Show simple item record

dc.contributor.authorSancho Vaello, Enea
dc.contributor.authorFrançois, Patrice
dc.contributor.authorBonetti, Eve-Julie
dc.contributor.authorLilie, Hauke
dc.contributor.authorFinger, Sebastian
dc.contributor.authorGil-Ortiz, Fernando
dc.contributor.authorGil-Carton, David
dc.contributor.authorZeth, Kornelius
dc.date.accessioned2018-04-23T14:33:16Z
dc.date.available2018-04-23T14:33:16Z
dc.date.issued2017-11-13
dc.identifier.citationScientific Reports 7 : (2017) // Article ID 15371es_ES
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10810/26554
dc.description.abstractAntimicrobial peptides as part of the mammalian innate immune system target and remove major bacterial pathogens, often through irreversible damage of their cellular membranes. To explore the mechanism by which the important cathelicidin peptide LL-37 of the human innate immune system interacts with membranes, we performed biochemical, biophysical and structural studies. The crystal structure of LL-37 displays dimers of anti-parallel helices and the formation of amphipathic surfaces. Peptide-detergent interactions introduce remodeling of this structure after occupation of defined hydrophobic sites at the dimer interface. Furthermore, hydrophobic nests are shaped between dimer structures providing another scaffold enclosing detergents. Both scaffolds underline the potential of LL-37 to form defined peptide-lipid complexes in vivo. After adopting the activated peptide conformation LL-37 can polymerize and selectively extract bacterial lipids whereby the membrane is destabilized. The supramolecular fibril-like architectures formed in crystals can be reproduced in a peptide-lipid system after nanogold-labelled LL-37 interacted with lipid vesicles as followed by electron microscopy. We suggest that these supramolecular structures represent the LL-37-membrane active state. Collectively, our study provides new insights into the fascinating plasticity of LL-37 demonstrated at atomic resolution and opens the venue for LL-37-based molecules as novel antibiotics.es_ES
dc.description.sponsorshipWe would like to thank Sandra Delgado for the technical help in the preparation of the cryoEM vitrified grids and Dr. Isabel Uson and Dr. Ivan De Marino for the Arcimboldo software and valuable help. Funding was provided by the Unidad de Biofisica and the IKERBASQUE and MINECO science foundations.es_ES
dc.language.isoenges_ES
dc.publisherNature Publishinges_ES
dc.relationinfo:eu-repo/grantAgreement/MINECOes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectcationic antimicrobial peptideses_ES
dc.subjecthost-defensees_ES
dc.subjectll-37es_ES
dc.subjectrefinementes_ES
dc.subjectporees_ES
dc.subjectantibacteriales_ES
dc.subjectarcimboldoes_ES
dc.subjectresolutiones_ES
dc.subjectsecondaryes_ES
dc.subjectmicelleses_ES
dc.titleStructural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active specieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre- ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per- mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-017-14206-1es_ES
dc.identifier.doi10.1038/s41598-017-14206-1
dc.departamentoesBioquímica y biología moleculares_ES
dc.departamentoeuBiokimika eta biologia molekularraes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre- ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per- mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/