dc.contributor.advisor | García-Alonso Montoya, Alejandro  | |
dc.contributor.advisor | Sánchez Tapia, Jairo Roberto | |
dc.contributor.author | Barrena Orueechebarria, Nagore | |
dc.date.accessioned | 2019-04-17T12:43:31Z | |
dc.date.available | 2019-04-17T12:43:31Z | |
dc.date.issued | 2019-02-22 | |
dc.date.submitted | 2019-02-22 | |
dc.identifier.uri | http://hdl.handle.net/10810/32551 | |
dc.description | 114 p. | es_ES |
dc.description.abstract | This thesis starts with a proposal for a collaborative global visual localization system. Then, it centres in a specific visual localisation problem: perspective distortion in template matching.The thesis enriches 3D point cloud models with a surface normal associated with each 3D point. These normals are computed using a minimization algorithm.Based in this new model, the thesis proposes an algorithm to increase the accuracy of visual localisation. The algorithm improves for template matching processes using surface normals.The hypothesis, `Given a 3D point cloud, surface orientation of the 3D points in a template matching process increases the number of inliers points found by the localisation system, that is, perspective compensation.' is objectively proved using a ground truth model.The ground truth is achieved through the design of a framework which using computer vision and computer graphics techniques carries out experiments without the noise of a real system, and prove in an objective way the hypothesis. | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | artificial intelligence | es_ES |
dc.subject | informatics | es_ES |
dc.subject | simulation | es_ES |
dc.subject | inteligencia artificial | es_ES |
dc.subject | informática | es_ES |
dc.subject | simulación | es_ES |
dc.title | Camera perspective distortion in model-based visual localisation. | es_ES |
dc.type | info:eu-repo/semantics/doctoralThesis | es_ES |
dc.rights.holder | Atribución 3.0 España | * |
dc.rights.holder | (cc)2019 NAGORE BARRENA ORUEECHEVARRIA (cc by 4.0) | |
dc.identifier.studentID | 348359 | es_ES |
dc.identifier.projectID | 17839 | es_ES |
dc.departamentoes | Ciencia de la computación e inteligencia artificial | es_ES |
dc.departamentoeu | Konputazio zientziak eta adimen artifiziala | es_ES |