UPV-EHU ADDI
  • Itzuli
    • English
    • español
    • Basque
  • Nire Dspace
  • Basque 
    • English
    • español
    • Basque
  • FAQ
Item erakusi 
  •   ADDI
  • IKERKUNTZA
  • Ikerketarako Taldeak, Institutuak eta Gune Kolaboratzaileak
  • BCBL
  • BCBL-Publications
  • Item erakusi
  •   ADDI
  • IKERKUNTZA
  • Ikerketarako Taldeak, Institutuak eta Gune Kolaboratzaileak
  • BCBL
  • BCBL-Publications
  • Item erakusi
JavaScript is disabled for your browser. Some features of this site may not work without it.

A LOW RANK AND SPARSE PARADIGM FREE MAPPING ALGORITHM FOR DECONVOLUTION OF FMRI DATA

No Thumbnail [100%x80]
Ikusi/Ireki
A LOW RANK AND SPARSE PARADIGM2021.pdf (6.216Mb)
Data
2021
Egilea
Uruñuela, Eneko
Moia, Stefano
Caballero-Gaudes, César
Metadata
Itemaren erregistro osoa erakusten du
  Estadisticas en RECOLECTA
(LA Referencia)

E. Uruñuela, S. Moia and C. Caballero-Gaudes, "A Low Rank and Sparse Paradigm Free Mapping Algorithm For Deconvolution of FMRI Data," 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, pp. 1726-1729, doi: 10.1109/ISBI48211.2021.9433821
URI
http://hdl.handle.net/10810/52531
Laburpena
Current deconvolution algorithms for functional magnetic resonance imaging (fMRI) data are hindered by widespread signal changes arising from motion or physiological processes (e.g. deep breaths) that can be interpreted incorrectly as neuronal-related hemodynamic events. This work proposes a novel deconvolution approach that simultaneously estimates global signal fluctuations and neuronalrelated activity with no prior information about the timings of the blood oxygenation level-dependent (BOLD) events by means of a low rank plus sparse decomposition algorithm. The performance of the proposed method is evaluated on simulated and experimental fMRI data, and compared with state-of-the-art sparsity-based deconvolution approaches and with a conventional analysis that is aware of the temporal model of the neuronal-related activity. We demonstrate that the novel low-rank and sparse paradigm free mapping algorithm can estimate global signal fluctuations related to motion in our task, while estimating the neuronal-related activity with high fidelity.
Collections
  • BCBL-Publications

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Zerrendatu

Gordailu osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakDepartamentos (cas.)Departamentos (eus.)MateriakBilduma hauArgitalpen dataren araberaEgileakIzenburuakDepartamentos (cas.)Departamentos (eus.)Materiak

Nire kontua

Sartu

Estatistikak

Ikusi erabilearen inguruko estatistikak

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

NoThumbnail