Show simple item record

dc.contributor.authorBlanco Rey, María ORCID
dc.contributor.authorIribas Cerdá, Jorge
dc.contributor.authorArnau Pino, Andrés ORCID
dc.date.accessioned2020-03-02T09:06:42Z
dc.date.available2020-03-02T09:06:42Z
dc.date.issued2019-07-29
dc.identifier.citationNew Journal of Physics 21 : (2019) // Article ID 073054es_ES
dc.identifier.issn1367-2630
dc.identifier.urihttp://hdl.handle.net/10810/41889
dc.description.abstractA second-order perturbation (2PT) approach to the spin-orbit interaction (SOI) is implemented within a density-functional theory framework. Its performance is examined by applying it to the calculation of the magnetocrystalline anisotropy energies (MAE) of benchmark systems, and its efficiency and accuracy are compared with the popular force theorem method. The case studies are tetragonal FeMe alloys (Me=Co, Cu, Pd, Pt, Au), as well as FeMe (Me=Co, Pt) bilayers with (111) and (100) symmetry, which cover a wide range of SOI strength and electronic band structures. The 2PT approach is found to provide a very accurate description for 3d and 4d metals and, moreover, this methodology is robust enough to predict easy axis switching under doping conditions. In all cases, the details of the bandstructure, including states far from the Fermi level, are responsible for the finally observed MAE value, sometimes overruling the effect of the SOI strength. From a technical point of view, it is confirmed that accuracy in the MAE calculations is subject to the accuracy of the Fermi level determination.es_ES
dc.description.sponsorshipDiscussions with G Teobaldi and M dos Santos Dias are acknowledged. MB-R and AA thank financial support from MINECO (grant number FIS2016-75862-P), the University of the Basque Country (UPV/EHU) and the Basque Government (IT-756-13). JIC thanks MINECO for grant MAT2015-66888-C3-1R. Computational resources were provided by the DIPC computing centre.es_ES
dc.language.isoenges_ES
dc.publisherIOP Publishinges_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2015-66888-C3-1Res_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/FIS2016-75862-Pes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectspin-orbit couplinges_ES
dc.subjectmagnetocrystalline anisotropyes_ES
dc.subjectdensity functional theoryes_ES
dc.subjecttransition-metal alloyses_ES
dc.subjectmagnetic-anisotropyes_ES
dc.subjecttight-bindinges_ES
dc.subjectenergyes_ES
dc.subjectferromagnetismes_ES
dc.subjectapproximationes_ES
dc.subjectorigines_ES
dc.subjectcobaltes_ES
dc.subjectalloyses_ES
dc.subjectfees_ES
dc.titleValidity of perturbative methods to treat the spin-orbit interaction: application to magnetocrystalline anisotropyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderOriginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://iopscience.iop.org/article/10.1088/1367-2630/ab3060es_ES
dc.identifier.doi10.1088/1367-2630/ab3060
dc.departamentoesFísica de materialeses_ES
dc.departamentoeuMaterialen fisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Except where otherwise noted, this item's license is described as Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.