Show simple item record

dc.contributor.authorSalazar Ramírez, Asier
dc.contributor.authorMartín Aramburu, José Ignacio ORCID
dc.contributor.authorMartínez Rodríguez, Raquel ORCID
dc.contributor.authorArruti Illarramendi, Andoni ORCID
dc.contributor.authorMuguerza Rivero, Javier Francisco
dc.contributor.authorSierra Araujo, Basilio ORCID
dc.date.accessioned2020-03-04T09:34:05Z
dc.date.available2020-03-04T09:34:05Z
dc.date.issued2019-06-18
dc.identifier.citationPlos One 14(6) : (2019) // Article ID e0218181es_ES
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/10810/41935
dc.description.abstractA brain-computer interface (BCI), based on motor imagery EEG, uses information extracted from the electroencephalography signals generated by a person who intends to perform any action. One of the most important issues of current research is how to detect automatically whether the user intends to send some message to a certain device. This study presents a proposal, based on a hierarchical structured system, for recognising intentional and non-intentional mental tasks on a BCI system by applying machine learning techniques to the EEG signals. First-level clustering is performed to distinguish between intentional control (IC) and non-intentional control (NC) state patterns. Then, the patterns recognised as IC are passed on to a second stage where supervised learning techniques are used to classify them. In BCI applications, it is critical to correctly classify NC states with a low false positive rate (FPR) to avoid undesirable effects. According to the literature, we selected a maximum FPR of 10%. Under these conditions, our proposal achieved an average test accuracy of 66.6%, with an 8.2% FPR, for the BCI competition IIIa dataset. The main contribution of this paper is the hierarchical approach, based on machine learning paradigms, which performs intentional and non-intentional discrimination and, depending on the case, classifies the intended command selected by the user.es_ES
dc.description.sponsorshipThis work was partially supported by the ERDF/Spanish Ministry of Science, Innovation and Universities - National Research Agency/PhysComp project, TIN2017-85409-P and by the Department of Education, Universities and Research of the Basque Government (ADIAN research group, grant IT980-16).es_ES
dc.language.isoenges_ES
dc.publisherPublic Library Sciencees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectmotor imageryes_ES
dc.subjectEEGes_ES
dc.subjectclassificationes_ES
dc.subjectnavigationes_ES
dc.titleA hierarchical architecture for recognising intentionality in mental tasks on a brain-computer interfacees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis is an open access article distributed under the terms of the Creative Commons Attribution License. (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218181es_ES
dc.identifier.doi10.1371/journal.pone.0218181
dc.departamentoesArquitectura y Tecnología de Computadoreses_ES
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoesIngeniería de sistemas y automáticaes_ES
dc.departamentoeuKonputagailuen Arkitektura eta Teknologiaes_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES
dc.departamentoeuSistemen ingeniaritza eta automatikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an open access article distributed under the terms of the Creative Commons Attribution License. (CC BY 4.0)
Except where otherwise noted, this item's license is described as This is an open access article distributed under the terms of the Creative Commons Attribution License. (CC BY 4.0)