Show simple item record

dc.contributor.authorGonzález de Durana García, José María
dc.contributor.authorGracia Melero, Juan Miguel
dc.date.accessioned2014-02-28T11:55:55Z
dc.date.available2014-02-28T11:55:55Z
dc.date.issued2002-07
dc.identifier.citationLinear algebra and its applications 349(1-3) : 77-104 (2002)es
dc.identifier.issn0024-3795
dc.identifier.urihttp://hdl.handle.net/10810/11687
dc.descriptionAMS Classification: 15A18, 15A21, 15A60.es
dc.description.abstractLet G be a square complex matrix with less than k nonconstant invariant factors. We find a complex matrix that gives an optimal approximation to G among all possible matrices that have more than or equal to k invariant factors, obtained by varying only the entries of a bottom right submatrix of G.es
dc.description.sponsorshipSupported by the Ministerio de Educación y Cultura (DGESIC), Proyecto PB97-0599-CO3-01.es
dc.language.isoenges
dc.publisherElsevieres
dc.relationinfo:eu-repo/grantAgreement/MEC/PB97-0599-CO3-01
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectinvariant factorses
dc.subjectderogatory eigenvaluees
dc.subjectsingular valueses
dc.subjectstructured pseudospectrumes
dc.subjectsubmatrixes
dc.subject.classification15A18
dc.subject.classification15A21
dc.subject.classification15A60
dc.titleGeometric multiplicity margin for a submatrixes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© Elsevier Science Inc. All rights reservedes
dc.relation.publisherversionhttp://www.journals.elsevier.com/linear-algebra-and-its-applications/es
dc.identifier.doi10.1016/S0024-3795(01)00612-7
dc.departamentoesIngeniería de sistemas y automáticaes_ES
dc.departamentoeuSistemen ingeniaritza eta automatikaes_ES
dc.subject.categoriaALGEBRA AND NUMBER THEORY
dc.subject.categoriaNUMERICAL ANALYSIS
dc.subject.categoriaGEOMETRY AND TOPOLOGY
dc.subject.categoriaDISCRETE MATHEMATICS AND COMBINATORICS


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record