Show simple item record

dc.contributor.authorKammakakam, Irshad
dc.contributor.authorBara, Jason E.
dc.contributor.authorJackson, Enrique M.
dc.contributor.authorLertxundi, Josu
dc.contributor.authorMecerreyes Molero, David
dc.contributor.authorTomé, Liliana C.
dc.date.accessioned2020-10-08T16:01:22Z
dc.date.available2020-10-08T16:01:22Z
dc.date.issued2020-03-25
dc.identifier.citationACS Sustainable Chemistry & Engineering 8(15) : 5954–5965 (2020)es_ES
dc.identifier.issn2168-0485
dc.identifier.urihttp://hdl.handle.net/10810/46627
dc.descriptionUnformatted post printes_ES
dc.description.abstractPolymeric membranes either containing, or built from, ionic liquids (ILs) are of great interest for enhanced CO2/light gas separation due to the stronger affinity of ILs toward quadrupolar CO2 molecules, and hence, high CO2 solubility selectivity. Herein, we report the development of a series of four novel anionic poly(IL)-IL composite membranes via a photopolymerization method for effective CO2 separation. Interestingly, these are the first examples of anionic poly(IL)-IL composite systems, in which the poly(IL) component has delocalized sulfonimide anions pendant from the polymer backbone with imidazolium cations as “free” counterions. Two types of photopolymerizable methacryloxy-based IL monomers (MILs) with highly delocalized anions (–SO2–N(-)–SO2–CF3 and –SO2–N(-)–SO2–C7H7) and mobile imidazolium ([C2mim]+) counter cations were successfully synthesized and photopolymerized with two distinct amounts of free IL containing the same structural cation ([C2mim][Tf2N]) and 20 wt% PEGDA crosslinker, to serve as a composite matrix. The structure-property relationships of the four newly developed anionic poly(IL)-IL composite membranes were extensively characterized by TGA, DSC, and XRD analysis. All of the newly developed anionic poly(IL)-IL composite membranes exhibited superior CO2/CH4 and CO2/N2 selectivities together with moderate CO2/H2 selectivity and reasonable CO2 permeabilities. The membrane with an optimal composition and polymer architecture (MIL-C7H7/PEGDA(20%)/IL(1eq.)) reaches the 2008 Robeson upper bound limit of CO2/CH4, due to the simultaneous improvement in permeability and selectivity (CO2 permeability ~ 20 barrer and αCO2/CH4 ~119). This study provides a promising strategy to explore the benefits of anionic poly(IL)-IL composites to separate CO2 from flue gas, natural gas, and syngas streams and open up new possibilities in the polymer membrane design with strong candidate materials for practical applications.es_ES
dc.description.sponsorshipPartial support for this work provided by the United States Department of Energy (DE-SC0020282) and NASA Marshall Space Flight Center (80NSSC19K1314), is gratefully acknowledged. Liliana C. Tomé has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 745734.es_ES
dc.language.isoenges_ES
dc.publisherACSes_ES
dc.relationinfo:eu-repo/grantAgreement/H2020/745734es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectAnionic Poly(IL)ses_ES
dc.subjectPhotopolymerizationes_ES
dc.subjectComposite Membraneses_ES
dc.subjectGas Separationes_ES
dc.subjectCO2 Selectivityes_ES
dc.titleTailored CO2-philic Anionic Poly(ionic liquid) Composite Membranes: Synthesis, Characterization and Gas Transport Propertieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2020 American Chemical Societyes_ES
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acssuschemeng.0c00327es_ES
dc.identifier.doi10.1021/acssuschemeng.0c00327
dc.contributor.funderEuropean Commission
dc.departamentoesCiencia y tecnología de polímeroses_ES
dc.departamentoeuPolimeroen zientzia eta teknologiaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record