dc.contributor.author | Salazar Ramírez, Asier | |
dc.contributor.author | Martín Aramburu, José Ignacio | |
dc.contributor.author | Martínez Rodríguez, Raquel | |
dc.contributor.author | Arruti Illarramendi, Andoni | |
dc.contributor.author | Muguerza Rivero, Javier Francisco | |
dc.contributor.author | Sierra Araujo, Basilio | |
dc.date.accessioned | 2020-03-04T09:34:05Z | |
dc.date.available | 2020-03-04T09:34:05Z | |
dc.date.issued | 2019-06-18 | |
dc.identifier.citation | Plos One 14(6) : (2019) // Article ID e0218181 | es_ES |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10810/41935 | |
dc.description.abstract | A brain-computer interface (BCI), based on motor imagery EEG, uses information extracted from the electroencephalography signals generated by a person who intends to perform any action. One of the most important issues of current research is how to detect automatically whether the user intends to send some message to a certain device. This study presents a proposal, based on a hierarchical structured system, for recognising intentional and non-intentional mental tasks on a BCI system by applying machine learning techniques to the EEG signals. First-level clustering is performed to distinguish between intentional control (IC) and non-intentional control (NC) state patterns. Then, the patterns recognised as IC are passed on to a second stage where supervised learning techniques are used to classify them. In BCI applications, it is critical to correctly classify NC states with a low false positive rate (FPR) to avoid undesirable effects. According to the literature, we selected a maximum FPR of 10%. Under these conditions, our proposal achieved an average test accuracy of 66.6%, with an 8.2% FPR, for the BCI competition IIIa dataset. The main contribution of this paper is the hierarchical approach, based on machine learning paradigms, which performs intentional and non-intentional discrimination and, depending on the case, classifies the intended command selected by the user. | es_ES |
dc.description.sponsorship | This work was partially supported by the ERDF/Spanish Ministry of Science, Innovation and Universities - National Research Agency/PhysComp project, TIN2017-85409-P and by the Department of Education, Universities and Research of the Basque Government (ADIAN research group, grant IT980-16). | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Public Library Science | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | motor imagery | es_ES |
dc.subject | EEG | es_ES |
dc.subject | classification | es_ES |
dc.subject | navigation | es_ES |
dc.title | A hierarchical architecture for recognising intentionality in mental tasks on a brain-computer interface | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | This is an open access article distributed under the terms of the Creative Commons Attribution License. (CC BY 4.0) | es_ES |
dc.rights.holder | Atribución 3.0 España | * |
dc.relation.publisherversion | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218181 | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0218181 | |
dc.departamentoes | Arquitectura y Tecnología de Computadores | es_ES |
dc.departamentoes | Ciencia de la computación e inteligencia artificial | es_ES |
dc.departamentoes | Ingeniería de sistemas y automática | es_ES |
dc.departamentoeu | Konputagailuen Arkitektura eta Teknologia | es_ES |
dc.departamentoeu | Konputazio zientziak eta adimen artifiziala | es_ES |
dc.departamentoeu | Sistemen ingeniaritza eta automatika | es_ES |