UPV-EHU ADDI
  • Itzuli
    • English
    • español
    • Basque
  • Nire Dspace
  • Basque 
    • English
    • español
    • Basque
  • FAQ
Item erakusi 
  •   ADDI
  • IKERKUNTZA
  • Master Tesiak
  • Konputazio Ingeniaritza eta Sistema Adimentsuak Unibertsitate Masterra
  • Item erakusi
  •   ADDI
  • IKERKUNTZA
  • Master Tesiak
  • Konputazio Ingeniaritza eta Sistema Adimentsuak Unibertsitate Masterra
  • Item erakusi
JavaScript is disabled for your browser. Some features of this site may not work without it.

Selection of critical nodes in drone airways graphs via graph neural networks

Thumbnail
Ikusi/Ireki
Memoria (2.152Mb)
Data
2022-12-23
Egilea
Moráis Quílez, Igone
Metadata
Itemaren erregistro osoa erakusten du
  Estadisticas en RECOLECTA
(LA Referencia)

URI
http://hdl.handle.net/10810/58986
Laburpena
This Master Thesis has two distinct parts. The first one mod- els an application of Graph Neural Networks (GNN) for the identifica- tion of critical nodes in graphs that correspond to traffic networks. We call critical nodes those that can compromise the traffic flow in some subgraphs of the network. Specifically, the example data for the demon- stration corresponds to the Vienna subway network, hence the linear subgraphs correspond to the subway lines with intersections at some key subway stations. Those critical nodes relative to a subway line compro- mise the traffic flow at this line, therefore, we propose three GNN based approaches for the identification of such critical nodes, reporting encour- aging results. The second part of the Master Thesis illustrates the back- ground research work on drone airspace management and a discussion of how the reported results may have some relevance for this emerging dif- ficult problem. The main idea is that the urban airspace for drones, that may be carrying out delivery of either persons (aerotaxis) or goods, can be structured along airways that mimic the existing network of streets. The computational example explored in part one of the Master Thesis, thus, becomes relevant for the development of intelligent drone airspace management.
Collections
  • Konputazio Ingeniaritza eta Sistema Adimentsuak Unibertsitate Masterra

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Zerrendatu

Gordailu osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakDepartamentos (cas.)Departamentos (eus.)MateriakBilduma hauArgitalpen dataren araberaEgileakIzenburuakDepartamentos (cas.)Departamentos (eus.)Materiak

Nire kontua

Sartu

Estatistikak

Ikusi erabilearen inguruko estatistikak

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka