Show simple item record

dc.contributor.authorCassou-Noguès, P. I.
dc.date.accessioned2020-01-29T15:29:15Z
dc.date.available2020-01-29T15:29:15Z
dc.date.issued2006
dc.identifier.citationTheoria 21(1) : 89-104 (2006)
dc.identifier.issn2171-679X
dc.identifier.urihttp://hdl.handle.net/10810/39302
dc.description.abstractThis paper is concerned with Cavaillès¿ account of ¿intuition¿ in mathematics. Cavaillès starts from Kant¿s theory of constructions in intuition and then relies on various remarks by Hilbert to apply it to modern mathematics. In this context, ¿intuition¿ includes the drawing of geometrical figures, the use of algebraic or logical signs and the generation of numbers as, for example, described by Brouwer. Cavaillès argues that mathematical practice can indeed be described as ¿constructions in intuition¿ but that these constructions are not imbedded in the space and in the time of our Sensibility, as Kant believed: They take place in other structures which are engendered in the history of mathematics. This leads Cavaillès to a critical discussion of both Hilbert¿s and Brouwer¿s foundational programs
dc.language.isoeng
dc.publisherServicio Editorial de la Universidad del País Vasco/Euskal Herriko Unibertsitatearen Argitalpen Zerbitzua
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleSigns, figures and time: Cavaillès on "intuition" in mathematics
dc.typeinfo:eu-repo/semantics/article
dc.rights.holder© 2006, Servicio Editorial de la Universidad del País Vasco Euskal Herriko Unibertsitateko Argitalpen Zerbitzua


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record