Show simple item record

dc.contributor.advisor
dc.contributor.authorDestoky, Florian
dc.contributor.authorPhilippe, Morgane
dc.contributor.authorBertels, Julie
dc.contributor.authorVerhasselt, Marie
dc.contributor.authorCoquelet, Nicolas
dc.contributor.authorVander Ghinst, Marc
dc.contributor.authorWens, Vincent
dc.contributor.authorDe Tiège, Xavier
dc.contributor.authorBourguignon, Mathieu
dc.date.accessioned2018-09-25T09:09:51Z
dc.date.available2018-09-25T09:09:51Z
dc.date.issued2019
dc.identifier.citationFlorian Destoky, Morgane Philippe, Julie Bertels, Marie Verhasselt, Nicolas Coquelet, Marc Vander Ghinst, Vincent Wens, Xavier De Tiège, Mathieu Bourguignon, Comparing the potential of MEG and EEG to uncover brain tracking of speech temporal envelope, NeuroImage, Volume 184, 2019, Pages 201-213, ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2018.09.006.es_ES
dc.identifier.issn1053-8119
dc.identifier.urihttp://hdl.handle.net/10810/28833
dc.descriptionAvailable online 8 September 2018.es_ES
dc.description.abstractDuring connected speech listening, brain activity tracks speech rhythmicity at delta (∼0.5 Hz) and theta (4–8 Hz) frequencies. Here, we compared the potential of magnetoencephalography (MEG) and high-density electroencephalography (EEG) to uncover such speech brain tracking. Ten healthy right-handed adults listened to two different 5-min audio recordings, either without noise or mixed with a cocktail-party noise of equal loudness. Their brain activity was simultaneously recorded with MEG and EEG. We quantified speech brain tracking channel-by-channel using coherence, and with all channels at once by speech temporal envelope reconstruction accuracy. In both conditions, speech brain tracking was significant at delta and theta frequencies and peaked in the temporal regions with both modalities (MEG and EEG). However, in the absence of noise, speech brain tracking estimated from MEG data was significantly higher than that obtained from EEG. Furthemore, to uncover significant speech brain tracking, recordings needed to be ∼3 times longer in EEG than MEG, depending on the frequency considered (delta or theta) and the estimation method. In the presence of noise, both EEG and MEG recordings replicated the previous finding that speech brain tracking at delta frequencies is stronger with attended speech (i.e., the sound subjects are attending to) than with the global sound (i.e., the attended speech and the noise combined). Other previously reported MEG findings were replicated based on MEG but not EEG recordings: 1) speech brain tracking at theta frequencies is stronger with attended speech than with the global sound, 2) speech brain tracking at delta frequencies is stronger in noiseless than noisy conditions, and 3) when noise is added, speech brain tracking at delta frequencies dampens less in the left hemisphere than in the right hemisphere. Finally, sources of speech brain tracking reconstructed from EEG data were systematically deeper and more posterior than those derived from MEG. The present study demonstrates that speech brain tracking is better seen with MEG than EEG. Quantitatively, EEG recordings need to be ∼3 times longer than MEG recordings to uncover significant speech brain tracking. As a consequence, MEG appears more suited than EEG to pinpoint subtle effects related to speech brain tracking in a given recording time.es_ES
dc.description.sponsorshipFlorian Destoky, Julie Bertels, and Mathieu Bourguignon are supported by the program Attract of Innoviris (grant 2015-BB2B-10). Marc Vander Ghinst was supported by a research grant from the Fonds Erasme (Brussels, Belgium). Xavier De Tiège is Post-doctorate Clinical Master Specialist at the FRS-FNRS. Mathieu Bourguignon is supported by the Marie Skłodowska-Curie Action of the European Commission (grant 743562) and by the Spanish Ministry of Economy and Competitiveness (grant PSI2016-77175-P). This research project and the MEG project at the CUB Hôpital Erasme are financially supported by the Fonds Erasme (Research convention “Les Voies du Savoir”, Fonds Erasme, Brussels, Belgium).es_ES
dc.language.isoenges_ES
dc.publisherNeuroImagees_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/743562es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/PSI2016-77175-Pes_ES
dc.rightsinfo:eu-repo/semantics/embargoedAccesses_ES
dc.subjectCoherencees_ES
dc.subjectEEGes_ES
dc.subjectMEGes_ES
dc.subjectReconstruction accuracyes_ES
dc.subjectSpeech brain trackinges_ES
dc.titleComparing the potential of MEG and EEG to uncover brain tracking of speech temporal envelopees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2018 Elsevier Inc. All rights reserved.es_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/journal/neuroimagees_ES
dc.identifier.doi10.1016/j.neuroimage.2018.09.006


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record