Show simple item record

dc.contributor.authorSantana Hermida, Roberto ORCID
dc.contributor.authorMendiburu Alberro, Alexander
dc.contributor.authorLozano Alonso, José Antonio
dc.date.accessioned2012-07-06T09:23:56Z
dc.date.available2012-07-06T09:23:56Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10810/8282
dc.description.abstractIn this paper we empirically investigate which are the structural characteristics that can help to predict the complexity of NK-landscape instances for estimation of distribution algorithms. To this end, we evolve instances that maximize the estimation of distribution algorithm complexity in terms of its success rate. Similarly, instances that minimize the algorithm complexity are evolved. We then identify network measures, computed from the structures of the NK-landscape instances, that have a statistically significant difference between the set of easy and hard instances. The features identified are consistently significant for different values of N and K.es
dc.language.isoenges
dc.relation.ispartofseriesEHU-KZAA-TR;2012-03
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectEBNAes
dc.subjectEDAses
dc.subjectNK-landscapeses
dc.subjectnetwork measureses
dc.subjectproblem difficultyes
dc.titleUsing network mesures to test evolved NK-landscapeses
dc.typeinfo:eu-repo/semantics/reportes
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record