Show simple item record

dc.contributor.authorSadaba Larraona, Naroa
dc.contributor.authorFernández San Martín, Mercedes
dc.contributor.authorCalafel Martínez, Miren Itxaso ORCID
dc.contributor.authorSarasua Oiz, José Ramón ORCID
dc.contributor.authorMuñoz Ugartemendia, Jone
dc.contributor.authorZuza Hernández, Ester
dc.date.accessioned2018-03-15T18:16:31Z
dc.date.available2018-03-15T18:16:31Z
dc.date.issued2018
dc.identifier.citationCASEIB 2017: XXXV Congreso anual de la Sociedad Española de Ingeniería Biomédica: Libro de actas, Bilbao 29 de Noviembre - 1 de Diciembre : 451-454 (2018)es_ES
dc.identifier.isbn978-84-9082-797-0
dc.identifier.urihttp://hdl.handle.net/10810/25712
dc.description.abstractThe so called “Additive manufacturing” is a new manufacturing process which consists in translating virtual solid model data into physical models in a quick and easy process. The most known example is 3D printing. In the present work, this novel technology will be used to print scaffolds with biomaterials. Due to the problems that arise when controlling the clinical course of an implant, graft or polymer inside the human body, an innovative idea has emerged: it consists in incorporating particles of barium sulfate in order to increase the radiopacity of the polylactide (PLLA) and thus making these materials visible to X-rays. Accordingly, BaSO4 loaded PLLA composites were prepared via melt-blending and then injected for further characterization by thermal transitions, mechanical properties, morphology and radiopacity. X-ray analyses confirmed the enhanced radiopacity of the BaSO4 filled composites in comparison to their unfilled counterparts. It is demonstrated that the loads not only contribute to the material's radiopacity, but also dramatically improve its ductility. As an illustration, the incorporation of 10 wt.% of BaSO4 particles resulted in an outstanding 1647% and 3338% increase in toughness and elongation of PLLA matrix, respectively. In view of the good properties of these materials, they will be used for 3D printing. Through this technique it can be molded with any shape in a matter of minutes, making the use of this technology appealing for further innovations.es_ES
dc.description.sponsorshipAuthors are thankful for funds of Basque Government (GV/EJ) Department of Education (IT-927-16) and from MINECO (MAT 2016-78527-P). N. Sadaba is thankful for the predoctoral fellowship to POLYMAT Fundazioa- Basque Center for Macromolecular Design and Engineering.es_ES
dc.language.isoenges_ES
dc.publisherServicio Editorial de la Universidad del País Vasco/Euskal Herriko Unibertsitatearen Argitalpen Zerbitzuaes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2016-78527-Pes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.titleRadiopaque Material for 3D Printing Scaffoldses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holderAtribución-NoComercial-CompartirIgual 3.0 España*
dc.departamentoesCiencia y tecnología de polímeroses_ES
dc.departamentoesIngeniería Minera y Metalúrgica y Ciencia de los Materialeses_ES
dc.departamentoeuMeatze eta metalurgia ingeniaritza materialen zientziaes_ES
dc.departamentoeuPolimeroen zientzia eta teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 3.0 España