Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Marín, Beatriz
dc.contributor.authorNeuner, Gilbert
dc.contributor.authorKuprian, Edith
dc.contributor.authorLaza Terroba, José Manuel
dc.contributor.authorGarcía Plazaola, José Ignacio ORCID
dc.contributor.authorVerhoeven, Amy
dc.date.accessioned2018-10-26T17:35:26Z
dc.date.available2018-10-26T17:35:26Z
dc.date.issued2018-01-18
dc.identifier.citationPhysiologia Plantarum 163(4): 472–489(2018)es_ES
dc.identifier.issn1399-3054
dc.identifier.urihttp://hdl.handle.net/10810/29330
dc.description.abstractThe photoprotective mechanisms of desiccation tolerance and freezing toler- ance and their relation to molecular mobility (cell vitrification) were assessed in a single model: the exceptional subalpine and resurrection plant Ramonda myconi. Dehydrated leaves showed a drop in maximal photochemical effi- ciency of PSII (Fv/Fm) accompanied by synthesis of zeaxanthin (Z), even in the dark, which was limited by cell vitrification after complete desiccation. The recovery of Fv/Fm after a severe drying treatment (7 days at 50% rela- tive humidity) confirmed the tolerance of R. myconi leaves to desiccation. In winter, R. myconi plants showed a highly dynamic component of pho- toinhibition. Interestingly, the potential activity of the enzyme violaxanthin de-epoxidase (VDE) occurred at −7∘C, below the freezing temperature range of the leaves (−2 ± 2∘C) and even in the dark. This suggests that, in nature, the enzyme can still be active in frozen leaves, as long as they are above the glass transition temperature. The drop in Fv/Fm and increase in Z were reversible upon rehydration and thawing, respectively, but were not perfectly matched, suggesting that both Z-independent and Z-dependent forms of sustained dissi- pation are occurring. Overall, our data reinforce the light-independent activity of the VDE enzyme under stress and suggest that Z-accumulation could occur in darkness in a scenario when temperatures drop dramatically in the night under natural conditionses_ES
dc.description.sponsorshipFinancial support from Basque Government (UPV/EHU IT-1018-16 and UPV/EHU IT-718-13); Spanish Ministry of Economy and Competitiveness (MINECO) and the ERDF (FEDER) (CTM2014 – 53902-C2 – 2-P) to J.G.-P., A.V. and B.F.-M.; “Juan de la Cierva-Incorporation” postdoctoral fellowship IJCI-2014-22489 to B. F-M.; and Univer- sity of St. Thomas Sabbatical Assistance Grant to A. V. are acknowledgedes_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/CTM2014-53902-C2-2-Pes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectthermal-energy dissipationes_ES
dc.subjectxanthophyll cycle pigmentses_ES
dc.subjectramonda-myconies_ES
dc.subjectphotosystem-IIes_ES
dc.subjectphotosynthetic activityes_ES
dc.subjectdesiccation stresses_ES
dc.subjectphotoprotective strategieses_ES
dc.subjectphotochemical efficiencyes_ES
dc.subjectchlorophyll fluorescencees_ES
dc.subjecthaberlea-rhodopensises_ES
dc.titleFirst evidence of freezing tolerance in a resurrection plant: insights into molecular mobility and zeaxanthin synthesis in the darkes_ES
dc.typeinfo:eu-repo/semantics/preprintes_ES
dc.rights.holder© 2018 Scandinavian Plant Physiology Societyes_ES
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/full/10.1111/ppl.12694es_ES
dc.departamentoesBiología vegetal y ecologíaes_ES
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuKimika fisikoaes_ES
dc.departamentoeuLandaren biologia eta ekologiaes_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem