Show simple item record

dc.contributor.authorDeniz, Sinan
dc.contributor.authorKonuralp, Ali
dc.contributor.authorDe la Sen Parte, Manuel ORCID
dc.date.accessioned2020-07-08T12:23:05Z
dc.date.available2020-07-08T12:23:05Z
dc.date.issued2020-06-04
dc.identifier.citationSymmetry 12(6) : (2020) // Article ID 958es_ES
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10810/45228
dc.description.abstractThe newly constructed optimal perturbation iteration procedure with Laplace transform is applied to obtain the new approximate semi-analytical solutions of the fractional type of damped Burgers’ equation. The classical damped Burgers’ equation is remodeled to fractional differential form via the Atangana–Baleanu fractional derivatives described with the help of the Mittag–Leffler function. To display the efficiency of the proposed optimal perturbation iteration technique, an extended example is deeply analyzed.es_ES
dc.description.sponsorshipThis work was supported in part by the Basque Government, through project IT1207-19.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectdamped Burgerses_ES
dc.subjectequationes_ES
dc.subjectAtangana–Baleanu derivativees_ES
dc.subjectoptimal perturbation iteration methodes_ES
dc.titleOptimal Perturbation Iteration Method for Solving Fractional Model of Damped Burgers’ Equationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-06-30T16:28:18Z
dc.rights.holder2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2073-8994/12/6/958/htmes_ES
dc.identifier.doi10.3390/sym12060958
dc.departamentoesElectricidad y electrónica
dc.departamentoeuElektrizitatea eta elektronika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).