Show simple item record

dc.contributor.authorXu, Zhen
dc.contributor.authorCliment, Claudia
dc.contributor.authorBrown, Christopher M.
dc.contributor.authorHean, Duane
dc.contributor.authorBardeen, Christopher J.
dc.contributor.authorCasanova Casas, David
dc.contributor.authorWolf, Michael O.
dc.date.accessioned2021-08-02T07:42:46Z
dc.date.available2021-08-02T07:42:46Z
dc.date.issued2021-01-07
dc.identifier.citationChemical Science 12(1) : 188-195 (2021)es_ES
dc.identifier.issn2041-6520
dc.identifier.issn2041-6539
dc.identifier.urihttp://hdl.handle.net/10810/52613
dc.description.abstractSulfur oxidation state is used to tune organic room temperature phosphorescence (RTP) of symmetric sulfur-bridged carbazole dimers. The sulfide-bridged compound exhibits a factor of 3 enhancement of the phosphorescence efficiency, compared to the sulfoxide and sulfone-bridged analogs, despite sulfone bridges being commonly used in RTP materials. In order to investigate the origin of this enhancement, temperature dependent spectroscopy measurements and theoretical calculations are used. The RTP lifetimes are similar due to similar crystal packing modes. Computational studies reveal that the lone pairs on the sulfur atom have a profound impact on enhancing intersystem crossing rate through orbital mixing and screening, which we hypothesize is the dominant factor responsible for increasing the phosphorescence efficiency. The ability to tune the electronic state without altering crystal packing modes allows the isolation of these effects. This work provides a new perspective on the design principles of organic phosphorescent materials, going beyond the rules established for conjugated ketone/sulfone-based organic molecules.es_ES
dc.description.sponsorshipM. O. W. acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding. D. C. acknowledges.nancial support from the Spanish Government MINECO/FEDER (project PID2019-109555GB-I00) and the Eusko Jaurlaritza (Basque Government, projects IT1254-19 and PIBA19-0004). C. C. is indebted to the European Research Council (ERC-2016-STG-714870) for a postdoctoral contract. C. J. B. acknowledges support by the National Science Foundation grant CHE-1800187es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society Of Chemistryes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/PID2019-109555GB-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/714870es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectcomplexeses_ES
dc.subjectpersistentes_ES
dc.subjectemissiones_ES
dc.subjectdesignes_ES
dc.subjectdimerses_ES
dc.titleControlling ultralong room temperature phosphorescence in organic compounds with sulfur oxidation statees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs-rsc-org.ehu.idm.oclc.org/en/content/articlelanding/2021/SC/D0SC04715Ees_ES
dc.identifier.doi10.1039/d0sc04715e
dc.contributor.funderEuropean Commission


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)