Show simple item record

dc.contributor.authorPereiro Díez, Xandra ORCID
dc.contributor.authorMiltner, Adam M.
dc.contributor.authorLa Torre, Anna
dc.contributor.authorVecino Cordero, Elena ORCID
dc.date.accessioned2020-09-09T11:26:44Z
dc.date.available2020-09-09T11:26:44Z
dc.date.issued2020-07-22
dc.identifier.citationCells 9(8) : (2020) // Article ID 1759es_ES
dc.identifier.issn2073-4409
dc.identifier.urihttp://hdl.handle.net/10810/46043
dc.description.abstractRetinal neurons, particularly retinal ganglion cells (RGCs), are susceptible to the degenerative damage caused by different inherited conditions and environmental insults, leading to irreversible vision loss and, ultimately, blindness. Numerous strategies are being tested in different models of degeneration to restore vision and, in recent years, stem cell technologies have offered novel avenues to obtain donor cells for replacement therapies. To date, stem cell–based transplantation in the retina has been attempted as treatment for photoreceptor degeneration, but the same tools could potentially be applied to other retinal cell types, including RGCs. However, RGC-like cells are not an abundant cell type in stem cell–derived cultures and, often, these cells degenerate over time in vitro. To overcome this limitation, we have taken advantage of the neuroprotective properties of Müller glia (one of the main glial cell types in the retina) and we have examined whether Müller glia and the factors they secrete could promote RGC-like cell survival in organoid cultures. Accordingly, stem cell-derived RGC-like cells were co-cultured with adult Müller cells or Müller cell-conditioned media was added to the cultures. Remarkably, RGC-like cell survival was substantially enhanced in both culture conditions, and we also observed a significant increase in their neurite length. Interestingly, Atoh7, a transcription factor required for RGC development, was up-regulated in stem cell-derived organoids exposed to conditioned media, suggesting that Müller cells may also enhance the survival of retinal progenitors and/or postmitotic precursor cells. In conclusion, Müller cells and the factors they release promote organoid-derived RGC-like cell survival, neuritogenesis, and possibly neuronal maturation.es_ES
dc.description.sponsorshipThis work was supported by National Institutes of Health Grant R01EY026942 to A.L.T., and by the National Institutes of Health T32 Vision Science Training grant 4T32EY015387 to A.M.M. We also benefit from the National Eye Institute Core Facilities grant P30 EY012576. ELKARTEK KK-2019/00086 to E.V., Research groups of the UPV/EHU (GIU 2018/50) to E.V., Movilidad de personal de investigación UPV/EHU to X.P. and Programa de perfeccionamiento de personal Investigador Doctor, Gobierno Vasco (POS_2019_1_0027) to X.P.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectretinal ganglion cellses_ES
dc.subjectMüller gliaes_ES
dc.subjectStem cellses_ES
dc.subjectretinal organoidses_ES
dc.subjectneuroprotectiones_ES
dc.subjectneuritogenesises_ES
dc.titleEffects of Adult Müller Cells and Their Conditioned Media on the Survival of Stem Cell-Derived Retinal Ganglion Cellses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-08-21T13:49:04Z
dc.rights.holder2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2073-4409/9/8/1759es_ES
dc.identifier.doi10.3390/cells9081759
dc.departamentoesBiología celular e histología
dc.departamentoeuZelulen biologia eta histologia


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).