A Model of Evolutionay Drift
Abstract
Drift appears to be crucial to study the stability properties of Nash equilibria in a component specifying different out-of-equilibrium behaviour. We propose a new microeconomic model of drift to be added to the learning process by which agents find their way to equilibrium. A key feature of the model is the sensitivity of the noisy agent to the proportion of agents in his player population playing the same strategy as his current one. We show that, 1. Perturbed Payoff-Positive and PayoffMonotone selection dynamics are capable of stabilizing pure non strict Nash equilibria in either singleton or nonsingleton component of equilibria; 2. The model is relevant to understand the role of drift in the behaviour observed in the laboratory for the Ultimatum Game and for predicting outcomes that can be experimentally tested. Hence, the selection dynamics model perturbed with the proposed drift may be seen as well as a new learning tool to understand observed behaviour.