Show simple item record

dc.contributor.authorGoikuria, Uribarri
dc.contributor.authorLizundia Fernández, Erlantz ORCID
dc.date.accessioned2020-01-17T19:28:00Z
dc.date.available2020-01-17T19:28:00Z
dc.date.issued2019
dc.identifier.citationEkaia 35 : 119-142 (2019)
dc.identifier.issn0214-9001
dc.identifier.urihttp://hdl.handle.net/10810/39016
dc.description.abstractNowadays, most of the commonly used polymers are derived from petrochemical resources, representing serious environmental issues due their non-biodegradability. In this framework, governments and different industrial sectors are stablishing regulations and standards towards a transition to a green economy and for the prospective development of environmentally sustainable products. As a consequence, the in-terest on biodegradable polymers is rapidly increasing. Among the different kind of biodegradable polymers, cellulose derived ones represent an outstanding opportunity due to their natural origin, their abundance in nature and their special properties. Eventhough cellulose and its charac-teristics are well known, currently cellulose derived nanoscale materials are being thoroughly studied due to the extraordinary properties that these materials are showing. Different types of nanocellulose could be synthesize, such as cellulose nanofibers (CNF), cellulose nanocrystals (CNC) and bacterial nanocellulose (BNC). Each nanocellulose type has their particular features, unusual properties, a wide range of applica-tion fields and thus an extraordinary future is expected for these materials. In this line, according not only to the application and considering the internal structure distribution, nanocellulose could be obtained into different shapes, such as hydrogels, aerogels or films. Particularly, nanocel-lulose based aerogels are providing extraordinary results owing to the low weight and density, high porosity and good mechanical properties, among other unusual properties. Combining these properties with the biocompatibility, non toxicity and biodegradability, nanocellulose repre-sents a good chance to achieve fabulous materials with great functionalization and customization possibilities. As a consequence of this customi-zation posibilities and these great properties, nanocellulose and nanocellulose based materials are being used in environment, energy, bio-health, packaging and food industry or transport sector among other aplication fields.; Gaur egungo plastiko erabilienak oraindik petroliotik deribatutako polimero eta lehengaietan oinarrituta daude, horrek ingu-rumenean duen eragina eta guzti, material horiek biodegradagarriak ez direlako, besteak beste. Egoera honetan, erakunde eta industria sektore askotan, gero eta erregulazio eta estandar gehiago ezartzen ari dira, produktu jasankorragoak eta ingurumenarekiko aproposagoak garatzea bultzatzeko helburuan. Honen eraginez, polimero biodegradagarrien inguruan interes handia piztu da, eta material horien aukerak sakonki ikertzen ari dira. Polimero biodegradagarri mota desberdinak daude eta horrez gain, polimero berriak aurkitzeko eta garatzeko asmoarekin, oinarrizko materialen inguruan aukera desberdinak aztertzen ari dira. Ikerketa zabal honi esker, material polimeriko biodegradagarrien ar-loan propietate berri eta interesgarriak agertzen ari dira eta honekin lotuta aplikazioa askotarako aukerak. Material biodegradagarrien artean, zelulosatik deribatutakoak nabarmendu daitezke; zelulosak jatorri naturala du, material oparoenetariko bat da eta ezaugarri apartak azaltzen ditu. Zelulosa eta horren propietate bereziak aspaldi ezagunak diren arren, gaur egun ikerkuntza-arlo emankor bat zabaldu da zelulosatik sin-tetizatutako eskala nanometrikoko materialen inguruan, material horiek agertzen dituzten propietate ikusgarrien eta funtzionalizazio-aukeren ondorioz. nanozelulosa mota desberdinak lor daitezke, zelulosa-nanozuntzak (ZNZak), zelulosa-nanokristal (ZNKak) eta nanozelulosa bakte-rianoa (NZBa). Nanozelulosa mota bakoitzak xehetasun partikularrak ditu, propietate bereziak eta berezitasun hauen ondorioz aplikazio arlo ugari agertzen ari dira, etorkizun nabarmena eskainiz. Bestalde, aplikazioaren arabera ez ezik materialak oinarrizko egituraren distribuzioaren arabera sailkatzen baditugu, nanozelulosan oinarritutako materialak hidrogel, aerogel edo film bezala aurkitu dezakegu. Zehazki, nanozelu-losan oinarritutako aerogelak emaitza ikusgarriak ematen ari dira, horien pisu arin eta dentsitate baxu, porositate altu eta propietate mekaniko paregabeen ondorioz besteak beste. Propietate horri zelulosaren biobateragarritasuna, toxikotasunik eza eta biodegradagarritasuna gehitzen badizkiogu, material interesgarriak lor daitezke, funtzionalizazio- eta kustomizazio-aukera zabalak dituztenak. Pertsonalizazio-aukeren eta ezaugarri aparten ondorioz, nanozelulosa eta nanozelulosan oinarritutako materialak zenbait sektoretan hasi dira erabiltzen; besteak beste in-gurumenean, energian, biomedikuntzan, enbalatze eta elikadura industrietan edo garraioan.
dc.language.isoeus
dc.publisherServicio Editorial de la Universidad del País Vasco/Euskal Herriko Unibertsitatearen Argitalpen Zerbitzua
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.titleZelulosa-nanokristaletan oinarritutako material nanokonposatuak
dc.typeinfo:eu-repo/semantics/article
dc.rights.holder© 2019 UPV/EHU Attribution-NonCommercial-ShareAlike 4.0 International
dc.identifier.doi10.1387/ekaia.19675


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2019 UPV/EHU Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as © 2019 UPV/EHU Attribution-NonCommercial-ShareAlike 4.0 International