Show simple item record

dc.contributor.authorGoujon, Nicolas
dc.contributor.authorLahnsteiner, Marianne
dc.contributor.authorCerrón Infantes, Daniel A.
dc.contributor.authorMoura, Hipassia M.
dc.contributor.authorMantione, Daniele
dc.contributor.authorUnterlass, Miriam M.
dc.contributor.authorMecerreyes Molero, David
dc.date.accessioned2023-03-23T16:21:41Z
dc.date.available2023-03-23T16:21:41Z
dc.date.issued2023-03
dc.identifier.citationMaterials Horizon 10(3) : 967-976 (2023)es_ES
dc.identifier.issn2051-6347
dc.identifier.issn2051-6355
dc.identifier.urihttp://hdl.handle.net/10810/60468
dc.description.abstractEnergy storage will be a primordial actor of the ecological transition initiated in the energy and transport sectors. As such, innovative approaches to design high-performance electrode materials are crucial for the development of the next generation of batteries. Herein, a novel dual redox-active and porous polyimide network (MTA-MPT), based on mellitic trianhydride (MTA) and 3,7-diamino-N-methylphenothiazine (MPT) monomers, is proposed for applications in both high energy density lithium batteries and symmetric all-organic batteries. The MTA-MPT porous polyimide was synthesized using a novel environmentally-friendly hydrothermal polymerization method. Rooted in its dual redox proprieties, the MTA-MPT porous polyimide exhibits a high theoretical capacity making it a very attractive cathode material for high energy density battery applications. The cycling performance of this novel electrode material was assessed in both high energy density lithium batteries and light-weight symmetric all-organic batteries, displaying excellent rate capability and long-term cycling stability.es_ES
dc.description.sponsorshipN. Goujon acknowledges the funding from the European Union's Horizon 2020 framework programme under the Marie Sklodowska-Curie agreement No. 101028682. M. Lahnsteiner, H. M. Moura, D. A. Cerron-Infantes and M. M. Unterlass acknowledge funding through the Austrian Science Fund's (FWF) START programme under grant no. Y1037-N28. We thank Dr Jerpme Roeser and Prof. Arne Thomas (TU Berlin) for gas sorption measurements.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/101028682es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleDual redox-active porous polyimides as high performance and versatile electrode material for next-generation batterieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© The Royal Society of Chemistry 2023. This article is licensed under a Creative Commons Attribution 3.0 Unported Licencees_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.rsc.org/en/content/articlelanding/2023/MH/D2MH01335Ees_ES
dc.identifier.doi10.1039/d2mh01335e
dc.contributor.funderEuropean Commission
dc.departamentoesQuímica aplicadaes_ES
dc.departamentoeuKimika aplikatuaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Royal Society of Chemistry 2023. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence
Except where otherwise noted, this item's license is described as © The Royal Society of Chemistry 2023. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence