Show simple item record

dc.contributor.authorBaldini, Edoardo
dc.contributor.authorDomínguez, Adriel
dc.contributor.authorPalmieri, Tania
dc.contributor.authorCannelli, Oliviero
dc.contributor.authorRubio Secades, Angel
dc.contributor.authorRuello, Pascal
dc.contributor.authorChergui, Majed
dc.date.accessioned2020-02-25T13:42:59Z
dc.date.available2020-02-25T13:42:59Z
dc.date.issued2019-11
dc.identifier.citationScience Advances 5(11) : (2019) // Article ID eaax2937es_ES
dc.identifier.issn2375-2548
dc.identifier.urihttp://hdl.handle.net/10810/41435
dc.description.abstractControlling the excitonic optical properties of room temperature semiconductors using time-dependent perturbations is key to future optoelectronic applications. The optical Stark effect in bulk and low-dimensional materials has recently shown exciton shifts below 20 meV. Here, we demonstrate dynamical tuning of the exciton properties by photoinduced coherent acoustic phonons in the cheap and abundant wide-gap semiconductor anatase titanium dioxide (TiO2) in single crystalline form. The giant coupling between the excitons and the photoinduced strain pulses yields a room temperature exciton shift of 30 to 50 meV and a marked modulation of its oscillator strength. An advanced ab initio treatment of the exciton-phonon interaction fully accounts for these results, and shows that the deformation potential coupling underlies the generation and detection of the giant acoustic phonon modulations.es_ES
dc.description.sponsorshipWe acknowledge support by the Swiss NSF via the NCCR:MUST and R'EQUIP and by the European Research Council Advanced Grant DYNAMOX. This project has received funding from the European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement no. 753874.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Association for the Advancement of Sciencees_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/753874es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.subjectquantum-well structureses_ES
dc.subjectgenerationes_ES
dc.subjectdynamicses_ES
dc.subjectphononses_ES
dc.titleExciton control inaroom temperature bulk semiconductor withcoherent strain pulseses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder2019 TheAuthors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).es_ES
dc.rights.holderAtribución-NoComercial 3.0 España*
dc.relation.publisherversionhttps://advances.sciencemag.org/content/5/11/eaax2937?__utma=109413082.538143510.1582637025.1582637025.1582637025.1&__utmb=109413082.3.10.1582637025&__utmc=109413082&__utmx=-&__utmz=109413082.1582637025.1.1.utmcsr=google|utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided)&__utmv=-&__utmk=105183875es_ES
dc.identifier.doi10.1126/sciadv.aax2937
dc.contributor.funderEuropean Commission
dc.departamentoesFísica de materialeses_ES
dc.departamentoeuMaterialen fisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

2019 TheAuthors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Except where otherwise noted, this item's license is described as 2019 TheAuthors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).