Biological Responses and Toxicopathic Effects Elicited in Solea Senegalensis Juveniles by Waterborne Exposure to Benzo[a]pyrene
View/ Open
Date
2021-05-11Author
Briaudeau, Tifanie
Alves dos Santos, Luis Alejandro
Zorita Aguirre, Izaskun
Metadata
Show full item record
Marine Environmental Research Volume 170 : (2021) // Article ID 105351
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are priority contaminants in coastal and estuarine ecosystems under
anthropogenic pressure. Although PAHs tend to accumulate in the sediment, toxicity for benthic flat fish such as
soles may be caused by PAHs released from the sediment to the water column. Within this context, the present
investigation aims at recognizing toxicopathic effects elicited after waterborne exposure to benzo[a]pyrene B[a]
P, a model individual PAH compound, in juvenile Solea senegalensis. Sole juveniles were exposed to various
concentrations of waterborne B[a]P for 3 and 7 days. Brain, liver, gills and gonad were the target tissues selected
to determine biochemical and lysosomal biomarkers, and histopathology. Biological responses and toxicopathic
effects were consistent with B[a]P concentration and exposure time. From day 3, hepatic catalase inhibition
indicated potential oxidative effects of B[a]P. At day 7, contaminant exposure produced hepatic glutathione-Stransferase induction at low concentrations and inhibition at higher levels, evidencing a bell-shaped response. A
clear gradient in lysosomal membrane destabilisation was observed in relation with B[a]P concentrations. Histopathological lesions were more frequent at day 7 and at higher contaminant levels. It seems that environmentally relevant waterborne concentrations of B[a]P (1000 ng/l) would suffice to cause toxicopathic effects on
sole juveniles in relatively short exposure times. In agreement, the Integrative Biological Response index (IBR/n)
indicated a dose-dependent decline in health condition upon exposure to B[a]P (IBR/nHighB[a]P > IBR/nMidB[a]P
> IBR/nLowB[a]P > IBR/nDMSO > IBR/nControl). Overall, changes in antioxidant enzymes activity, lysosomal biomarkers and gill and liver histopathology are responsive early-warning signs of health disturbance in sole juveniles exposed to waterborne PAHs.