UPV-EHU ADDI
  • Back
    • English
    • español
    • Basque
  • Login
  • English 
    • English
    • español
    • Basque
  • FAQ
View Item 
  •   ADDI
  • INVESTIGACIÓN
  • Publicaciones - UPV/EHU
  • Servicio Editorial UPV/EHU
  • Revistas
  • Ekaia
  • (2016) Número 29
  • View Item
  •   ADDI
  • INVESTIGACIÓN
  • Publicaciones - UPV/EHU
  • Servicio Editorial UPV/EHU
  • Revistas
  • Ekaia
  • (2016) Número 29
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

J48Consolidated WEKA paketea, adibide ezohikoen patroiak identifikatzeko tresna

Thumbnail
View/Open
14666-54781-2-PB.pdf (3.449Mb)
Date
2016
Author
Ibarguren Arrrieta, Igor
Pérez de la Fuente, Jesús María
Metadata
Show full item record
Ekaia 29 : 155-178 (2016)
URI
http://hdl.handle.net/10810/38896
Abstract
Artikulu honetan WEKA ikasketa automatikorako tresnarako CTC algoritmoaren inplementazioa, J48Consolidated paketea, aurkezten da. CTC algoritmoak lagin multzo bat sortzen du eta lagin guztietan dagoen ezagutza kontuan hartuta sailkapen zuhaitz bakarra eraikitzeko gai da, kasu berrien sailkapenaren azalpena galdu gabe. Gainera, lan honetan J48Consolidated-ek sortutako zuhaitzen emaitzak aztertuko dira errealitateko 36 sailkapen problematarako, laginketa mota desberdinetan oinarrituta, eta jatorrizko laginaren estaldura-maila desberdinekin. Emaitzek erakusten dute estaldura maila altuek orokorrean sailkatzeko gaitasuna handitzen dutela eta %75-eko lagin estratifikatuak erabiltzea aukerarik lehiakorrena dela problema hauetan.; This article presents the implementation of the CTC algorithm for the WEKA machine learning tool, the J48Consolidated package. The CTC algorithm creates a set of samples and taking the knowledge of all samples into account, is able to build a single classification tree, keeping the explanation of how new examples are classified. In addition, this work analyzes the results achieved by trees built by J48Con- solidated on 36 real world problems, using multiple sampling strategies and with dif- ferent coverage values of the original sample. Results show that higher coverage values increase discriminating capacity and using stratified subsamples reduced to a 75% of the size give the most competitive results on these datasets.
Collections
  • (2016) Número 29

DSpace software copyright © 2002-2016  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Browse

All of ADDICommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
OpenAIRE
EHU Bilbioteka