Itemaren erregistro erraza erakusten du

dc.contributor.authorVirumbrales Muñoz, María
dc.contributor.authorSantos Vizcaíno, Edorta ORCID
dc.contributor.authorPaz, Laura
dc.contributor.authorGallardo Moreno, Amparo María
dc.contributor.authorOrive Arroyo, Gorka
dc.contributor.authorHernández Martín, Rosa María ORCID
dc.contributor.authorDoblaré, Manuel
dc.contributor.authorGonzález Martín, María Luisa
dc.contributor.authorFernández, Luis José
dc.contributor.authorPedraz Muñoz, José Luis ORCID
dc.contributor.authorOchoa, Ignacio
dc.date.accessioned2020-04-02T11:32:19Z
dc.date.available2020-04-02T11:32:19Z
dc.date.issued2019-12-27
dc.identifier.citationScientific Reports 9 : (2019) // Article ID 20112es_ES
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10810/42585
dc.description.abstractCell-laden hydrogel microspheres have shown encouraging outcomes in the fields of drug delivery, tissue engineering or regenerative medicine. Beyond the classical single coating with polycations, many other different coating designs have been reported with the aim of improving mechanical properties and in vivo performance of the microspheres. Among the most common strategies are the inclusion of additional polycation coatings and the covalent bonding of the semi-permeable membranes with biocompatible crosslinkers such as genipin. However, it remains challenging to characterize the effects of the interactions between the polycations and the hydrogel microspheres over time in vitro. Here we use a force spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in alginate microspheres with different coating designs, maintaining the hydrogels in liquid. In addition to classical topography parameters, we explored, for the first time, the evolution of peak/valley features along the z axis via thresholding analysis and the cross-correlation between topography and stiffness profiles with resolution down to tens of nanometers. Thus, we demonstrated the importance of genipin crosslinking to avoid membrane detachment in alginate microspheres with double polycation coatings. Overall, this methodology could improve hydrogel design rationale and expedite in vitro characterization, therefore facilitating clinical translation of hydrogel-based technologies.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish national research program (DPI2015-65401-C3-1-R, BIO2016-79092-R, MTM2012-31073 and MAT2015-69967-C3-1 grants), the Aragon Government (T24_17R grant) and the Basque Government (Consolidated Groups, IT-907-16). POSITION-II has received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union's H2020 Framework Program (H2020/2014-2020) and National Authorities, under grant agreement Ecsel-78132-Position-II-2017-IA. Authors also wish to thank the intellectual and technical assistance from the ICTS "NANBIOSIS", more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) at the University of Basque Country UPV/EHU. The Spanish national government provided M.V. studentship (FPU12/05640). Authors thank Dr Jordan Ciciliano and Benjamin Ayd for help with manuscript revisions and fruitful discussions. Authors thank Dr Molly M Morgan and Lara Pancorbo for assistance in developing the artwork for this article.es_ES
dc.language.isoenges_ES
dc.publisherNature Publishinges_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/DPI2015-65401-C3-1-Res_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/BIO2016-79092-Res_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MTM2012-31073es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2015-69967-C3-1es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/Ecsel-78132-Position-II-2017-IAes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectcell encapsulationes_ES
dc.subjectelastic propertieses_ES
dc.subjectmicroscopyes_ES
dc.subjectmicrocapsuleses_ES
dc.subjectbiomaterialses_ES
dc.titleForce spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in coated alginate microsphereses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format. (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-019-56547-zes_ES
dc.identifier.doi10.1038/s41598-019-56547-z
dc.contributor.funderEuropean Commission
dc.departamentoesFarmacia y ciencias de los alimentoses_ES
dc.departamentoeuFarmazia eta elikagaien zientziakes_ES


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Itemaren erregistro erraza erakusten du

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format. (CC BY 4.0)
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da:This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format. (CC BY 4.0)