Show simple item record

dc.contributor.authorRodríguez Eguía, Igor
dc.contributor.authorErrasti Arrieta, Iñigo
dc.contributor.authorFernández Gámiz, Unai
dc.contributor.authorBlanco Ilzarbe, Jesús María ORCID
dc.contributor.authorZulueta Guerrero, Ekaitz
dc.contributor.authorSáenz Aguirre, Aitor
dc.date.accessioned2020-05-28T21:50:54Z
dc.date.available2020-05-28T21:50:54Z
dc.date.issued2020-05-18
dc.identifier.citationSymmetry 12(5) : (2020) // Article ID 828es_ES
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10810/43613
dc.description.abstractTrailing edge flaps (TEFs) are high-lift devices that generate changes in the lift and drag coefficients of an airfoil. A large number of 2D simulations are performed in this study, in order to measure these changes in aerodynamic coefficients and to analyze them for a given Reynolds number. Three different airfoils, namely NACA 0012, NACA 64(3)-618, and S810, are studied in relation to three combinations of the following parameters: angle of attack, flap angle (deflection), and flaplength. Results are in concordance with the aerodynamic results expected when studying a TEF on an airfoil, showing the effect exerted by the three parameters on both aerodynamic coefficients lift and drag. Depending on whether the airfoil flap is deployed on either the pressure zone or the suction zone, the lift-to-drag ratio, CL/CD, will increase or decrease, respectively. Besides, the use of a larger flap length will increase the higher values and decrease the lower values of the CL/CD ratio. In addition, an artificial neural network (ANN) based prediction model for aerodynamic forces was built through the results obtained from the research.es_ES
dc.description.sponsorshipThe funding from the Government of the Basque Country and the University of the Basque Country UPV/EHU through the ELKARTEK kk-2016/00031 research program is gratefully acknowledged.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjecttrailing edge flap (TEF)es_ES
dc.subjecthigh-lift devicees_ES
dc.subjectairfoiles_ES
dc.subjectaerodynamic performancees_ES
dc.subjectwind turbinees_ES
dc.subjectartificial neural network (ANN)es_ES
dc.titleA Parametric Study of Trailing Edge Flap Implementation on Three Different Airfoils Through an Artificial Neuronal Networkes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-05-28T14:08:18Z
dc.rights.holder2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2073-8994/12/5/828/htmes_ES
dc.identifier.doi10.3390/sym12050828
dc.departamentoesIngeniería nuclear y mecánica de fluidos
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoeuIngeniaritza nuklearra eta jariakinen mekanika
dc.departamentoeuSistemen ingeniaritza eta automatika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).