UPV-EHU ADDI
  • Back
    • English
    • Español
    • Euskera
  • Login
  • English 
    • English
    • Español
    • Euskera
  • FAQ
View Item 
  •   Home
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
  •   Home
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Necessary and Sufficient Condition for a Set of Matrices to Commute and Some Further Linked Results

Thumbnail
View/Open
650970.pdf (627.1Kb)
Date
2009
Author
De la Sen Parte, Manuel
Metadata
Show full item record
Mathematical Problems in Engineering 2009 : (2009) // Article ID 650970
URI
http://hdl.handle.net/10810/2194
Abstract
This paper investigates the necessary and sufficient condition for a set of (real or complex) matrices to commute. It is proved that the commutator [A,B]=0 for two matrices A and B if and only if a vector v(B) defined uniquely from the matrix B is in the null space of a well-structured matrix defined as the Kronecker sum A⊕(−A∗), which is always rank defective. This result is extendable directly to any countable set of commuting matrices. Complementary results are derived concerning the commutators of certain matrices with functions of matrices f(A) which extend the well-known sufficiency-type commuting result [A,f(A)]=0.
Collections
  • Artículos

DSpace software copyright © 2002-2015  DuraSpace
OpenAIRE
OpenAIRE
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
OpenAIRE
OpenAIRE