UPV-EHU ADDI
  • Back
    • English
    • español
    • Basque
  • Login
  • English 
    • English
    • español
    • Basque
  • FAQ
View Item 
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On minimal realizations and minimal partial realizations of linear time-invariant systems subject to point incommensurate delays

Thumbnail
View/Open
790530.pdf (606.4Kb)
Date
2008
Author
De la Sen Parte, Manuel ORCID
Metadata
Show full item record
  Estadisticas en RECOLECTA
(LA Referencia)

Mathematical Problems in Engineering 2008 : (2008) // Article ID 790530
URI
http://hdl.handle.net/10810/2433
Abstract
This paper investigates key aspects of realization and partial realization theories for linear time-invariant systems being subject to a set of incommensurate internal and external point delays. The results are obtained based on the use of formal Laurent expansions whose coefficients are polynomial matrices of appropriate orders and which are also appropriately related to truncated and infinite block Hankel matrices. The above-mentioned polynomial matrices arise in a natural way from the transcendent equations associated with the delayed dynamics. The results are linked to the properties of controllability and observability of dynamic systems. Some related overview is given related to robustness concerned with keeping the realization properties under mismatching between a current transfer matrix and a nominal one
Collections
  • Artículos

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Browse

All of ADDICommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka