Show simple item record

dc.contributor.authorOtxoa, Ruben M.
dc.contributor.authorRoy, P. E.
dc.contributor.authorRama Eiroa, Ricardo
dc.contributor.authorGodinho, J.
dc.contributor.authorGusliyenko, Kostyantyn
dc.contributor.authorWunderlich, J.
dc.date.accessioned2021-02-04T09:25:09Z
dc.date.available2021-02-04T09:25:09Z
dc.date.issued2020-10-29
dc.identifier.citationCommunications Physics 3(1) : (2020) // Article ID 190es_ES
dc.identifier.issn2399-3650
dc.identifier.urihttp://hdl.handle.net/10810/50019
dc.description.abstractWithin linear continuum theory, no magnetic texture can propagate faster than the maximum group velocity of the spin waves. Here, by atomistic spin dynamics simulations and supported by analytical theory, we report that a strongly non-linear transient regime due to the appearance of additional magnetic textures results in the breaking of the Lorentz translational invariance. This dynamical regime is akin to domain wall Walker-breakdown in ferromagnets and involves the nucleation of an antiferromagnetic domain wall pair. While one of the nucleated domain walls is accelerated beyond the magnonic limit, the remaining pair remains static. Under large spin-orbit fields, a cascade of multiple generation and recombination of domain walls are obtained. This result may clarify recent experiments on current pulse induced shattering of large domain structures into small fragmented domains and the subsequent slow recreation of large-scale domains. Antiferromagnetic systems are becoming an appealing alternative for spintronic-based devices due to the more rapid magnetisation dynamics when compared to their ferromagnetic counterparts. Here, using spin dynamic simulations, the authors demonstrate that the motion of domain walls can achieve supermagnonic speeds in an antiferromagnetic system by means of generation of additional domain wall pairs.es_ES
dc.description.sponsorshipThe work of R.M.O. and K.Y.G. was partially supported by the STSM Grants from the COST Action CA17123 "Ultrafast opto-magneto-electronics for non-dissipative information technology". K.Y.G. acknowledges support by IKERBASQUE (the Basque Foundation for Science) and Spanish MINECO project FIS2016-78591-C3-3-R.es_ES
dc.language.isoenges_ES
dc.publisherNaturees_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/FIS2016-78591-C3-3-Res_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectdislocationses_ES
dc.subjectstabilityes_ES
dc.subjectdynamicses_ES
dc.subjectmotiones_ES
dc.subjectstateses_ES
dc.titleWalker-like domain wall breakdown in layered antiferromagnets driven by staggered spin-orbit fieldses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s42005-020-00456-5es_ES
dc.identifier.doi10.1038/s42005-020-00456-5
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)