Show simple item record

dc.contributor.authorZia Ud Din, Amir Ali
dc.contributor.authorDe la Sen Parte, Manuel ORCID
dc.contributor.authorZaman, Gul
dc.date.accessioned2022-02-17T10:18:30Z
dc.date.available2022-02-17T10:18:30Z
dc.date.issued2022-02-02
dc.identifier.citationScientific Reports 12 :: (2022) // Article ID 1791es_ES
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10810/55503
dc.description.abstractThe performance and thermal properties of convective-radiative rectangular and moving exponential porous fins with variable thermal conductivity together with internal heat generation are investigated. The second law of thermodynamics is used to investigate entropy generation in the proposed fins. The model is numerically solved using shooting technique. It is observed that the entropy generation depends on porosity parameter, temperature ratio, temperature distribution, thermal conductivity and fins structure. It is noted that entropy generation for a decay exponential fin is higher than that of a rectangular fin which is greater than that of a growing exponential fin. Moreover, entropy generation decreases as thermal conductivity increases. The results also reveal that entropy generation is maximum at the fin's base and the average entropy production depends on porosity parameters and temperature ratio. It is further reveal that the temperature ratio has a smaller amount of influence on entropy as compared to porosity parameter. It is concluded that when the temperature ratio is increases from 1.1 to 1.9, the entropy generation number is also increase by 30% approximately. However, increasing porosity from 1 to 80 gives 14-fold increase in average entropy generation.es_ES
dc.description.sponsorshipThe authors are grateful to the government of Spain for its support through grant RTI2018-094336-B-100 (MCIU/AEI/FEDER, UE) and to the Government of Basque for its support through Grant IT1207-19.es_ES
dc.language.isoenges_ES
dc.publisherNaturees_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/RTI2018-094336-B-100es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectlongitudinal finses_ES
dc.subjecttemperaturees_ES
dc.subjectprofilees_ES
dc.subjectdesignes_ES
dc.titleEntropy generation from convective–radiative moving exponential porous fins with variable thermal conductivity and internal heat generationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-022-05507-1es_ES
dc.identifier.doi10.1038/s41598-022-05507-1
dc.departamentoesElectricidad y electrónicaes_ES
dc.departamentoeuElektrizitatea eta elektronikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.