Show simple item record

dc.contributor.authorCasini, Lorenzo
dc.contributor.authorIllari, Phyllis Mckay
dc.contributor.authorRusso, Federica
dc.contributor.authorWilliamson, Jon
dc.date.accessioned2020-01-29T17:37:30Z
dc.date.available2020-01-29T17:37:30Z
dc.date.issued2011
dc.identifier.citationTheoria 26(1) : 5-33 (2011)
dc.identifier.issn2171-679X
dc.identifier.urihttp://hdl.handle.net/10810/39454
dc.description.abstractThe Recursive Bayesian Net (RBN) formalism was originally developed for modelling nested causal relationships. In this paper we argue that the formalism can also be applied to modelling the hierarchical structure of mechanisms. The resulting network contains quantitative information about probabilities, as well as qualitative information about mechanistic structure and causal relations. Since information about probabilities, mechanisms and causal relations is vital for prediction, explanation and control respectively, an RBN can be applied to all these tasks. We show in particular how a simple two-level RBN can be used to model a mechanism in cancer science. The higher level of our model contains variables at the clinical level, while the lower level maps the structure of the cell's mechanism for apoptosis.
dc.language.isoeng
dc.publisherServicio Editorial de la Universidad del País Vasco/Euskal Herriko Unibertsitatearen Argitalpen Zerbitzua
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleModels for prediction, explanation and control: recursive bayesian networks
dc.typeinfo:eu-repo/semantics/article
dc.rights.holder© 2011, Servicio Editorial de la Universidad del País Vasco Euskal Herriko Unibertsitateko Argitalpen Zerbitzua


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record