Show simple item record

dc.contributor.authorCatalán Carrio, Raquel
dc.contributor.authorAkyazi, Tugce
dc.contributor.authorBasabe Desmonts, Lourdes ORCID
dc.contributor.authorBenito López, Fernando ORCID
dc.date.accessioned2021-01-13T13:20:20Z
dc.date.available2021-01-13T13:20:20Z
dc.date.issued2020-12-26
dc.identifier.citationSensors 21(1) : (2020) // Article ID 101es_ES
dc.identifier.issn1424-8220,
dc.identifier.urihttp://hdl.handle.net/10810/49745
dc.description.abstractThe main problem for the expansion of the use of microfluidic paper-based analytical devices and, thus, their mass production is their inherent lack of fluid flow control due to its uncontrolled fabrication protocols. To address this issue, the first step is the generation of uniform and reliable microfluidic channels. The most common paper microfluidic fabrication method is wax printing, which consists of two parts, printing and heating, where heating is a critical step for the fabrication of reproducible device dimensions. In order to bring paper-based devices to success, it is essential to optimize the fabrication process in order to always get a reproducible device. Therefore, the optimization of the heating process and the analysis of the parameters that could affect the final dimensions of the device, such as its shape, the width of the wax barrier and the internal area of the device, were performed. Moreover, we present a method to predict reproducible devices with controlled working areas in a simple manner.es_ES
dc.description.sponsorshipThe authors would like to acknowledge funding support from Gobierno de España, Ministerio de Economía y Competitividad, with Grant No. BIO2016-80417-P (AEI/FEDER, UE), the Gobierno Vasco Dpto. Educación for the consolidation of the research groups (IT1271-19) and from Proyectos Colaborativos from the University of the Basque Country UPV/EHU, BIOPLASMOF (COLAB19/05). This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778001.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/ BIO2016-80417-Pes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/778001es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectLOCes_ES
dc.subjectwax printinges_ES
dc.subjectpaper microfluidicses_ES
dc.subjectµPADes_ES
dc.subjectpaper microfluidics fabricationes_ES
dc.titlePredicting Dimensions in Microfluidic Paper Based Analytical Deviceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2021-01-08T14:44:24Z
dc.rights.holder2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/21/1/101/htmes_ES
dc.identifier.doi10.3390/s21010101
dc.departamentoesFarmacia y ciencias de los alimentos
dc.departamentoesZoología y biología celular animal
dc.departamentoesQuímica analítica
dc.departamentoeuFarmazia eta elikagaien zientziak
dc.departamentoeuZoologia eta animalia zelulen biologia
dc.departamentoeuKimika analitikoa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).