depth signal.† Figure 5.7 shows how to locate when the chest
compressions were given by locating the instants when the com-
pression depth is at its local minimums; i. e., when the chest is

† In the original study, the modified HeartStart 4000SP AED calculated the compres-
sion depth by integrating the recordings from several accelerometers. 4
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0 5 10

-0.40

0

0.40

(a): CPR artifact recorded on asystole, the instants when the compressions
were given were derived from the compression depth signal below.

0 5 10

-4.00

-2.00

0

(b): Compression depth in (cm), zero level means no compression. The marks
indicate maximum depression.

Figure 5.7: Estimating the frequency of the compressions from the compression depth signal.
It is possible to locate the instants when the chest is fully compressed by marking the instants
when the compression depth is at its local minimum.

fully compressed. These instants were automatically marked us-
ing a peak detector. In fact, it is not necessary to measure the
instants when the chest is fully compressed, the frequency of the
chest compressions can be equally estimated identifying other
events such as the onset of each compression. Furthermore, it is
possible to use other reference signals to estimate the location of
these events, like the pressure or force signals recorded through
pressure sensors added in the CPR compression pads.

Model of the CPR artifact

During chest compressions the artifact is regarded as a quasi-
periodic interference; consequently, it can be modeled using a
Fourier series representation of ` = 1, .., N harmonics of time
varying amplitude and phase. These values change slowly in time
and track the changes in waveform from cycle to cycle. The cycle
to cycle changes in the fundamental frequency are given by φ(n).
The model of the artifact during chest compressions is then

x̂comp(n) =
N

∑
`=1

c`(n) cos(`φ(n) + φ`(n))

=
N

∑
`=1

a`(n) cos `φ(n) + b`(n) sin `φ(n). (5.4)

The time varying amplitude and phase — c`(n) and φ`(n) — of
each harmonic can be estimated through an adaptive filter which
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tracks the evolution of the spectral composition of the artifact.
This is equivalent to following the variation of the amplitudes of
the in-phase and quadrature components, a`(n) and b`(n).

In the course of CPR, chest compressions are interrupted for
rhythm analysis or ventilations, Figure 5.8a shows a CPR artifact
with a pause for ventilation. During rhythm analysis CPR is halted
and there is no artifact. During ventilations the CPR artifact is
a low frequency respiratory artifact, its influence is negligible
(it is suppressed by the preprocessing filters) and no adaptive
filtering is needed. Consequently, the CPR artifact estimated by the
adaptive filter must be zero in the absence of chest compressions.

It is possible to represent intervals with and without chest
compressions in a single model of the artifact by means of a signal
envelope, A(n). In the intervals without chest compressions the
artifact is negligible, and the envelope must be A(n) = 0. When
chest compressions are administered A(n) = 1, and the artifact is
modeled through Equation 5.4. A complete model for the artifact
that accounts for both types of intervals is

x̂cpr(n) = A(n) · x̂comp(n)

= A(n)
N

∑
`=1

a`(n) cos `φ(n) + b`(n) sin `φ(n). (5.5)

Two smooth transition periods were defined to avoid abrupt
changes in the amplitude. An example of the phase and amplitude
used in the model of the CPR artifact are shown in Figure 5.8 for
a patient in asystole.

The period between two consecutive compressions was used to
automatically distinguish ventilation and compression intervals.
The current CPR guidelines recommend a compression rate of
100 cpm, a period between two consecutive compressions of more
than 1 s was interpreted as a ventilation interval (the compression
rate would be below 60 cpm).† This introduces a delay of 1 s in the
filtering process, the time needed to decide the type of interval
and the corresponding value of A(n).

† Kramer-Johansen et al. 83 define pauses in chest compressions for an interval of
1.5 s without compressions.
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The LMS filter

Figure 5.9 shows the structure of the adaptive filter used to sup-
press an additive CPR artifact from the input ECG signal, xin(n).
The artifact is first adaptively estimated by fitting the model given
by Equation 5.5, and then subtracted from the input signal to
produce an ECG free of artifact, x̂ecg(n). The only additional in-
formation used by the adaptive scheme are the instants of the
compressions needed to calculate A(n) and φ(n). Therefore, the
estimated CPR artifact and the estimated underlying ECG are
given by

x̂cpr(n) = A(n)
N

∑
`=1

a`(n) cos `φ(n) + b`(n) sin `φ(n), (5.6)

x̂ecg(n) = xin(n)− x̂cpr(n). (5.7)

The time varying in-phase and quadrature components of the
artifact model — a`(n) and b`(n) — are the coefficients of the filter,
which are updated using the LMS method. This configuration is
a well-known generalization to N harmonics76,147 of the classical
LMS filter used to suppress a sinusoidal interference of known
frequency.144 The clean ECG is the LMS error signal and each
harmonic has a different step size µ`. The filter coefficient update
equations are then

a`(n + 1) = a`(n) + 2µ` x̂ecg(n)A(n) cos `φ(n) (5.8)

b`(n + 1) = b`(n) + 2µ` x̂ecg(n)A(n) sin `φ(n), (5.9)

+

+
xin(n) = xecg(n) + xcpr(n) x̂ecg(n)

b

{tk} A(n), φ(n) aℓ(n), bℓ(n)

−

x̂cpr(n)

Figure 5.9: Diagram of the CPR suppression filter. The input signal,
xin(n), is an ECG corrupted by a CPR artifact. An estimate of the artifact,
x̂cpr(n), is subtracted from xin(n) to obtain the clean ECG, x̂ecg(n). The
model of the artifact is estimated based on the chest compression instants
{tk}, which in an OHCA scenario could be recorded through the CPR
compression pads. The filter coefficients a`(n) and b`(n) are updated
using the LMS method.
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which are the update equations of N uncoupled LMS filters for
the suppression of a sinusoidal interference. The initial value of
the filter coefficients was made zero

a`(0) = 0 and b`(0) = 0. (5.10)

Two parameters control the filtering method: the number of
harmonics used to model the CPR artifact, N, and the step size of
each harmonic component, µ`. To ease the design of the filter, the
N + 1 degrees of freedom were reduced to two — N and µ0 — by
selecting the step sizes in the following way:

µ` =
1
`

µ0 ` = 1, .., N. (5.11)

This choice of step sizes is better understood in terms of the
frequency response of the LMS filter.

When the reference signal is a pure sinusoidal of fundamental
frequency fo and amplitude A = 1, the transfer function of our
LMS filter is equivalent to the cascade of N notch filters centered in
the harmonics of the fundamental frequency, ` fo.147 An example
of an experimentally computed steady-state frequency response
of the filter is shown in Figure 5.10.

The step size µ` of the `-th harmonic controls the bandwidth
of the notch filter at that frequency, which is proportional to the

f (Hz)

20
lo

g
|H

(
f)
|(

d
B
)

0 fo 2 fo 3 fo 20

-20

-15

-10

-5

-3

0

Figure 5.10: Experimental frequency response of the LMS filter for a
gaussian white noise input, averaged for 1024 realizations. The LMS filter
was configured to have N = 3 harmonics, µ0 = 0.01, and a sinusoidal
reference signal of amplitude one and constant frequency fo = 5 Hz.
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step size.147 Consequently, the step size of the LMS filter, µ0, can
be interpreted as the coarseness of the filter; higher values of µ0
represent higher values of the bandwidth, that is a more coarse
filter. By choosing a step size that decreases as the harmonic
number increases (Equation 5.11), lower bandwidths are assigned
to the higher harmonics of the artifact, which agrees with the
experimental observations of the spectral distribution of the CPR
artifact, shown in Figure 5.5.

Adjusting N and µ0

A thorough analysis of the performance of the LMS filter for the
same OHCA register database used for this thesis work is found
in Irusta et al. 67 There, it was shown that good sensitivity and
specificity scores were obtained using 5 harmonics to model the
artifact, and that increasing the number of harmonics further did
not improve the results at the cost of increasing the computational
load. Using fewer harmonics compromises the results for the
specificity.

Figure 5.11 shows the sensitivity and the specificity of the new
algorithm after filtering. The values are computed as a function
of µ0, the coarseness of the filter, for an artifact model with N = 5

µ0

Sensitivity (%)

Specificity (%)

0 0.003 0.012 0.043
60

70

80

90

100

Figure 5.11: Sensitivity and specificity as a function of the filter coarseness
µ0 for an LMS filter with N = 5 harmonics. The horizontal axis is in a
nonlinear scale. The working range and working point of the LMS filter
are highlighted.
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harmonics. The results in Figure 5.11 demonstrate how filtering
modifies the diagnosis of the new algorithm. The values for µ0 = 0
reflect the performance for the unfiltered signal because when the
step sizes are 0 the coefficients of the LMS filter are not updated
and there is no filtering. The sensitivity improves rapidly as µ0
grows for low values of µ0, in fact for µ0 > 1 · 10−3 the sensitivity
is already above 95 %. Then it declines steadily for µ0 > 37 · 10−3.
Conversely, for low values of µ0, the specificity rapidly declines
as µ0 grows, it then stabilizes to values slightly below 80 % for
µ0 > 6 · 10−3. We defined the working range of the LMS filter
as the range of values of µ0 when the sensitivity is consistently
above 95 % and the specificity is close to 80 %: µ0 ∼ 6− 37 · 10−3.

5.3.3 Sensitivity and specificity of the new AED al-
gorithm

Table 5.2 reports the average performance of the LMS filter in
the working range for N = 5. There is a 25 point increase in the
accuracy of the detection of shockable rhythms after filtering, at
the expense of a 6 point drop in the detection accuracy for non-
shockable rhythms. Compared with the interval with no artifact,
the sensitivity slightly increases by 2 points while the specificity
decreases by 19 points, far from the 97.6 % obtained on the in-
tervals without artifact. When compared with the mean results
obtained by Irusta et al. 67 after filtering the same OHCA data
with the LMS filter, we observe a 2 point increase in sensitivity
but an 8 point decrease in specificity for the new algorithm. The
results are different because they were obtained for another AED
algorithm, which underlines the relevance of the AED algorithm
in the design process of CPR suppression algorithms.

A filter coarseness that yields high sensitivity and specificity
when compared with those in the working range is: µ0 = 22 · 10−3,
the working point highlighted in Figure 5.11. Table 5.3 shows the

CPR unfiltered CPR filtereda No CPR

Se (%) Sp (%) Se (%) Sp (%) Se (%) Sp (%)

73.0 84.6 97.5 78.6 95.5 97.6

a Mean performance for: 6− 37 · 10−3.

Table 5.2: Average value of the sensitivity and specificity in the working
range of the LMS filter for N = 5.
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Rhythm type
Records AHA

goals (%)
S NS Se/Sp (%)a

Shockable

VF and VT 65 24 73.0 ( 64.7 - 80.0 ) > 90b

Non-shockable

PEA 23 143 86.1 ( 81.1 - 90.0 ) > 95

PR 4 34 89.5 ( 78.1 - 95.6 ) > 95

Asystole 18 70 79.6 ( 71.6 - 85.7 ) > 95

Total 45 247 84.6 ( 80.8 - 87.8 ) > 95

a 90% CI indicated in parenthesis.
b Performance goal for VF.

(a): Sensitivity and specificity results before filtering.

Rhythm type
Records AHA

goals (%)
S NS Se/Sp (%)a

Shockable

VF and VT 87 2 97.8 ( 93.1 - 99.6 ) > 90b

Non-shockable

PEA 35 131 78.9 ( 73.3 - 83.7 ) > 95

PR 2 36 94.7 ( 84.7 - 98.9 ) > 95

Asystole 23 65 73.9 ( 65.5 - 80.8 ) > 95

Total 60 232 79.5 ( 75.3 - 83.1 ) > 95

a 90% CI indicated in parenthesis.
b Performance goal for VF.

(b): Sensitivity and specificity results after filtering.

Table 5.3: Sensitivity and specificity results for the OHCA registers before
and after filtering. The working point of the LMS filter was: N = 5 and
µ0 = 22 · 10−3.

classification results after filtering for that working point, and com-
pares them with those obtained before filtering. There is again
a significant increase in sensitivity (25 points) at the expense of
a lower specificity (5 point decrease). Although it is possible to
exceed the AHA specifications for the shockable rhythms after
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filtering, the specificity is 15 points under AHA specifications.
Furthermore, asystole and PEA are the most difficult to identify
non-shockable rhythms, pulse-giving rhythms present high speci-
ficity both before and after filtering and are the only non-shockable
rhythm class for which filtering improves the classification results.

To better understand the relation between the AED algorithm
and the filtering process, the following figures show examples of
successful and unsuccessful diagnoses before and after filtering.
They were calculated for the operating point of the filter, N = 5
and µ0 = 22 · 10−3. The examples demonstrate the limitations
of an approach to rhythm diagnosis during chest compressions
based on suppressing the CPR artifact. Although the artifact is
accurately estimated in all the examples, there are still many
potential sources of misclassification of the underlying rhythm,
such as: rhythm changes induced by and sustained only during
chest compressions, or filtering residuals.

When the signal-to-noise ratio is low — the power of the arti-
fact is large compared with that of the underlying rhythm — the
chest compression rate strongly influences the diagnosis of the
algorithm. When chest compressions are given according to the
guidelines — approximate compression rate of ∼100 cpm — the
corrupted ECG is classified as non-shockable slow VT by the algo-
rithm, Figure 5.12 and Figure 5.15 show two examples. Conversely,
Figure 5.13 displays an episode where the chest compression rate
is above 160 cpm; in this example the corrupted ECG is classi-
fied as rapid shockable VT by the algorithm. The high average
chest compression rate† of the registers in the database partially
explains the tendency of the algorithm to diagnose the corrupted
intervals as shockable.

The accurate detection of shockable rhythms during CPR does
not pose a problem. The sensitivity is well above AHA goals,
although there may be occasional errors. Figure 5.14 shows an
example of a misclassified VF. Filtering reveals a QRS-like spiky
artifact, which is superimposed onto the VF rhythm. When the
chest compressions are stopped the spiky artifact disappears and
the AED algorithm correctly identifies the underlying VF.

An accurate diagnosis of non-shockable rhythms during chest
compressions is unfortunately not possible. The specificity is well
below AHA goals and filtering the artifact lowers it. A plausible
reason that explains this degradation is that filtering the artifact
produces a disorganized residual. When the residual is large com-
pared with the underlying rhythm and its power exceeds the

† As stated in Section 5.3.1, the average chest compression rate was 121 cpm (range:
73–170 cpm)
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threshold for the detection of asystole, the filtered rhythm is clas-
sified as VF. Figure 5.16 shows a typical case for asystole in which
filtering reveals a large residual. For low-amplitude artifacts the
amplitude of the residual is very low, and the residual is correctly
classified as asystole, as shown in Figure 5.15. These residuals
may also affect the accurate diagnosis of PEA during chest com-
pressions, Figure 5.18 shows an example. Conversely, PEAs with
well defined QRS complexes are more accurately identified both
before and after filtering, as shown in Figure 5.17. Finally pulsed
rhythms are less affected by chest compressions for two reasons:
the artifact induced in perfusing rhythms is smaller (Figure 5.19)
and filtering reveals the underlying QRS complexes (Figure 5.20).
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6 C O N C LU S I O N S

This chapter summarizes the main findings and contributions of
this thesis work; several parts of which have been published in in-
dexed journals (A1-A4) or presented at international conferences
(C1-C11). The chapter concludes with a brief description of the
future research lines opened by this work.

Main contributions of the thesis work
The objective of this thesis work was the development and thor-
ough testing of an AED algorithm valid for adult and pediatric
patients. Its main contributions are those presented as intermedi-
ate goals in the introduction.

• The compilation of the experimental data. When this work
started our group had an adult arrhythmia database to test
AED algorithms. First, this database was revised and refined,
and then a complete second database of adult arrhythmias
was created through the cooperation with several Spanish
EMS and hospitals. More importantly, a new database of
pediatric arrhythmias to test AED algorithm was created. A
large network of Spanish hospitals and cardiologists were
involved in the process, which lasted three years from 2005
until late 2007. The pediatric database is comparable to the
three proprietary databases known in the literature, and
in combination with the two adult databases constitute a
comprehensive tool to test AED algorithms in accordance
with the AHA statement.

• Parametrization of the ECG. We have studied new ways to
obtain robust rhythm identification parameters from several
signal domains such as time, frequency, slope or the ACF.
Furthermore, these new parameters were designed using
adult and pediatric arrhythmias together.

• Design of the AED shock advice algorithm. Adult AED algo-
rithms have been used to diagnose pediatric arrhythmias
accurately either directly or after adjusting their thresholds
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to pediatric data. In this thesis, we use a new methodology
to design AED algorithms that takes pediatric and adult
arrhythmias together for the design and validation of the
algorithm. We have designed a new arrhythmia detection al-
gorithm composed of four sub-algorithms, which are based
on the new discrimination parameters. The algorithm will
be incorporated soon to Osatu SCoop’s new line of defibri-
lators.

• Testing the algorithm in a resuscitation scenario. The algorithm
has been thoroughly tested using data extracted from a large
and well-known database of OHCA episodes. We gained
access to these data through our cooperation with Prof.
Trygve Eftestøl. First, we evaluated the performance of the
algorithm for clean OHCA rhythms; this is particularly inter-
esting for non-shockable OHCA rhythms without a palpable
pulse, which are very different from those covered in the
AHA statement. Then, we analyzed the performance of the
algorithm during CPR, both before and after suppressing
the CPR artifact. We used an adaptive LMS filter developed
as part of this thesis work to suppress the CPR artifact.

Financial support
This thesis work was financially supported by the research projects
listed below. They are all part of government-funded programs
to support science and research, either exclusively (P1, P3) or in
cooperation with Osatu SCoop (P2), the company that provided
the infrastructure to create the pediatric database.

P1 Estudio y análisis de hitos relacionados con la desfibrilacióon
cardiaca mediante procesado digital de la señal ECG.
Spanish ministry of Science and Technology
January 2004 – December 2007
Financing: 44800e

P2 Desfibrilador externo automático pediátrico.
Basque Government and Osatu SCoop.
January 2005 – June 2007
Financing: 96000e

P3 Desfibrilación cardiaca en pacientes pediátricos.
Spanish ministry of Science and Education
October 2006 – October 2009
Financing: 78650e
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Publications
In this section we cite the contributions published in indexed
journals and presented at international conferences in relation to
this thesis work.

• Four communications at international conferences related to
the creation of the arrhythmia databases and the comparison
between pediatric and adult arrhythmias (C3, C4, C6 and
C11).

• A publication in an indexed journal and a communication
at an international conference related the parameters for the
detection of adult and pediatric arrhythmias (A3, C8).

• A publication in an indexed journal and three communica-
tions at international conferences related to the new algo-
rithm and its sub-algorithms (A2, C5, C7, C9).

• Two publications in indexed journals and three communica-
tions at international conferences related to the suppression
of the CPR artifact (A1, A4, C1, C2 and C10).

Indexed journals

A1 Irusta U, Ruiz J, Ruiz de Gauna S, et al. A Least Mean-Square
Filter for the Estimation of the Cardiopulmonary Resuscita-
tion Artifact Based on the Frequency of the Compressions.
IEEE Trans Biomed Eng 2009;56(4);1052–1062.

A2 Irusta U, Ruiz J. An algorithm to discriminate supraven-
tricular from ventricular tachycardia in automated external
defibrillators valid for adult and paediatric patients. Resusci-
tation 2009;80(11);1229–1233.

A3 Aramendi E, Irusta U, Pastor E, et al. ECG spectral and
morphological parameters reviewed and updated to detect
adult and paediatric life-threatening arrhythmia. Physiologi-
cal Measurement 2010;31(6);749–761.

A4 Ruiz J, Irusta U, Ruiz de Gauna S, et al. Cardiopulmonary
resuscitation artefact suppression using a Kalman filter and
the frequency of chest compressions as the reference signal.
Resuscitation 2010. doi: 10.1016/j.resuscitation.2010.02.031.
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International conferences

C1 Ruiz de Gauna S, Ruiz J, Irusta U, et al. CPR Artefact Re-
moval from VF Signals by Means of an Adaptive Kalman
Filter Using the Chest Compression Frequency as Reference
Signal. Computers in Cardiology 2005;32;175–178.

C2 Irusta U, Ruiz de Gauna S, Ruiz J, et al. A variable step size
LMS algorithm for the suppression of the CPR artefact from
a VF signal. Computers in Cardiology 2005;32;179–182.

C3 Aramendi E, Irusta U, Ruiz de Gauna S, et al. Comparative
Analysis of the Parameters Affecting AED Specificity: Pedi-
atric vs. Adult Patients. Computers in Cardiology 2006;33;445–
448.

C4 Irusta U, Aramendi E, Ruiz de Gauna S, et al. Development
of a pediatric ECG rhythm database for the assessment
of the rhythm analysis algorithms of automated external
defibrillators. Computers in Cardiology 2006;33;609–612.

C5 Irusta U, Ruiz J, Ruiz de Gauna S, et al. Sequential VT/VF
discrimination algorithm based on wave mode sample en-
tropy for adult and pediatric patients. Computers in Cardiol-
ogy 2007;34;229–232.

C6 Aramendi E, Irusta U, Ruiz de Gauna S, et al. Comparative
analysis of the parameters affecting AED rhythm analysis
algorithm applied to pediatric and adult Ventricular Tachy-
cardia. Computers in Cardiology 2007; 419–422.

C7 Irusta U, Ruiz J, Ruiz de Gauna S, et al. An algorithm to dis-
criminate SVT from VT in pediatric AED based on spectral
parameters. Computers in Cardiology 2008;35;925–928.

C8 Ruiz de Gauna S, Ruiz J, Irusta U, et al. Parameters affecting
shock decision in pediatric automated defibrillation. Com-
puters in Cardiology 2008;35;929-932.

C9 Irusta U, Ruiz J, Ruiz de Gauna S, et al. A pediatric shock
advice algorithm based on the regularity of the detected
beats. Computers in Cardiology 2008;35;1033–1036.

C10 Ruiz de Gauna S, Ruiz J, Irusta U. A new CPR artefact re-
moval method using chest compression signals. Resuscitation
2008;77(S1); S12.

C11 Irusta U, Ruiz J, Aramendi E, et al. Amplitude, frequency
and complexity features in paediatric and adult ventricular
fibrillation. Resuscitation 2008;77(S1);S53.
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Future lines of research
AED algorithms have successfully been adapted for pediatric use
in the following ways: adult algorithms that diagnose pediatric ar-
rhythmias accurately,25,16 pediatric specific algorithms15 and uni-
versal algorithms designed including both patients groups. Our
universal algorithm diagnoses clean OHCA rhythms accurately.
However, it is not possible to diagnose non-shockable rhythms
during chest compressions accurately; therefore, hands-off inter-
vals have not been minimized. Several strategies can be further
studied to minimize or shorten the hands-off intervals to increase
survival rates.

• Design of quick AED algorithms. Hands-off intervals for rhythm
assessment could be consistently limited to under 10 s by
designing robust AED algorithms that diagnose a rhythm
in 4 – 6 s accurately. Instead of the analysis based on three
consecutive short windows, as used in this work, the new
algorithms would be based on a new set of parameters
calculated for a single but longer analysis window.

• Combine AED algorithms and CPR suppression filters. A way
to accurately diagnose non-shockable rhythms during chest
compressions may be to better understand the influence of
the CPR suppression filter on the AED algorithm. First, the
influence of the artifact and the filter on the AED parameters
should be assessed. Then features derived from the corrupt
and the filtered ECG could be used together to design a
robust algorithm for the intervals with chest compressions.
This would combine the two current strategies to rhythm
analysis during CPR: filtering46,67 and direct analysis of the
corrupt ECG.95,86

• Minimize the CPR artifact. Finally, the possibility of minimiz-
ing the source of CPR artifacts should be further investi-
gated. The amplitude of the artifact could be reduced either
by recording the ECG through additional electrodes placed
at locations less affected by chest compressions, or through
the design of new systems to stabilize the skin-electrode
contact during chest compressions.
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