Show simple item record

dc.contributor.authorAlberdi Cedeño, Jon ORCID
dc.contributor.authorIbargoitia Isasi-Isasmendi, María Luisa ORCID
dc.contributor.authorGuillén Loren, María Dolores
dc.date.accessioned2020-04-02T16:40:15Z
dc.date.available2020-04-02T16:40:15Z
dc.date.issued2020-03-18
dc.identifier.citationAntioxidants 9(3) : (2020) // Article ID 246es_ES
dc.identifier.issn2076-3921
dc.identifier.urihttp://hdl.handle.net/10810/42588
dc.description.abstractThe aim of this study is the analysis of the in vitro digestion of corn oil, and of the effect of its enrichment with three levels of gamma- and alpha-tocopherol, by using, for the first time, 1H nuclear magnetic resonance (1H NMR) and a solid phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS). The attention is focused on the hydrolysis degree, the degradation of oil’s main components, the occurrence of oxidation reactions and main compounds formed, as well as on the bioaccessibility of oil’s main components, of compounds formed in the oxidation, and, of gamma- and alpha-tocopherol. The lipolysis levels reached are high and show a similar pattern in all cases. The oxidation of corn oil components during in vitro digestion is proven, as is the action of gamma-tocopherol as an antioxidant and alpha-tocopherol as a prooxidant. In the more alpha-tocopherol enriched samples, hydroperoxy-, hydroxy-, and keto-dienes, as well as keto-epoxy-monoenes and aldehydes, are generated. The bioaccessibility of the oil’s main components is high. The compounds formed in the oxidation process during in vitro digestion can also be considered bioaccessible. The bioaccessibility of alpha-tocopherol is smaller than that of gamma-tocopherol. The concentration of this latter compound remains unchanged during the in vitro digestion of the more alpha-tocopherol enriched oil samples.es_ES
dc.description.sponsorshipThis work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO, AGL2015-65450-R, AEI/FEDER-EU) and by the Basque Government and its Departments of Universities and Research (EJ-GV, IT-916-16).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/AGL2015-65450-Res_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectcorn oiles_ES
dc.subjectin vitro digestiones_ES
dc.subject1H NMRes_ES
dc.subjectSPME-GC/MSes_ES
dc.subjectgamma- and alpha-tocopherolses_ES
dc.subjectantioxidantes_ES
dc.subjectprooxidantes_ES
dc.subjectbioaccessibilityes_ES
dc.titleEffect of the Enrichment of Corn Oil With alpha- or gamma-Tocopherol on Its In Vitro Digestion Studied by 1H NMR and SPME-GC/MS; Formation of Hydroperoxy-, Hydroxy-, Keto-Dienes and Keto-E-epoxy-E-Monoenes in the More alpha-Tocopherol Enriched Sampleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-03-27T14:53:34Z
dc.rights.holder© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2076-3921/9/3/246es_ES
dc.identifier.doi10.3390/antiox9030246
dc.departamentoesFarmacia y ciencias de los alimentos
dc.departamentoeuFarmazia eta elikagaien zientziak


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Except where otherwise noted, this item's license is described as © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)