Show simple item record

dc.contributor.authorExley, Christopher
dc.contributor.authorGuerriero, Gea
dc.contributor.authorLópez Pestaña, José Javier
dc.date.accessioned2021-02-04T09:15:47Z
dc.date.available2021-02-04T09:15:47Z
dc.date.issued2020-11
dc.identifier.citationSilicon 12(11) : 2641-2645 (2020)es_ES
dc.identifier.issn1876-990X
dc.identifier.issn1876-9918
dc.identifier.urihttp://hdl.handle.net/10810/50017
dc.description.abstractPlants accumulate silicon in their tissues as amorphous silica. The form of silicon taken up by plants is silicic acid, a neutral molecule that passes through membrane channels with water. After seminal work on rice identified an aquaporin that appeared to mediate the passage of silicic acid, several papers followed and classified similar channels (referred to as "transporters") in a number of plant species. These channels have been described as essential for silicon uptake and specific for the metalloid. Herein, we critically review the published data on the characterisation of one channel in particular,Lsi1, and identify possible caveats in results and limitations in methods used. Our analysis does not support the suggestion that the identified channels are specific for silicic acid. Computational analyses of the size of theLsi1pore additionally suggest that it may not play a significant role in mediating the movement of silicic acidin planta. We suggest that to avoid further confusion, channels currently implicated in the transport of silicic acidin plantaare not referred to as silicon-specific transporters. Future research including the use of molecular dynamics simulations will enable the unequivocal identification of channels involved in silicon transport in plants.es_ES
dc.description.sponsorshipXL was supported by Grants PGC2018-099321-BI00 from the Ministry of Science, Research and Universities, and Grant IT1254-19 from the Basque Government.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/PGC2018-099321-BI00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectsilicic acides_ES
dc.subjectsilicaes_ES
dc.subjectplantses_ES
dc.subjectaquaporines_ES
dc.subjectoocyteses_ES
dc.subjectefflux transporterses_ES
dc.subjectfunctional-characterizationes_ES
dc.subjectidentificationes_ES
dc.subjectaquaporinses_ES
dc.subjectselectivityes_ES
dc.subjecthorsetailes_ES
dc.subjecttraceres_ES
dc.subjectGE-68es_ES
dc.titleHow is silicic acid transported in plants?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://link-springer-com.ehu.idm.oclc.org/article/10.1007%2Fs12633-019-00360-wes_ES
dc.identifier.doi10.1007/s12633-019-00360-w
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)